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Abstract

We develop a local flux mimetic finite difference method for second order elliptic
equations with full tensor coefficients on polyhedral grids. To approximate the flux
(vector variable), the method uses two degrees of freedom per element edge in two
dimensions and n degrees of freedom per (n-gon) element face in three dimensions.
To approximate the pressure (scalar variable), the method uses one degree of freedom
per element. A specially chosen inner product in the space of discrete fluxes allows for
local flux elimination and reduction of the method to a symmetric cell-centered finite
difference scheme for the pressure. In the case of simplicial grids, optimal first-order
convergence is proved for both variables, as well as second-order convergence for the
scalar variable. Numerical results confirm the theory.
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1 Introduction
The mimetic finite difference (MFD) method has been successfully employed for solving
problems of continuum mechanics [19], electromagnetics [13], gas dynamics [7], and linear
diffusion on polygonal and polyhedral meshes in both the Cartesian and polar coordinates
[14, 20, 18]. The MFD method mimics essential properties of the continuum equations,
such as conservation laws, solution symmetries, and the fundamental identities and theo-
rems of vector and tensor calculus. For second-order elliptic problems, the MFD method
mimics the Gauss divergence theorem, preserves the null space of the gradient operator,
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and keeps the adjoint relationship between the gradient and the divergence operators. This
leads to a symmetric and locally conservative finite difference scheme. However, the result-
ing algebraic system is of saddle-point type and couples the flux (vector variable) and the
pressure (scalar variable) unknowns. The elimination of the flux results in a cell-centered
discretization scheme with a non-local stencil.

In this paper, we develop a new MFD method which results in a symmetric cell-centered
discretization scheme with a local stencil. To approximate the flux, the method uses two
degrees of freedom per element edge in two dimensions and n degrees of freedom per
element face (which is n-gon) in three dimensions, thus associating one flux unknown with
each vertex (corner). To approximate the pressure, the method uses one degree of freedom
per element. These choices are similar to the degrees of freedom in the multipoint flux
approximation (MPFA) method [2, 1, 9]. A specially chosen flux inner product couples
only the flux degrees of freedom associated with each mesh vertex and allows for local flux
elimination, reducing the method to a symmetric cell-centered finite difference scheme for
the pressure.

In the case of simplicial meshes, we prove optimal first-order convergence for both
the flux and the pressure variables, as well as superconvergence of the pressure in discrete
L2 norms. Our analysis can be extended to smooth quadrilateral meshes. Recent results
[15, 16, 22] provide analysis for the MPFA method and some related mixed finite element
methods by employing finite element techniques. Our approach is based on estimating
the errors directly in the norms of the discrete mimetic spaces and does not utilize finite
element polynomial extensions, except in the pressure superconvergence proof.

The paper outline is as follows. The new MFD method is developed in Section 2.
In Section 3, we prove optimal convergence estimates for the pressure and the velocity
and superconvergence for the pressure. Results of numerical experiments confirming the
theoretical estimates are presented in Section 4.

2 Mimetic finite difference method
Let X1 and X2 be Hilbert spaces and let L1 and L2 be two linear operators, Li : Xi → Yi,
i = 1, 2, which satisfy some fundamental identity:

I(L1,L2; f1, f2) = 0 ∀f1 ∈ X1, f2 ∈ X2.

Suppose that discrete approximation spaces Xih, Yih, i = 1, 2, and the discrete operator
L1h are given. The idea of the mimetic discretization is to find a discrete operator L2h such
that a discrete analog of the fundamental identity holds, i.e

Ih(L1,h,L2,h; f1h, f2h) = 0 ∀f1h ∈ X1h, f1h ∈ X2h. (2.1)

This implies that operators L1 and L2 cannot be discretized independently from each other.
In the MFD method, formula (2.1) is the implicit definition of the operator L2,h.

2



We consider the second order elliptic problem written as a system of two first order
equations

~u = −K grad p in Ω,
div ~u = f in Ω,

(2.2)

subject to appropriate boundary conditions. For simplicity, we consider the homogeneous
Dirichlet boundary conditions (see [12] for more general boundary conditions):

p = 0 on ∂Ω. (2.3)

We consider a polygonal domain Ω ⊂ Rd, d = 2 or 3, with boundary ∂Ω and outward
unit normal ~n. The coefficient K is a symmetric and uniformly positive definite tensor
satisfying

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω, ∀ξ ∈ Rd, (2.4)

for some positive constants k0 and k1. Following the terminology established in porous
media applications, we refer to p as the pressure, to ~u as the velocity, and to K as the
permeability tensor.

In the problem of interest (2.2), the operators are L1 = div and L2 = −K grad , the
spaces are X1 = H(div; Ω), Y1 = L2(Ω), X2 = H1

0 (Ω) and Y2 = (L2(Ω))d, and I is the
Green formula,

I(L1,L2; ~u, p) =

∫

Ω

p div ~u dx+

∫

Ω

~u ·K−1(K grad p) dx. (2.5)

2.1 The local flux MFD method
The MFD method has four steps. First, we define degrees of freedom for the pressure and
the velocity. Second, we discretize the easiest of the two operators; depending on the cho-
sen degrees of freedom, it could be either of them. Third, we discretize the Green formula
using quadrature rules for each of the integrals in (2.5). Some minimal approximation prop-
erties for these quadratures are required to prove the optimal convergence rates. Fourth, we
derive a discrete formula for the other operator.

