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1. Introduction

We consider a control-volume discretization of the model equation

−div(K grad p) = g on Ω (1)

on a 2D quadrilateral grid. The coefficient K is a symmetric and
positive definite tensor.

Our applications are flow in porous media, i.e., subsurface flow
simulation. These equations contain an elliptic operator similar to the
left-hand side of (1), and this motivates our study. The equations have
properties which constrain the choice of grid and discretization tech-
nique used for the elliptic operator. For multiphase flow, some variables
(saturations) behave like solutions of hyperbolic equations, while one
variable (the pressure) behaves like a solution of an elliptic equation.
Phase transitions, which are strongly pressure dependent, may occur.

Due to the hyperbolicity and the strongly nonlinear behavior of the
saturations, the discretization scheme should be locally conservative.
Also, since the phase transitions are pressure dependent, the pressure
should be evaluated at the same point as the saturations. This moti-
vates the use of a control-volume scheme for (1), with evaluation of the
dependent variable p at the centers of the cells.

Stability for the variables with hyperbolic behavior may be accom-
plished by upstream weighting of the phase flow. In a fully implicit
scheme for the flow equations, a simple upstream weighting can be
achieved if the method for the elliptic operator in (1) yields the flux at
the edges as an explicit function of the potential p at some neighboring
cell centers.

The absolute permeability may vary strongly in subsurface rocks.
Since the potential node should be located at the cell centers, it is
important that the discrete resistance between two nodes honors the
strong heterogeneity.

The Multipoint Flux Approximation (MPFA) method is a control-
volume method which is designed to satisfy the properties described
above. It can be applied to quadrilateral grids [1, 3, 5, 6, 15] and to
unstructured grids [2, 4, 14, 28], see [1] for a more complete bibliogra-
phy. For quadrilateral grids, the method may be applied in the physical
space or in a reference space. Physical-space approximations have good
convergence properties [6], but are non-symmetric for quadrilaterals
which are not parallelograms. In this paper, we consider the MPFA
method for quadrilateral grids in a reference space [1, 5, 21, 22] and its
relationship to the mixed finite element (MFE) method [12].

It is well known that the MFE methods are also locally mass con-
servative and compute fluxes on the edges. Two other closely related
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methods that handle rough grids and coefficients accurately are the
control volume mixed finite element (CVMFE) method [13] and the
mimetic finite difference (MFD) method [19]. All three methods re-
quire the solution of a saddle point problem. A relationship between
MFE methods and cell-centered finite difference (CCFD) methods via
a quadrature rule was established in [25] and explored in [29] to analyze
convergence of pressure and velocity in CCFD methods on rectangular
grids and diagonal tensor coefficients. Another approach based on a
relationship between MFE and a control volume method is discussed
in [7]. An extension to full tensors and general grids was established
through the expanded mixed finite element (EMFE) method [8, 9]. The
EMFE method is superconvergent for smooth grids and coefficients, but
loses accuracy near discontinuities unless a hybrid formulation is em-
ployed, or discontinous elements are imposed. A discussion of the need
for discontinuous elements for EMFE and a connection between these
elements and MPFA is shown in [21]. The MPFA method combines the
advantages of the previously mentioned methods — it is accurate for
rough coefficients and grids and leads to a control-volume formulation
with a cell-centered local pressure system.

In the MPFA method on quadrilateral grids in a reference space,
the Jacobian matrix of the transformation is not constant. We discuss
the different variants of the method which appear when the Jacobian
matrix is evaluated at some naturally chosen points, namely, the mid-
points and the corner points. We also discuss the relationship between
these MPFA variants and MFE methods using the Raviart-Thomas ele-
ments RT0 [24] or the Brezzi-Douglas-Marini elements BDM1 [11] with
quadrature, and how different choices of points in the quadrature rule
give different versions of symmetric MPFA methods. An advantage of
the MFE formulations is that variational techniques can be employed to
analyze the algebraic system and convergence properties of the MPFA
method [20, 22, 30, 31].

The rest of the paper is organized as follows. In the next section we
present the reference-space MPFA method. The RT0 and BDM1 MFE
formulations and their relationship to the MPFA method are discussed
in Section 3. Numerical results for the convergence of the resulting
MPFA versions are presented in Section 4. The paper ends with some
conclusions in Section 5.

2. Multipoint flux approximation

The MPFA discretization approach is based on a control-volume for-
mulation of the pressure equation (1), where more than two pressure



4

Figure 1. Control volumes (solid) and interaction volumes (dashed).

values are used in the flux approximation for each edge of the control
volume. The basic idea for the MPFA discretization is to divide each
control-volume grid-cell into subcells and then assume linear variation
of the pressure in each subcell. All subcells with a common corner
create a dual grid. The cells in the dual grid are denoted interaction
volumes, see Figure 1. An interaction volume will hence contain four
subedges when the mesh consists of quadrilaterals. Discrete fluxes are
calculated for these edges. The flux across each subedge is determined
from Darcy’s law on the linear pressure variation in each subcell. The
discretization is accomplished by assuming continuous fluxes across
each of the subedges, and a weak continuity condition of the pressure
across the same edges. From these assumptions, an explicit discrete
flux can be found after eliminating the edge pressure for each subedge
in an interaction volume.

Each subedge flux ue can then be written explicitly as a weighted
sum of the cell pressures of the interaction volume,

ue =
∑
i∈I

te,i pi. (2)

The coefficients te,i are called the transmissibility coefficients associated
with edge e, and I denotes the interaction volume. The transmissibil-
ities are in general given by matrix expressions, but are easily found
numerically.

In the following, we will deal with the MPFA O-method in a refer-
ence space [1]. The same continuity principles as in the physical space
are then applied. However, the permeability is transformed into a ten-
sor, which embodies the permeability and the geometry of the cell. The
Jacobian matrix of this transformation is in general not constant, and
this implies that the MPFA methods in physical space and in reference
space are not identical.

The MPFA method in physical space honors the exact geometry of
the cell. This gives good convergence properties [6]. However, the ma-
trix of coefficients of the resulting system of equations is non-symmetric.

The MPFA method in reference space is always symmetric. However,
evaluation of the Jacobian matrix at discrete points implies that the
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Figure 2. Left (a): A control-volume grid cell and its subcells. Right (b): The bilinear
mapping FE from Ê into E.

geometry of the cell is only approximately honored, and, as will be seen,
this yields less robust convergence properties on rough grids.

For parallelogram-shaped cells, the Jacobian matrix is constant,
and the two methods become identical. In this case, good convergence
properties and symmetry are achieved.

2.1. Quadrilateral meshes

Let {Th} denote a family of partitions of Ω into quadrilateral sub-
domains, or cells (control volumes), where h is the maximum element
edge length. Assume that each interior corner of Th meets four cells.
Further divide all the cells into four subcells by dividing each control-
volume edge into two equal edges, and using the intersection of the two
straight dashed lines which connect opposite points in Figure 2.a. The
control-volume edge partitions are denoted half edges throughout this
paper. Finally, denote the set of edges of Th by Eh.

For any cell E ∈ Th, we will utilize a bilinear mapping F = FE : Ê →
E which is smooth and invertible, see Figure 2.b. Here, the reference
element Ê = (0, 1) × (0, 1) is the unit square. Let xi = (xi, yi), i =
1, 2, 3, 4, be the four corners of element E in counterclockwise direction
as shown in Figure 2.b. If xij = (xi − xj), the transformation F takes
the form

F (x̂, ŷ) = x1 + x21x̂+ x41ŷ + (x32 − x41)x̂ŷ, (3)

for (x̂, ŷ) ∈ Ê. The Jacobian matrix of F is denoted D = DE and
J = JE is the Jacobian of the mapping.

A quadrilateral E ∈ {Th} is said to be a h2-parallelogram, if there
exists a constant C independent of h such that

|Fx̂ŷ| = |x32 − x41| ≤ Ch2. (4)

Given a general quadrilateral grid, this is a consequence of uniform
refinement. This condition is necessary to achieve superconvergence for
the MFE method, cf. [18]. The MFE method is locally conservative and
symmetric, and can hence serve as a reference for expected behavior
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for locally conservative methods. We will see numerically that on h2-
parallelograms, the symmetric reference-space MPFA method gives the
same order of convergence as the MFE method with the lowest order
Raviart-Thomas elements, O(h2), for both pressure and flux.

Define the analogous permeability in the reference space

K̂ = JD−1KD−T. (5)

Note that K̂ is symmetric and positive definite for each x. If K̂ is
diagonal for all E ∈ Th, the grid is denoted a K-orthogonal grid.

The analogous permeability embodies both the permeability and
the shape of the cells. The discrete pressure and flux values from the
reference space remain unchanged compared to the discrete values in
the physical space; p̂ = p ◦ FE(x̂). If ne denotes the edge unit normal
we have

ue = −
∫
e
K grad p · ne ds = −

∫
ê
K̂ grad p̂ · n̂e dŝ = ûe. (6)

with K̂ defined by (5). For quadrilateral grids the analogous perme-
ability K̂ in the reference space will not be cellwise constant even if
the physical permeability is constant.