Let Ωh be a conforming shape-regular partition (see [8]) of the computational domain
into polygonal elements. Let

h = max
E∈Ωh

hE,

where hE is the diameter of element E. We assume that each vertex of E is shared by
exactly d edges (faces in 3D) of that element. In two dimensions, we split each edge into
two sub-edges using the mid-point. In three dimensions, we split each face into several
quadrilateral facets by connecting the face center of mass with the edge midpoints. To
simplify the presentation, we shall refer to the sub-edges as facets. We denote the area
(volume in 3D) of an element E by |E|. Similarly, for each facet e, we denote by |e| its
length (area in 3D).
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For each element E, we denote by nE the number of its vertices and by kE the number
of its facets. The boundaries of facets are marked by thin lines in Fig. 1. In the following
∂E denotes either the union of all edges (faces in 3D) or the union of all facets of E,
depending on the context.

The discrete pressure space Qh consists of one degree of freedom per element corre-
sponding to the pressure value at the center of mass. The dimension of Qh equals the
number of elements. For q ∈ Qh, we shall denote by qE (or (q)E) its (constant) value on
element E.

The discrete velocity space Xh consists of one degree of freedom per facet, which
corresponds to the average normal flux. The location of velocity degrees of freedom is
shown in Fig. 1. For v ∈ Xh, we shall denote by vE the restriction of v to element E,
and by ve

E (or (v)e
E) its (constant) value on facet e. The total number, NX , of the velocity

degrees of freedom equals the number of boundary facets plus twice the number of interior
facets. We define Xh as the subspace of RNX which satisfies the continuity property

ve
E1

= −ve
E2

(2.6)

for each facet e shared by elements E1 and E2. Note that the dimension of Xh equals the
number of facets.

Figure 1: Velocity degrees of freedom marked by solid circles for a triangle (nE = 3, kE = 6) and
a tetrahedron (nE = 4, kE = 12). The boundaries of the facets are marked by thin lines.

The normal velocity components result in a simple discretization of the divergence
operator. Integrating div ~u over element E, applying the divergence theorem, and using the
definition of discrete velocity unknowns, we get

(DIV u)E =
1

|E|

∑

e∈∂E

|e|ue
E . (2.7)

Let us discretize each term in (2.5). For any q ∈ L1(Ω), we define qI ∈ Qh such that

(qI)E =
1

|E|

∫

E

q(x) dx ∀E ∈ Ωh. (2.8)
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The first integral in (2.5) is approximated by
∫

Ω

p(x) q(x) dx ≈
∑

E∈Ωh

|E| pE qE ≡ [p, q]Q, (2.9)

where p = pI and q = qI . Note that (2.9) is an inner product in Qh.
The discretization of the second integral in (2.5) requires some additional notation.

Given v ∈ Xh, let ~vE(rs) ∈ Rd be a vector associated with vertex rs of E such that its
normal component on any facet e that shares rs is equal to ve

E . Since each vertex is shared
by exactly d facets, then the vector ~vE(rs) is uniquely determined. We refer to ~vE(rs) as
the recovered vector. The expression for ~vE(ri) can be found in [18].

We approximate K by a symmetric and positive definite piecewise constant tensor K
that equals the mean value KE of K on E. The Taylor theorem implies that

max
x∈E

|Kij(x) −KE,ij | ≤ C‖Kij‖1,∞,E hE, 1 ≤ i, j ≤ d, (2.10)

where ‖ · ‖1,∞ is the norm in the Sobolev space W 1
∞. We will also use the notation

‖K‖σ = max
i,j

‖Kij‖σ

for tensor valued functions. In (2.10) and throughout the paper C denotes a generic positive
constant, which is independent of h. Now, the second integral in (2.5) is approximated
element-by-element by

∫

Ω

K−1~u(x) · ~v(x) dx ≈
∑

E∈Ωh

[u, v]X,E ≡ [u, v]X , (2.11)

where

[u, v]X,E = γE

nE
∑

i=1

wiK
−1
E ~uE(ri) · ~vE(ri), γ−1

E =
1

|E|

nE
∑

i=1

wi, (2.12)

wi are some positive weights, and ~uE(ri) and ~vE(ri) are the recovered vectors. For simpli-
cial elements, the weights are equal to |E|/(d + 1) and γE = 1. Later, we will show (see
Lemma 2.2) that (2.11) is an inner product in Xh.

The discrete gradient operator is derived from the discrete Green formula

[q, DIV v]Q + [v, GRAD q]X = 0, ∀q ∈ Qh, ∀v ∈ Xh. (2.13)

This formula gives a unique definition for operator GRAD . The local flux MFD method
reads: find uh ∈ Xh and ph ∈ Qh such that

uh = −GRAD ph,
DIV uh = f ,

(2.14)

where f = f I .
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2.2 Well-posedness of the method
The following interpolant will be used in the analysis. For any ~v ∈ (Ls(Ω))d, s > 2, we
define ~vI ∈ Xh such that

(~vI)e
E =

1

|e|

∫

e

~v · ~ne
E ds ∀E ∈ Ωh, ∀e ⊂ ∂E. (2.15)

Note that ~vI satisfies the continuity property (2.6).
The definitions (2.8) and (2.15) of the interpolation operators and the divergence theo-

rem imply the following simple result.