2.2. The multipoint flux approximation method

Here, we derive the MPFA method in a formulation that will match
the MFE method. In this form, the explicit MPFA flux is found after
inverting a local 4 × 4 matrix. Note that K̂ is independent of any
translation of the reference mapping FE , see (3). The reference mapping
can therefore be adjusted for four cells with one common corner, so that
we have a reference interaction volume, Î. This adjustment does not
affect any of the transformed quantities.

The MPFA method can be derived locally on each interaction vol-
ume. We consider one interaction volume, where the cell and half edges
are numbered from 1 to 4, see Figure 3.

For each subcell Ei, we evaluate the tensor K̂ at a point, to get a
constant tensor on each subcell. The constant subcell approximation of
K̂|Ei is denoted by KEi , and the components of K−1

E are denoted κEij ,
i, j = 1, 2. Define the pressure space P (Î) on the interaction volume Î,
to be linear on each subcell Êi, and to be continuous on the boundary
of Î. For each p̂ ∈ P (Î) let {pk}k=1,2,3,4 be the values of p̂ at the
corners of Î, and let {λk}k=1,2,3,4 be the values of p̂ at the midpoints
of the boundary edges of Î, see Figure 3. The local pressure p̂ is then
uniquely defined by the eight degrees of freedom {pk, λk}. Let

ue|Ei = −KEi grad p̂|Ei · n̂e /2 (7)
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Figure 3. Four cells, numbered 1 to 4, and their common interaction volume in the
reference space, where • denotes the cell pressures {pi}, and the small • the edge
pressure {λei}.

for the four inner subcell edges. The MPFA pressure space PMPFA on
Î is further restricted to

PMPFA(Î) = {p̂ ∈ P (Î) : [ue]e = 0, ∀e ∈ E1/2(Î)}, (8)

where E1/2(Î) means the four inner edges of Î, [ · ]e is the jump across
edge e, and ue is defined by (7). The pressure p̂ ∈ PMPFA(Î) is then
uniquely determined by the cell pressures {pk}k=1,2,3,4, cf. [22].

To illustrate the mixed form of the discrete equations, we follow
a procedure from [22]. Consider the two subcells 1 and 2 with node
pressures p1 and p2, and their common upper half edge e1, see Figure
3. Subcell 1 then connects the half edges e1 and e4. Calculating the flux
for half edge e1 and e4 with Darcy’s law on subcell 1 gives

ue1 = −1
2
K1 grad(p̂) ·

[
1
0

]
, ue4 = −1

2
K1 grad(p̂) ·

[
0
1

]
, (9)

or,

(K1)−1

[
ue1
ue4

]
= −1

2
grad(p̂). (10)

Next, grad(p̂) is determined from the assumption of linear pressure
variation in each subcell. In the reference space, the constant gradient
is determined in each subcell between the node pressure and one point
on each half edge. Let p1 be the node pressure of cell 1, and let the
pressure at the midpoint of the actual edge be λe1 , see Figure 3. This
gives

1
2

grad(p̂)|Ê1
=
[
p1 − λe1
p1 − λe4

]
,

1
2

grad(p̂)|Ê2
=
[
λe1 − p2

p2 − λe2

]
. (11)

Eliminating λe1 from (11) and the constant gradient values by (10),
gives

(κ1
11 + κ2

11)ue1 + κ1
12ue4 + κ2

12ue2 = −(p2 − p1). (12)
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On each interaction volume, the left hand side of (12) can be written
as the first row in

A[ue1 , ue2 , ue3 , ue4 ]T, (13)

where

A =


(κ1

11 + κ2
11) κ2

12 0 κ1
12

κ2
12 (κ2

22 + κ3
22) κ3

12 0
0 κ3

12 (κ3
11 + κ4

11) κ4
12

κ1
12 0 κ4

12 (κ1
22 + κ4

22)

 . (14)

Similar equations for the other subedges yields the other rows of the
expression (13). By inspection, this is a symmetric positive definite
matrix, if and only if (Ki

Ê
)−1, i = 1, 2, 3, 4, is symmetric positive defi-

nite. Inverting this matrix on each interaction volume gives the explicit
flux and transmissibility coefficients traditionally found for MPFA in
the literature. Symmetry and positive definiteness of the final matrix of
coefficients were first shown in [5] for the midpoint evaluation case. The
symmetry of the final matrix of coefficients follows from the symmetry
of the local 4×4 matrix associated with each interaction volume. Since
K̂ is symmetric and positive definite for all x̂, approximation by any
point values on each subcell maintains this symmetry. In the numer-
ical section, we show different behavior for MPFA for the different
approximation points.

2.3. Midpoint and corner-point Jacobian evaluations

For general quadrilaterals, the Jacobian matrix and its determinant
are not constant. They are evaluated at a point to retain the property
that the transformed permeability tensor is constant on each subcell.
Depending on the point at which the matrix is evaluated, methods
with different properties appear. Relations to quadrature rules in MFE
formulations will be discussed in Section 3.3. Below we discuss how
the treatment in the reference space approximates the treatment in
the physical space for two different evaluations. The chosen evaluation
points of the Jacobian matrix are the cell center and the cell corners.
More precisely, the Jacobian matrix for each subcell is evaluated at
either the center or the corner in the interaction volume.

Consider the quadrilateral (solid lines) of Figure 4. The lines con-
necting the midpoints of opposite edges are drawn. Their intersection
defines the center of the cell. Evaluating the Jacobian matrix at the
cell center corresponds to replacing the quadrilateral with the dashed
parallelogram shown in Figure 4.a. Thus, a center evaluation of the
Jacobian matrix corresponds to the case in which the distances from
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a. Center evaluation. b. Evaluation at upper right corner.

Figure 4. Replacing a quadrilateral (solid) by its associated parallelogram (dashed).

the cell center to the edge midpoints are correct, but where the edges
of the corresponding parallelogram have wrong orientation and length.

To get a correct orientation of the edges, one may instead evaluate
the Jacobian matrix at the corner in the interaction volume which is
treated. This guarantees that the edges used for the flux calculation
in this interaction volume have correct orientation and length. The
parallelogram corresponding to this evaluation of the Jacobian matrix
is shown with dashed lines in Figure 4.b. Obviously, the cell center of the
parallelogram has now moved away from the cell center of the original
quadrilateral. However, the choice of a cell-center point is not crucial for
the behavior of the method [6]. The difficulty here is therefore that the
parallelograms of the different corners have different cell centers. This
implies that the resistance through a cell may be either too large or
too small. In section 4 the center-evaluation and the corner-evaluation
methods are compared with the method in the physical space.

3. The mixed finite element method

In this section, we discuss MPFA written as a mixed finite element
method with a numerical quadrature rule. From this point of view,
different natural choices of the point evaluation for K̂ follow from the
quadrature rule.

The unknown fluid velocity u is now introduced in the system of
equations, which leads to the classical mixed formulation of Equation
(1),

u = −K grad p,
divu = g.

(15)

Assuming a boundary condition p = 0 on ∂Ω, a weak formulation of
the system (15) can be formulated as the problem of finding (u, p) ∈
H(div)× L2 such that

(K−1u,v)− (p,div v) = 0 for all v ∈ H(div),
(divu, q) = (g, q) for all q ∈ L2,

(16)
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where
H(div) = {v ∈ (L2)2 : div v ∈ L2}

and g is assumed to be a L2 function.
The mixed finite element method is a discrete version of this system:

find (uh, ph) ∈ V h ×Qh ⊂ H(div)× L2 such that

(K−1uh,v)− (ph,div v) = 0 for all v ∈ V h,
(divuh, q) = (g, q) for all q ∈ Qh,

(17)

where the finite element spaces V h and Qh can be one of two sets of
elements introduced in the next subsections.

3.1. Broken Raviart-Thomas elements

These elements are introduced and analyzed in [21, 22], and the con-
nection between the MFE method with these elements and the MPFA
method is shown there. The basic ideas for the connection and analysis
were presented in [20].

Let a, b, c, and d be piecewise constant functions on (0, 1), with a
discontinuity at 1/2. On the reference square Ê, the velocity functions

R̂T 1/2
are defined as the eight-dimensional space given by

R̂T 1/2
0 :=

[
a(ŷ) + b(ŷ)x̂
c(x̂) + d(x̂)ŷ

]
.

For comparison, the classical Raviart-Thomas functions R̂T 0, cf. [12],
are given when a, b, c, and d are constants on the entire cell Ê, so
R̂T 0 ⊂ R̂T

1/2
0 . It is straightforward to check that if v̂ ∈ R̂T 1/2

0 and
n̂ is a normal vector to an edge of Ê, then v̂ · n̂ is a constant along
each half edge. Furthermore, this property is preserved by the Piola
transformation for each cell. If v̂ is a vector field in H(div, Ê), define
a vector field v on E by the Piola transformation P = PE [27], i.e.,

v(x) = Pv̂(x) =
1
J
Dv̂ ◦ F−1(x).

The velocity space, RT 1/2
0 ⊂ H(div), is now defined by

RT 1/2
0 := {v ∈ H(div) : v|E ∈ PE(R̂T 1/2

0 ), ∀E ∈ Th}.