Lemma 2.1 For sufficiently smooth vector functions ~v, we have

(DIV ~vI)E = (div ~v)I
E (2.16)

for every element E ∈ Ωh.

The next lemma shows that [·, ·]X is a norm in Xh.

Lemma 2.2 There exist two positive constants α0 and α1 independent of h such that

∀E ∈ Ωh, α0|E|
∑

e∈∂E

|ve
E|

2 ≤ [v, v]X,E ≤ α1|E|
∑

e∈∂E

|ve
E |

2 (2.17)

for any v ∈ Xh.

Proof. For any element E and its vertex ri, let ei,j , j = 1, . . . , d, be the facets that share ri

and let ~v(ri) be the recovered vector. Furthermore, let ~ni,j be the outward normal to ei,j .
It is easy to see that ~v(ri) = N−T

i (v
ei,j

E , . . . , v
ei,d

E )T where Ni is the d × d matrix whose
columns are the normals ~ni,j (see [18] for more detail).

The definition (2.12) implies that

α0 = k0 min
1≤i≤nE

λmin(N−1
i N−T

i ).

A similar estimate holds for α1. The spectral properties of the matrix Ni depend only on
the mesh regularity constants. This proves the assertion of the lemma. 2

We are now ready to prove the solvability of (2.14).

Lemma 2.3 The discrete problem (2.14) has a unique solution.

Proof. It is convenient to rewrite (2.14) in the equivalent variational form

[uh,v]X − [ph,DIV v]Q = 0, ∀v ∈ Xh,

[DIV uh,q]Q = [f ,q]Q, ∀q ∈ Qh,
(2.18)
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where we have used the discrete Green formula (2.13). Since (2.18) is a square system,
it suffices to show uniqueness for the homogeneous problem. Letting f = 0, v = uh,
and q = ph, we conclude that [uh,uh]X = 0. Hence, due to (2.17), uh = 0. Let ph be a
piecewise constant function such that ph|E = (ph)E .

Let us consider again (2.18) and take v = ( gradφ)I , where φ is the solution to

∆φ = ph in Ω,
φ = 0 on ∂Ω.

Using (2.16), we have that

DIV v = DIV ( gradφ)I = (div gradφ)I = (ph)
I = ph,

which implies that [ph,ph]Q = 0, therefore ph = 0. 2

2.3 Reduction to a cell-centered scheme
In order to derive the explicit formula for GRAD , we consider an auxiliary inner product
< · , · > and relate it to inner products (2.9) and (2.11). Let < · , · > be the usual vector
dot product. Then

[p, q]Q =< D p, q > and [u, v]X =< M u, v >, (2.19)

where D is a diagonal matrix, D = diag{|E1|, . . . , |ENQ
|}, and M is a block-diagonal

matrix. Since [·, ·]X is an inner product, M is symmetric and positive definite.
To incorporate the continuity conditions, we write u = C û where C is the rectangular

matrix with one non-zero element in each row (which equals to 1) and the entries of vector
û are independent degrees of freedom. Thus, the size of vector û equals to the number of
mesh faces. Similarly, we write v = Cv̂. The matrix CTMC is also block diagonal with
as many blocks as there are mesh nodes. Thus, the discrete Green formula yields

GRAD = −(CTMC)−1(DIV C)TD.

In two dimensions, each block of CTMC is a tridiagonal cyclic matrix whose non-zero
entries describe interaction of neighboring velocity unknowns on edges sharing a mesh
node. The block corresponding to the interior node shown in Fig. 2 is a 5 × 5 matrix.
Therefore, the inverse of this block can be easily computed which gives us an explicit local
formula for each component of uh and thus reduces (2.14) to a cell-centered discretization

−DIV C GRAD ph = f . (2.20)

Examples of the stencils for the operators GRAD and DIV C GRAD are shown in Fig-
ure 2(a) and Figure 2(b), respectively.
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a. GRAD stencil b. DIV GRAD stencil
Figure 2: Stencils for operators GRAD and DIV GRAD on a triangular mesh. On the left,
the equation for the velocity unknown at the position marked by a solid circle involves pressure
unknowns at the positions marked by squares. On the right, the pressure marked by a solid square
is coupled with the pressures marked by squares.

The coefficient matrix of problem (2.20) is symmetric with respect to inner product
(2.9):

[−DIV C GRADp,q]Q =< DDIV C(CTMC)−1(DIV C)TD p,q > .

Moreover, since DIV Tq = 0 implies q = 0, as shown in the proof of Lemma 2.3, the
resulting algebraic system has a symmetric and positive definite matrix.

3 Convergence analysis
In this section, we prove convergence estimates for the velocity and pressure in the case of
simplicial meshes (nE = d+ 1).

We begin with the proof of a discrete Green formula for linear functions. In two dimen-
sions, for each edge with end points a1 and a2, we define two new points

a12 = (2a1 + a2)/3 and a21 = (a1 + 2a2)/3

which are interior points of the two facets, see Figure 3(a). In three dimensions, for each
face (with is a triangle) with vertices a1, a2 and a3, we define three new points

a123 = (2a1+a2+a3)/4, a231 = (a1 +2a2+a3)/4, and a312 = (a1+a2 +2a3)/4

which are interior points of the three facets, see Figure 3(b). Note that d new points are
the projections of the center of mass, cE , onto the edge (the face in 3D) along directions
parallel to the other d edges. We use notation ce for the new point inside facet e.
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a1 a12 a21 a2

cE

a. New edge points

��
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cE

a312

a231

a123

a2

a3

a1

b. New face points

Figure 3: Auxiliary edge and face points.