The pressure is approximated by piecewise constants on Th, i.e., we let

Qh := {q ∈ L2 : q|E ∈ P0(E), ∀E ∈ Th}, (18)

where Pk denotes the space of polynomials of degree ≤ k.
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3.2. Brezzi-Douglas-Marini elements

In [30, 31], a multipoint flux mixed finite element method that re-
duces to cell-centered finite differences on simplicial and curvilinear
quadrilateral grids via quadrature rule was introduced and analyzed.
There it was shown that this method, based on the lowest order Brezzi-
Douglas-Marini BDM1 mixed finite element spaces, is closely related to
the MPFA method.

On the reference unit square the BDM1 spaces are defined as [11, 12]

ˆBDM1 := P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=
[
α1x̂+ β1ŷ + γ1 + rx̂2 + 2sx̂ŷ
α2x̂+ β2ŷ + γ2 − 2rx̂ŷ − sŷ2

]
, Q̂ := P0(Ê),

(19)

where α1, α2, β1, β2, γ1, γ2, r, s are constants. Note that div ˆBDM1 = Q̂
and that for all v̂ ∈ ˆBDM1 and for any edge ê of Ê

v̂ · n̂ê ∈ P1(ê).

The degrees of freedom for ˆBDM1 can be chosen to be the values of
v̂ ·n̂ê at any two points on each edge ê. We choose these points to be the
vertices of ê. This choice is motivated by the requirement of accuracy
and certain orthogonalities for the quadrature rule discussed below.

The velocity BDM1 space on Th is defined via the Piola transforma-
tion:

BDM1 = {v ∈ H(div) : v|E ∈ PE( ˆBDM1), ∀E ∈ Th}. (20)

The pressure BDM1 space consists of piecewise constants, i.e., it
coincides with the RT0 pressure space Qh defined in (18).

3.3. The quadrature rule

In order to obtain the MPFA method as a mixed finite element method,
we need to replace the term (K−1uh,v)E in (17) by a quadrature
formula. We define this numerical quadrature formula on the reference
element Ê, and denote it âÊ( · , · ).

We note that if K̂|Ê = JD−1KD−T, then K̂
−1|Ê = J−1DTK−1D

and
(K−1u,v)E = (JK−1 1

J
Dû,

1
J
Dv̂)Ê = (K̂

−1
û, v̂)Ê (21)

for all u,v ∈ V h.
The first part of the quadrature rule is the approximation of K̂ by

a constant tensor KEi on each subcell Ei. To get the MPFA method as
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Figure 5. One cell, with four subcells Êi, and the half cell edges eij .

defined in for instance [1], we evaluate K̂(x̂) at the midpoint of each
reference element. Another, and equally natural, approximation is to
evaluate K̂ at the corners of the cell. This corresponds to evaluating
the normal components of K̂ at the edges, which is where we actually
calculate the fluxes. As we will see in the numerical section, the edge
evaluation is better than the midpoint evaluation. Other evaluation
points for K̂ have also been tested, like for instance the Gaussian points
[10], but they have not performed as well as the corner evaluation.

Let Êi, i = 1, 2, 3, 4, denote the four subcells of Ê, and let eij denote
the outer half edge of subcell Êi with the jth unit vector as a normal,
cf. Figure 5. In the quadrature rule, we will use KEi to approximate
K̂. The second part of the quadrature formula is derived from the
trapezoidal rule, cf. [22] or [30].

Application of the trapezoidal quadrature rule in both directions re-
quires the evaluation of the vectors at the corners. We note that a vector
at a corner is uniquely determined by the values of its normal compo-
nents to the edges intersecting at this corner. For any v̂ = (v̂1, v̂2) ∈ V̂ ,
the vector at a corner x̂i is

v̂(x̂i) =
[
v̂i1
v̂i2

]
,

where v̂ik = v̂k(x̂i), k = 1, 2. For v̂ ∈ R̂T 1/2
, the components v̂ik are

not merely the corner values v̂k(x̂i), but also v̂ik = v̂k|eik , k = 1, 2. Note
that we have thus associated with each corner x̂i, two basis functions
of V̂ , namely v̂ik corresponding to the degrees of freedom v̂ik, k = 1, 2.

Following the discussion above, we now define for û, v̂ ∈ V̂ ,

âÊ(û, v̂) =
1
4

4∑
i=1

K−1
Ei
û(x̂i) · v̂(x̂i) =

1
4

4∑
i=1

2∑
j,k=1

κEijk ûij v̂ik, (22)

where κEijk are the components of K−1
Ei

. Clearly the quadrature rule (22)
only couples the two basis functions v̂ik, k = 1, 2, associated with a
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corner x̂i of Ê. For example, for a corner x̂i,

âÊ(v̂i1, v̂ik) =
1
4
κEi1k , k = 1, 2, and âÊ(v̂i1, v̂jk) = 0, j 6= i, k = 1, 2.