Lemma 3.1 For every E in Ωh, the inner product (2.12) satisfies

[v, (KE grad q1)I ]X,E =
∑

e∈∂E

|e| q1(ce) v
e
E − [DIV v, (q1)I ]Q,E , ∀v ∈ Xh, (3.1)

for any linear function q1.

Proof. Let ME be the symmetric positive definite kE × kE matrix defined by the inner
product [·, ·]X,E , see (2.19). Since the vectors recovered at different vertices use separate
degrees of freedom, the matrix ME is block-diagonal with d+ 1 blocks and each block is a
d× d matrix. The result of this special structure of ME is that the proof of (3.1) is reduced
to proving d+ 1 independent identities associated with the vertices of E.

Let r be a vertex of E and let ei, i = 1, . . . , d, be the facets that share r. Furthermore,
let ~ni, be the outward normal to ei and let ~v be the vector recovered at vertex r. Since the
constant vector is recovered exactly, (3.1) reduces to

|E|

d+ 1
(K−1

E ~v) · (KE grad q1) =

d
∑

i=1

|ei| (q
1(cei

) − q1(cE)) vei
E , (3.2)

where cE is the center of mass of E. Since ~v = N−T (ve1

E , . . . , v
ed
E )T , where N is the d× d

matrix with columns ~ni, (3.2) is equivalent to

|E|

d+ 1
grad q1 =

d
∑

i=1

|ei|~ni q
1(cei

− cE) (3.3)

To prove (3.3), it is sufficient to check that

|E|

d+ 1
grad q1 · ~w =

d
∑

i=1

|ei| (~w · ~ni) q
1(cei

− cE), ∀~w ∈ Rd. (3.4)
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c2

cE

c1

r1

Figure 4: The congruent triangles E and Ê (shaded).

Let us consider the triangular element E shown in Fig. 4. The shaded triangle Ê is congru-
ent to E and |Ê| = d/(d+ 1)|E|. The points c1, c2 and cE are the mid-points of the edges
of Ê. Since the midpoint rule is exact for linear functions, the right hand side of (3.4) is

d
∑

i=1

|ei| (~w · ~ni) q
1(cei

− cE) =
1

d

∫

∂Ê

(~w · ~nÊ) q1(s − cE) ds (3.5)

Using the Green formula, we get
1

d

∫

∂Ê

(~w · ~nÊ) q1(s − cE) ds =
1

d

∫

Ê

~w · grad q1 dx =
|E|

d+ 1
~w · grad q1. (3.6)

Combining (3.5) and (3.6), we obtain (3.4). The same argument proves (3.4) in the case of
tetrahedral elements. 2

We will also use repeatedly the following approximation result [4, Lemma 4.3.8]. For
every element E, if φ ∈ Wm+1

p , p ≥ 1, there exists φm, a polynomial of degree at most m,
such that

|φ− φm|W k
p (E) ≤ Chm+1−k|φ|W m+1

p (E), k = 0, . . . ,m+ 1. (3.7)

In particular, there exists a linear function p1
E such that

‖p− p1
E‖L2(E) ≤ C h2

E ‖p‖H2(E), ‖p− p1
E‖H1(E) ≤ C hE ‖p‖H2(E). (3.8)

For the error on the edges (faces in 3D), we have [3]

‖χ‖2
L2(ẽ) ≤ C

(

h−1
E ‖χ‖2

L2(E) + hE |χ|2H1(E)

)

, ∀χ ∈ H1(E), (3.9)

where ẽ is any edge (face) of E. The constant C in (3.8) and (3.9) depends only on the
shape-regularity constants of E. Applying (3.9) to the difference p − p1

E and using (3.8),
we have

‖p− p1
E‖

2
L2(ẽ) + h2

E‖∇(p− p1
E)‖2

L2(ẽ) ≤ C h3
E ‖p‖2

H2(E). (3.10)
It is obvious that a similar estimate holds for any facet e of E.
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3.1 Optimal velocity estimate
We are now ready to prove optimal error estimates for both the scalar and vector variables.
These estimates are derived for the mesh dependent norms induced by the inner products:

|||q|||Q = [q, q]
1/2
Q and |||v|||X = [v, v]

1/2
X .

Theorem 3.1 For the solutions (p, ~u) and (ph, uh) of problems (2.2) and (2.14), respec-
tively, there exists a constant C independent of h such that

|||~uI − uh|||X ≤ C h ‖p‖H2(Ω).

Proof. Let v ∈ Xh be such that DIV v = 0. Then, using the discrete Green formula (2.13),
we get

[~uI − uh, v]X = [(K grad p)I , v]X + [GRAD ph, v]X = [(K grad p)I , v]X .

Let p1 be a discontinuous piecewise linear function satisfying (3.8) on every element E.
Adding and subtracting terms (K grad p1)I and (K grad p1)I , where K is the piecewise
constant approximation to K defined in Section 2 and satisfying (2.10), we have

[~uI − uh, v]X = [(K grad p)I − (K grad p1)I , v]X + [(K grad p1)I − (K grad p1)I , v]X

+ [(K grad p1)I , v]X ≡ I1 + I2 + I3.