(23)
For a discussion of the quality of this numerical integration used with
midpoint evaluation of K̂ in the case of V h = RT 1/2

0 , see [22]. For a
discussion of the approximation qualities of the corner based evaluation
in the case of V h = BDM1, see [30, 31].

Finally, define the perturbed bilinear form

ah(u,v) =
∑
Th

âÊ(û, v̂) (24)

for all u,v ∈ V h.

REMARK 3.1. The quadrature rule (22) is closely related to an inner
product used in the MFD methods [19], where the integration is per-
formed in the physical space. We note that it is simpler to evaluate the
quadrature rule on the reference element Ê.

3.4. The MPFA method from the MFE method

The last step of rewriting the MPFA method as a perturbed MFE
method is to apply the quadrature rule on (17). With the quadrature
rules (24) used to perturb (17) we have defined the finite element
method: find (uh, ph) ∈ V h ×Qh such that

ah(uh,v)− (ph,div v) = 0 for all v ∈ V h,
(divuh, q) = (g, q) for all q ∈ Qh.

(25)

It is shown in [22] and [30] for V h = RT 1/2
0 and V h = BDM1,

respectively, that the method (25) has a unique solution.

PROPOSITION 3.1. For either V h = RT 1/2
0 or V h = BDM1, method

(25) is equivalent to the MPFA method presented in Section 2.2.

Proof: First note that there is a one-to-one correspondence between the
degrees of freedom of V h×Qh and the unknowns in the MPFA method.
Recall that only the two basis functions associated with a corner of Ê
are coupled by the quadrature rule (22), see (23). Therefore, for any
interior vertex of Th, taking v = v1,v2,v3,v4, the four associated basis
functions, in (25) leads to a 4 × 4 local system for the four unknown
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velocities u1, u2, u3, u4. A simple calculation shows that in the reference
space this system is identical to the MPFA system (12)–(14). 2

The following properties of the local and global systems follow easily
from the variational formulation (25).

PROPOSITION 3.2. The local 4 × 4 velocity linear systems and the
resulting global cell-centered pressure system are symmetric and positive
definite.

Proof: Denoting by {vi} and {qj} the bases of V h and Qh, respectively,
the algebraic system that arises from (25) is(

A BT

B O

)(
u
p

)
=
(

0
g

)
, (26)

where Aij = ah(vi,vj) and Bij = −(qj ,div vi). The matrix A is block-
diagonal with 4× 4 diagonal blocks. The symmetry of A is obvious. It
is easy to check that, since K is symmetric and positive definite, ah(·, ·)
is a norm in V h, and therefore each diagonal block of A is symmetric
and positive definite. The elimination of u in (26) leads to the system
BA−1BT p = −g. We have that BTp = 0 implies p = 0. This can be
shown by using the inf-sup condition

∀q ∈ Qh, sup
0 6=v∈BDM1

(q,div v)
‖v‖div

≥ β‖q‖.

Therefore BA−1BT is symmetric and positive definite. 2

REMARK 3.2. Note that only homogeneous pressure boundary con-
ditions have been treated in this section. In general, for the differ-
ent formulations, the naturally derived boundary conditions will not
necessarily be equal.

4. Numerical experiments

In this section we test L2 convergence properties of the MPFA O-
method which is based on a mapping onto a reference space. By propo-
sition 3.1 this method yields the same discrete solution as the two
methods derived in section 3. The results are compared to the physical-
space discretization. The benefit of using a reference space is a sym-
metric mass matrix. It will be shown when this gives the same order
of convergence as the discretization in physical space, and when some
more care has to be taken when choosing which MPFA version to use.
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a. Random orthogonal grid. b. Uniformly refined grid.

Figure 6. Random orthogonal grid and the uniformly refined grid.
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Figure 7. Convergence behavior for MPFA on the grids shown in Figure 6. For the
uniform refined grid, the reference space is used with midpoint, Gaussian point, and
corner-point evaluation of the permeability. Left (a): Pressures. Right (b): Normal
velocities.

Significant numerical testing has been done for the MPFA O-method
in physical space in [6, 16, 17]. Test examples therein cover both smooth
and nonsmooth grids and cases with discontinuous permeability. Ex-
amples in 2D are provided in [16, 17], whereas both 2D and 3D results
are given in [6]. The convergence rates are estimated from numerical
experiments. We make use of the interpolated Hilbert space Hξ where
ξ is a positive real number, see [26, Chapter 8]. If the potential is
in H1+α, α > 0, the obtained L2 convergence order on rough grids
in physical space is min{2, 2α} for the potential and min{1, α} for
the normal velocities. For smooth grids, the convergence order for the
normal velocities increases to min{2, α}.