Terms similar to I1 and I2 appear in [6]. Using the Cauchy-Schwarz inequality, we bound
I1 as

|I1| ≤ |||(K grad p−K grad p1)I |||X |||v|||X

≤

(

α1

∑

E∈Ωh

∑

e∈∂E

(

((K grad p−K grad p1)I)e
E

)2
|E|

)1/2

|||v|||X

=

(

α1

∑

E∈Ωh

∑

e∈∂E

(

1

|e|

∫

e

K grad (p− p1) · ~ne
E ds

)2

|E|

)1/2

|||v|||X

≤ Ch‖p‖H2(Ω)|||v|||X ,

(3.11)

where we have used (2.17) in the second inequality and (3.10) in the last inequality. For
term I2, using (2.10), we have

|I2| ≤ Ch|||( grad p1)I |||X |||v|||X . (3.12)

Since the inner product (2.12) is exact for constant vectors, we get

|||( grad p1)I |||X,E = ‖ grad p1
E‖L2(E) ≤ ‖ grad p‖L2(E)+‖ grad (p−p1

E)‖L2(E) ≤ C‖p‖H2(E),
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using (3.8). The above inequality and (3.12) imply that

|I2| ≤ Ch‖p‖H2(Ω)|||v|||X . (3.13)

To estimate the remaining term, we apply Lemma 3.1 and use DIV v = 0 to obtain

I3 =
∑

E∈Ωh

∑

e∈∂E

|e| p1
E(ce) v

e
E .

Recall that ce is the mid-point of one of the edges (faces in 3D) of the shadow element Ê
(see Figure 4). Denoting the corresponding edge (face) by ê(e), we get

p1
E(ce) =

1

|ê(e)|

∫

ê(e)

p1
E(s) ds.

Using the continuity of p and the approximation result (3.10), we have

|I3| =

∣

∣

∣

∣

∣

∑

E∈Ωh

∑

e∈∂E

ve
E

|e|

|ê(e)|

∫

ê(e)

(p1
E − p) ds

∣

∣

∣

∣

∣

≤ C
∑

E∈Ωh

∑

e∈∂E

|e|1/2|ve
E| ‖p

1
E − p‖L2(ê(e))

≤ C
∑

E∈Ωh

hE

(

|E|
∑

e∈∂E

|ve
E |

2

)1/2

‖p‖H2(E) ≤ C h ‖p‖H2(Ω) |||v|||X

(3.14)

We next note that Lemma 2.1 implies that

DIV (~uI − uh) = f I − f I = 0;

hence we can take v = ~uI − uh in the above estimates. Combining estimates for I1, I2,
and I3, we prove the assertion of the theorem. 2

3.2 Optimal pressure estimate
To prove optimal convergence for the pressure variable, we first show that an inf-sup con-
dition holds. Let us define the mesh dependent Hdiv norm:

|||v|||2div = |||v|||2X + |||DIV v|||2Q.

Lemma 3.2 There exist a positive constant β independent of h such that for any q ∈ Qh

sup
v∈Xh, v 6=0

[DIV v, q]Q
|||v|||div

≥ β|||q|||Q. (3.15)
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Proof. Let q ∈ Qh and let q be the piecewise-constant function which is equal to (q)E on
E. We will construct ~v ∈ (H1(Ω))d such that div~v = q and

‖~v‖(H1(Ω))d ≤ C1‖q‖L2(Ω), (3.16)

where C1 is a positive constant independent of h. Let q0 be the integral average of q,

q0 =
1

|Ω|

∫

Ω

q dx.

We define ~v = ~v1 + ~v2 where ~v1 is a solution to

div~v1 = q − q0 in Ω,

~v1 = 0 on ∂Ω,

and ~v2 is a solution to
div~v2 = q0 in Ω,

~v2 = ~g on ∂Ω,

where ~g ∈ (H1/2(∂Ω))d and satisfies the compatibility condition
∫

∂Ω

~g · ~n ds = q0|Ω|.

The above problems are known to have solutions [10] satisfying

‖~v1‖(H1(Ω))d ≤ C‖q‖L2(Ω) and ‖~v2‖(H1(Ω))d ≤ C
(

‖q0‖L2(Ω) + ‖~g‖(H1/2(∂Ω))d

)

.

We choose ~g = |Ω|q0φ~n, where φ is a smooth function with support contained within
one side of Ω such that

∫

∂Ω
φ ds = 1. It is easy to see that ‖~g‖(H1/2(∂Ω))d ≤ C‖q0‖L2(Ω);

therefore ~v satisfies (3.16).
Let v = ~vI . Using Lemma 2.2, inequality (3.9), and the assumption of mesh regularity,

we get
[v,v]X,E ≤ α1 |E|

∑

e∈∂E

|ve
E |

2

≤ C
∑

e∈∂E

|E|

|e|

(

(h−1
E ‖~v‖2

(L2(E))d + hE|~v|
2
(H1(E))d)

)

≤ C
∑

e∈∂E

(

‖~v‖2
(L2(E))d + h2

E |~v|2(H1(E))d

)

≤ C2‖~v‖
2
(H1(E))d .

Therefore, using (3.16),

|||v|||2X ≤ C2‖~v‖
2
(H1(Ω))d ≤ C2

1C2|||q|||
2
Q.
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Further, Lemma 2.1 implies

DIV v = (div~v)I = qI = q.

The last two estimates imply that

|||v|||div ≤
√

1 + C2
1C2 |||q|||Q,

thus the assertion of the lemma follows with β = 1/
√

1 + C2
1C2. 2

Theorem 3.2 For the solutions (p, ~u) and (ph, uh) of problems (2.2) and (2.14), respec-
tively, there exists a constant C independent of h such that

|||pI − ph|||Q ≤ C h ‖p‖H2(Ω).

Proof. Using Lemma 3.2, we have

|||pI − ph|||Q ≤
1

β
sup

v∈Xh,v 6=0

[DIV v, pI − ph]Q
|||v|||div

(3.17)

To estimate the denominator, we first add and subtract (p1)I where p1 is the discontinuous
piecewise linear approximation to p satisfying (3.8), and then apply Lemma 3.1:

[DIV v, pI − ph]Q = [DIV v, (p− p1)I ]Q + [DIV v, (p1)I ]Q + [uh, v]X

= [DIV v, (p− p1)I ]Q +
∑

E∈Ωh

∑

e∈∂E

|e| p1
E(ce)v

e
E

−
∑

E∈Ωh

[(KE grad p1
E)I , v]X,E + [uh, v]X

≡ I4 + I5 − I6 + I7.

The term I4 is estimated using (3.8):

|I4| ≤ Ch2 |||v|||div ‖p‖H2(Ω). (3.18)

The second term is estimated as the similar term in the proof of Theorem 3.1:

|I5| ≤ C h |||v|||X ‖p‖H2(Ω). (3.19)

The last two terms are treated by adding and subtracting (K grad p1)I and (K grad p)I :

I6 − I7 = [(K grad p1)I − (K grad p1)I , v]X

+[(K grad p1)I − (K grad p)I , v]X + [~uI − uh, v]X

≡ Ia
67 + Ib

67 + Ic
67.
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The first two terms appeared in the proof of Theorem 3.1; therefore

|Ia
67| + |Ib

67| ≤ C h |||v|||X ‖p‖H2(Ω). (3.20)

The term Ic
67 is estimated using Theorem 3.1:

|Ic
67| ≤ |||~uI − uh|||X |||v|||X ≤ C h‖p‖H2(Ω) |||v|||X . (3.21)

The proof is completed by combining (3.17)–(3.21). 2

3.3 Superconvergence of the pressure
In this section we prove a second-order convergence estimate for the pressure. We denote
the original edges (faces in 3D) by ẽ to distinguish them from facets e.

Let us introduce two additional interpolation operators. Let Vh be the lowest order
Brezzi-Douglas-Marini BDM1 mixed finite element space on Ωh, consisting of piecewise
linear vector functions with continuous normal components [5]. For any ~v ∈ (Ls(Ω))d,
s > 2, let Π~v ∈ Vh be its finite element interpolant satisfying for every element edge (face
in 3D) ẽ ∈ ∂E

∫

ẽ

(Π~v − ~v) · ~nE p1 ds = 0 for every linear function p1. (3.22)

This implies that
∫

E

div (Π~v − ~v) dx = 0. (3.23)

It has been shown in [5] that for any smooth enough vector ~v,

‖~v − Π~v‖(L2(Ω))d ≤ Chk‖~v‖(Hk(Ω))d, 1 ≤ k ≤ 2. (3.24)

It is also easy to see that for all elements E

‖Π~v‖(H1(E))d ≤ C‖~v‖(H1(E))d . (3.25)

For any ~v ∈ Vh, define an interpolant ~v Ĩ ∈ Xh such that, for every facet e ∈ ∂E,

(~vĨ)e
E = ~v(re) · ~nE,

where re is the vertex of E shared by e. Note that ~v Ĩ satisfies the continuity condition (2.6).

Lemma 3.3 For every ~v ∈ Vh,

DIV ~vĨ = (div~v)I .

15



Proof. For any E in Ωh, we have

(DIV ~vĨ)E =
1

|E|

∑

e∈∂E

|e| (~vĨ)e
E =

1

|E|

∑

ẽ∈∂E

|ẽ|

d

d
∑

i=1

~v(ri
e) · ~nE,

where ri
e, i = 1, . . . , d, are the vertices of e. The last sum is the quadrature rule for exact

integration of linear functions. Therefore,

(DIV ~vĨ)E =
1

|E|

∑

ẽ∈∂E

∫

ẽ

~v · ~nE ds = (div~v)I
E.

2

We are now ready to prove second-order convergence for the pressure.

Theorem 3.3 Assume that problem (2.2) is H2-elliptic regular. Then, for the solutions
(p, ~u) and (ph, uh) of problems (2.2) and (2.14), respectively, there exists a constant C
independent of h such that

|||pI − ph|||Q ≤ C h2 (‖~u‖(H2(Ω))d + ‖p‖H2(Ω)).