4.1. Homogeneous medium; smooth solutions

We first discuss the convergence behavior for a smooth reference solu-
tion on a homogeneous medium. The first test case has a permeability
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Figure 8. Grids used for simulations. From left to right: (a): Smooth grid. (b):
Random h2-perturbation of the smooth grid. (c): Random h1-perturbation of the
smooth grid.

tensor with eigenvalues 10 and 1, where the eigenvectors are rotated
30◦ counterclockwise. This gives

K =
[
7.7500 3.8971
3.8971 3.2500

]
.

Equation (1) is solved on the domain (0, 1) × (0, 1) with Dirichlet
boundary conditions. The boundary conditions and the source term
in (1) are chosen to correspond to the solution

p(x, y) = cos(2πx) cos(2πy). (27)

Our first grid is an orthogonal grid which is constructed from a uniform
distribution of orthogonal grid cells, where all corners with the same i-
and j-index are perturbed randomly by a factor in [−0.35h, 0.35h] in x-
and y-direction, respectively, see Figure 6.a. On orthogonal grids, the
Jacobian matrix is constant, and hence, all considered MPFA methods
are identical. They give second order convergence for both pressure and
velocity on these grids.

The next grid is a uniform refinement of a rough initial grid, see
Figure 6.b. On this grid, the evaluation of K̂ is taken in the mid-
point of the cell, in the Gaussian points, and in the corner of the grid
cells, respectively. All examples give second order convergence for both
pressure and normal velocity, and the results are shown in Figure 7.
The smallest error is obtained for the corner-point evaluation of the
permeability.

We next test the solution

p(x, y) = cos(πx) cosh(πy) (28)

for the physical-space discretization and for the reference-space dis-
cretization with midpoint evaluation and corner-point evaluation of
K̂ on a sequence of skew grids. The permeability is K = I, and
suitable Dirichlet boundary conditions are applied on the boundary
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III

III IV

Figure 9. Case with four subdomains.
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Figure 10. Convergence behavior of (28) for discretizations in physical space and in
reference space with midpoint and corner-point evaluation. The grids are shown in
Figure 8. Left (a): Pressures. Right (b): Normal velocities.

of the domain (0, 1) × (0, 1). The chosen grids have to account for an
inner grid line rotated 120◦ from the horizontal line, see Figure 9.

The unperturbed grid is depicted in Figure 8.a. Perturbations of the
grid cells by hγ will be used in the numerical tests. This means that
each corner (xi, yi) of the grid is transformed to

x̃i = xi +Rx,ih
γ , ỹi = yi +Ry,ih

γ ,

where Rx,i, Ry,i are random numbers between −0.5 and 0.5. These
perturbations are performed at each refinement level, and the grids are
denoted hγ-perturbed grids. In the tests, both h2- and h1-perturbations
are used in the refinements of the grids, see Figure 8.

The pressure convergence rate for all the discretizations is O(h2)
for h2-perturbed grids, see Figure 10.a. For h1-perturbation of the
grids, the pressure still converges with rate O(h2) for the physical-
space discretization, whereas the convergence diminishes or vanishes
for the reference-space discretizations. In the last refinement level, the
errors are only reduced by O(h0.5) for the corner-point evaluation. The
same behavior is seen for the midpoint evaluation. This agrees with the
results reported in [23]. It is hence not possible to conclude that the
pressure converges asymptotically for rough grids.
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The normal-velocity behavior is illustrated in Figure 10.b. For uni-
form refinement of the grids, the convergence for all MPFA versions
is second order. Further, the rates of convergence are close to sec-
ond order for h2-perturbations for the discretization in physical space.
There is an apparent difference between the discretizations for h2-
perturbations of the grid. As seen from Figure 10.b, one order is lost
for the normal velocities for the discretization in reference space when
the reference permeability is evaluated in the midpoint. When the
reference permeabilities are evaluated at the corners of the subcells
of the interaction volumes, close to O(h2) convergence is regained,
which shows the improvements this method has over the conventional
midpoint evaluation.

The difference in convergence behavior becomes critical for h1-per-
turbed grids. In physical space, the convergence rate of the normal
velocities is decreased to h1. Both the midpoint evaluation and the
corner-point evaluation of the reference permeability yield no conver-
gence of the normal velocities. It should be noted that the errors are
smaller for the corner-point evaluation than for the midpoint evalua-
tion.