Proof. The proof is based on a duality argument. Let ϕ be the solution to

−divK gradϕ = R(pI − ph) in Ω,

ϕ = 0 on ∂Ω,

where R(pI − ph) is the piecewise constant function equal to (pI − ph)E on each element
E. The regularity assumption implies

‖ϕ‖H2(Ω) ≤ C‖R(pI − ph)‖L2(Ω); (3.26)

see [11, 17] for sufficient conditions. Let ~ψ = −K gradϕ. Let (·, ·) denote the L2 inner
product over Ω. Using Lemma 3.3 and (2.18), we get

‖R(pI − ph)‖
2
L2(Ω) = (R(pI − ph), div Π~ψ)

= (p, div Π~ψ) − [ph,DIV (Π~ψ)Ĩ ]Q

= (K−1~u,Π~ψ) − [uh, (Π~ψ)Ĩ ]X

= (K−1(~u− Π~u),Π~ψ) + σ(K−1Π~u,Π~ψ) + [(Π~u)Ĩ − uh, (Π~ψ)Ĩ ]X ,
(3.27)

where
σ(K−1~u,~v) ≡ (K−1~u,~v) − [~uĨ , ~vĨ ]X

represents the error in integrating the dot product of two vector-valued functions. The first
term on the right in (3.27) can be bounded using (3.24) and (3.25):

|(K−1(~u− Π~u),Π~ψ) ≤ Ch2‖~u‖(H2(Ω))d‖ϕ‖H2(Ω). (3.28)
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The second term on the right in (3.27) can be bounded using Lemma 3.4 (which we shall
prove below) and (3.25):

|σ(K−1Π~u,Π~ψ)| ≤ Ch2‖~u‖(H1(Ω))d‖ϕ‖H2(Ω). (3.29)

Let v = (Π~u)Ĩ − uh. Then, for the last term on the right in (3.27), we have

[(Π~u)Ĩ − uh, (Π~ψ)Ĩ ]X = [v, (−ΠK gradϕ)Ĩ ]X

= [v, (−ΠK gradϕ+ ΠK gradϕ1)Ĩ ]X

+[v, (−ΠK gradϕ1 + ΠK gradϕ1)Ĩ ]X − [v, (K gradϕ1)Ĩ ]X

≡ I8 + I9 − I10,
(3.30)

where ϕ1 is the piecewise linear approximation to ϕ satisfying (3.8) on every element E,
and K is the piecewise constant approximation to K defined in Section 2. For I8, we have

|I8| ≤ |||(ΠK grad (ϕ− ϕ1))Ĩ |||X |||v|||X

≤

(

α1

∑

E∈Ωh

∑

e∈∂E

(ΠK grad (ϕ− ϕ1)(re) · ~nE)2|E|

)1/2

|||v|||X

≤ C

(

∑

E∈Ωh

∑

ẽ∈∂E

|E|

|ẽ|

∫

ẽ

(K grad (ϕ− ϕ1) · ~nE)2 ds

)1/2

|||v|||X

≤ Ch‖ϕ‖H2(Ω)|||v|||X ,

(3.31)

where we have used (2.17) in the second inequality, (3.22) in the third inequality, and (3.10)
in the last inequality. Using the above argument, the term I9 can be bounded as follows:

|I9| ≤ |||(Π(K −K) gradϕ1)Ĩ |||X |||v|||X

≤ C

(

∑

E∈Ωh

∑

ẽ∈∂E

|E|

|ẽ|

∫

ẽ

(Π(K −K) gradϕ1 · ~nE)2 ds

)1/2

|||v|||X

≤ C

(

∑

E∈Ωh

h2
E‖K‖2

1,∞,E‖ gradϕ1‖2
L2(E)

)1/2

|||v|||X

≤ Ch‖ϕ‖H2(Ω)|||v|||X ,

(3.32)

where we have used (2.10) and (3.9) in the third inequality and (3.8) in the fourth inequality.
To estimate I10, we note that (K gradϕ1)Ĩ = (K gradϕ1)I and DIV v = 0. Applying

Lemma 3.1 and the argument from (3.14), we get

|I10| =

∣

∣

∣

∣

∣

∑

E∈Ωh

∑

e∈∂E

|e|ϕ1(ce)v
e
E

∣

∣

∣

∣

∣

≤ Ch‖ϕ‖H2(Ω)|||v|||X . (3.33)
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Next, the triangle inequality gives

|||v|||X ≤ |||(Π~u)Ĩ − ~uI |||X + |||~uI − uh|||X . (3.34)

The second term on the right is bounded in Theorem 3.1. To bound the first term, we choose
~u0 as the piecewise constant approximation to ~u that satisfies (3.7). The triangle inequality
gives

|||(Π~u)Ĩ − ~uI |||X ≤ |||(Π~u)Ĩ − (Π~u0)
Ĩ |||X + |||(Π~u0)

Ĩ − ~uI
0|||X + |||~uI

0 − ~uI |||X . (3.35)

The second term on the right above is zero. The first term is bounded using the argument
from (3.31):

|||(Π~u)Ĩ − (Π~u0)
Ĩ |||X ≤ C

(

∑

E∈Ωh

∑

ẽ∈∂E

|E|

|ẽ|

∫

ẽ

(Π(~u− ~u0) · ~nE)2 ds

)1/2

≤ Ch‖~u‖(H1(Ω))d,

(3.36)
using (3.7) and (3.9) in the last inequality. The last term in (3.35) is bounded in a similar
way,

|||~uI
0 − ~uI |||X ≤ Ch‖~u‖(H1(Ω))d. (3.37)

The proof is completed by combining (3.27)–(3.37), Theorem 3.1, and (3.26). 2

It remains to establish the bound (3.29).

Lemma 3.4 Let K−1 ∈W 2
∞(E) for all elements E. Then, for all ~uh, ~vh ∈ Vh, there exists

a constant C independent of h such that

|σ(K−1~uh, ~vh)| ≤ C
∑

E∈Ωh

h2‖~uh‖(H1(E))d‖~vh‖(H1(E))d .