4.2. Discontinuous coefficients

When subdomains with different permeabilities meet, nonsmooth so-
lutions may be constructed. In Figure 9, we may take the medium
to consist of either four subdomains, where opposite pairs have the
same permeability, or two subdomains with the same permeability. The
physical-space based MPFA method for such cases is broadly discussed
in [17, 6]. Solutions in the space H1+α are tested, where α takes the
values 1.47, 0.80 and 0.51, respectively. These pressure solutions are
given by [6]

p(r, θ) = rα(ai cos(αθ) + bi sin(αθ)),

where a change to polar coordinates is introduced. The discretization
methods are tested for convergence for different perturbation of the
grid in Figure 8. The case where α = 1.47 arises for the permeability
contrast kΩ1/kΩ2 = 10−3, where the domain Ω1 is the domain I in
Figure 9, and Ω2 comprises the rest of the domain, see Figure 9. The
other two examples use four subdomains where diagonally opposite
subdomains have the same permeability.

The results for the discretization in physical space for h2-perturba-
tions are depicted in Figure 11 and may be compared to the results
in Figure 12 where the same examples are investigated for the dis-
cretization in reference space for both the midpoint evaluation and
the corner-point evaluation of the reference permeability. The pressure
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Figure 11. Convergence behavior for h2-perturbations in physical space for solutions
with reduced regularity. Left (a): Pressures. Right (b): Normal velocities.
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Figure 12. Convergence behavior for h2-perturbations of the grid for solutions with
reduced regularity. Discretizations in reference space with midpoint and corner-point
evaluation. Left (a): Pressures. Right (b): Normal velocities.

convergence rate is O(hmin{2,2α}) for all discretizations when the grids
are h2-perturbed. As seen from the two plots, the convergence rate
for the normal velocities for the case α = 1.47 is O(hα) in physical
space, whereas it is only O(h1) for the midpoint evaluation in reference
space. The corner-point evaluation of the reference permeability regains
O(hα) convergence for the normal velocity. For the two cases where
α < 1, both the physical-space discretization and the reference-space
discretizations are O(hα) convergent for the normal velocities.

When h1-perturbations are introduced, much the same conclusions
as for the homogeneous case hold for the discontinuous case. The three
different cases of varying α’s are depicted in Figure 13 for the three dif-
ferent discretization alternatives. The pressures for the discretizations
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Figure 13. Convergence behavior for h1-perturbations of the grid for solutions
with reduced regularity. Discretizations in physical space and in reference space
with midpoint and corner-point evaluation. Left (a): Pressures. Right (b): Normal
velocities.

in reference space seem to converge in the earliest refinement steps,
and then gradually decrease, similar to the behavior for the smooth so-
lution. The pressure is O(hmin{2,2α})-convergent for the physical-space
discretization.

As seen from the plots for the normal velocities, the convergence rate
in physical space for the normal velocities is O(hmin{1,α}), whereas the
discretizations in reference space are not convergent. Note, however,
that the case α = 0.51 seems to yield a small order of convergence
for the velocities when the corner-point evaluation of the reference
permeability is employed. Our explanation for this is the fact that
leading errors occur near the discontinuity lines, and the corner points
on this line are unperturbed in order to account for the physical edges.
The corner-point evaluation then seems to perform better because the
h1-perturbations are not felt locally. This is merely an artifact of the
special geometry of the example.

Summing up, the new corner-point evaluation of the permeability
performs just as well as the physical-space discretization on uniform
refined grids or when only h2-perturbations exist in the grid. This is
in contrast to the midpoint evaluation, where for solutions in H1+α,
α > 1, the convergence order of the normal velocities is reduced by
min{1, α − 1}. When the grids have h-perturbations at all refinement
levels, convergence is in general lost for the discretizations in reference
space.
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5. Conclusions

We presented two MFE formulations, broken RT0 and BDM1, of the
reference-space MPFA method on quadrilateral grids. A trapezoidal-
type quadrature rule reduces the velocity mass matrix to a block-
diagonal form and leads to a symmetric positive definite cell-centered
pressure system. Two types of transformed permeability evaluations,
midpoint and corner-point, lead to two MPFA method variants. The
numerical experiments indicate that the corner-point evaluation is gen-
erally more accurate than the midpoint evaluation. For h2-perturbed
meshes the corner-point gives O(h2) convergence for the velocity, while
the midpoint gives only O(h) convergence. This is related to the fact
that the former approach results in applying the trapezoidal quadra-
ture rule for integrating K̂û · v̂. On h1-perturbed meshes, however,
both reference-space methods suffer reduction or loss of convergence,
which is not the case for the physical-space MPFA method. The reason
for the reduced convergence on rough grids is that the approximation
properties of the MFE spaces and the accuracy of the quadrature rule
on quadrilateral grids depend on the smoothness of the Piola mapping.
These results are consistent with the theoretical results obtained in
[20, 22, 30, 31].
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