Proof. We first note that for all ~uh ∈ Vh and for all piecewise constant vectors ~v0,

σ(~uh, ~v0) = 0, (3.38)

which follows from

[~uĨ
h, ~v

Ĩ
0]X,E =

|E|

d+ 1

d+1
∑

i=1

~uh(ri) · ~v0(ri) = (~uh, ~v0)E,

using that the middle term is the quadrature rule for exact integration of linear functions.
Next, using (3.38), we write

σE(K−1~uh, ~vh) = σE((K−1 −K−1
E )(~uh − ~uh,0), ~vh) + σE((K−1 −K−1

E )~uh,0, ~vh − ~vh,0)

+ σE(K−1~uh,0, ~vh,0) + σE(K−1
E (~uh − ~uh,0), ~vh − ~vh,0),

(3.39)
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where ~uh,0 and ~vh,0 are the constant approximations on E to ~uh and ~vh, respectively, satis-
fying (3.7). The first, second, and fourth terms above are bounded by

Ch2‖K−1‖1,∞,E‖~uh‖(H1(E))d‖~vh‖(H1(E))d . (3.40)

Since the third term on the right in (3.39) is zero for linear tensors, letting (K−1)1
E be the

linear approximation to K−1 on E satisfying (3.7), we have
|σE(K−1~uh,0, ~vh,0)| = |σE((K−1 − (K−1)1

E)~uh,0, ~vh,0)|

≤ Ch2|K−1|2,∞,E‖~uh‖(L2(E))d‖~vh‖(L2(E))d

(3.41)

A combination of (3.39)–(3.41) completes the proof of the lemma. 2

4 Numerical experiments
In this section, we present results of numerical experiments. As we mention in Sec. 2, the
velocity unknown can be eliminated from the discrete system resulting in a cell-centered
discretization with a symmetric positive definite matrix. This problem is solved with the
preconditioned conjugate gradient (PCG) method. In the numerical experiments, we used
one V-cycle of the algebraic multigrid method [21] as a preconditioner. The stopping crite-
rion for the PCG method is the relative decrease in the residual norm by a factor of 10−12.

Let us consider the 2D problem (2.2) in the unit square with the known analytical solu-
tion

p(x, y) = x3y2 + x sin(2πxy) sin(2πy)

and the tensor coefficient

K =

(

(x+ 1)2 + y2 −xy

−xy (x+ 1)2

)

.

In the first set of experiments, we consider the sequence of smooth triangular meshes
generated from uniform square meshes by splitting each square cell into four equal trian-
gles. The convergence rates are shown in Table 1 for the discrete L2 norms defined earlier,
as well as in discrete L∞ norms equal the maximum component absolute values of the al-
gebraic vectors. We use the linear regression algorithm to estimate the convergence rates.
We observe second-order convergence rate (superconvergence) of the pressure variable and
first-order convergence rate of the flux variable in the discrete L2 norms. The slightly faster
convergence rate in the discrete L∞ norm for the flux (see the last column) is due to faster
convergence on coarse meshes.

In the second set of experiments, we take the meshes generated above and perturb
randomly positions of the mesh nodes. More precisely, we move each of the mesh nodes
into a random position inside a square of size h/2 centered at the node. The convergence
rates are shown in Table 2. As in the first example, we observe second-order convergence
of the pressure and first-order convergence of the flux.

Both experiments confirm the theoretical results proved in the previous sections.
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Figure 5: Examples of meshes used in experiments 1 and 2.

Table 1: Convergence rates in the first set of experiments.
1/h |||pI − ph|||Q |||pI − ph|||∞ |||~uI − uh|||X |||~uI − uh|||∞

8 1.08e-2 4.06e-2 2.55e-1 2.60e-0
16 2.75e-3 1.18e-2 9.14e-2 1.04e-0
32 6.92e-4 3.18e-3 4.03e-2 3.94e-1
64 1.73e-4 8.17e-4 1.95e-2 1.58e-1

128 4.34e-5 2.07e-4 9.56e-3 7.94e-2
Rate 1.99 1.91 1.17 1.28

5 Conclusion
We develop a local flux mimetic finite difference method, which reduces to cell-centered
finite differences for the pressure. Borrowing an idea from the MPFA method, we intro-
duce facet fluxes, which are eliminated from the algebraic system by solving small local
systems for each mesh vertex. The method is defined on general polyhedral elements. We
present analysis for simplicial elements, showing optimal convergence for both variables
and superconvergence for the pressure at the element centers. Our analysis is based on dis-
crete space arguments and does not rely on finite element polynomial extensions, with the
exception of the pressure superconvergence proof. The analysis can be extended to smooth
quadrilateral meshes.
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Table 2: Convergence rates in the second set of experiments.
1/h |||pI − ph|||Q |||pI − ph|||∞ |||~uI − uh|||X |||~uI − uh|||∞

8 1.14e-2 4.06e-2 2.94e-1 2.67e-0
16 2.93e-3 1.18e-2 1.24e-1 1.14e-0
32 7.13e-4 3.23e-3 5.97e-2 5.12e-1
64 1.77e-4 9.49e-4 3.01e-2 3.56e-1

128 4.48e-5 2.58e-4 1.52e-2 1.98e-1
Rate 2.00 1.82 1.06 0.92
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