On some numerical convergence studies of mixed finite element methods for flow in porous media

Gergina Pencheva

Abstract

We consider an expanded mixed finite element method for solving second-order elliptic partial differential equations. We study the effects of nonmatching grids, discontinuous coefficients, and high variation in the coefficients on the accuracy of the numerical solution. The error in the case of nonmatching grids and smooth solutions occurs mainly along the interfaces and high accuracy is preserved in the interior. Discontinuous coefficients may lead to singular solutions and the polution from the singularity affects the accuracy in the whole domain. Our last set of examples shows that the dependence of the convergence rates and constants in front of the error terms on high variation in the coefficients is very weak.

1 Introduction

In this work we consider mixed finite element method for subdomain discretizations. Mixed methods owe their popularity to their local (element-wise) mass conservation property and the simultaneous and accurate approximation of two variables of physical interest, e.g., pressure and velocity in fluid flow. In many applications the complexity of the geometry or the behavior of the solution prompts the use of multiblock domain structure where the simulation domain is decomposed into a series of nonoverlapping subdomains (blocks). Each block is independently covered by a local grid. A non-overlapping domain decomposition algorithm was developed for matching grids by Glowinski and Wheeler [5, 3] ans was later extended to non-matching grids. Mortar fi nite elements are used to impose physically meaningfull matching conditions on the interfaces while mixed fi nite elements are applied locally on the subdomains (see [6, 1] for details).

In this work we consider a second-order elliptic equation which in porous medium applications models single phase Darsy flow. We solve for the pressure p and the velocity field \mathbf{u} satisfying

$$\mathbf{u} = -K\,\nabla p \qquad \text{in }\Omega,\tag{1}$$

$$\nabla \cdot \mathbf{u} + \alpha p = f \qquad \text{in } \Omega, \tag{2}$$

$$p = g^D \qquad \qquad \text{on } \Gamma^D, \tag{3}$$

$$\mathbf{u} \cdot \boldsymbol{\nu} = g^N \qquad \text{on } \boldsymbol{\Gamma}^N, \tag{4}$$

where $\alpha \ge 0$ represents the rock compressibility; $\Omega \subset \mathbf{R}^d$, d = 2 or 3 is a multiblock domain; K is symmetric, uniformly positive definite tensor with smooth or perhaps piecewise smooth components representing the permeability divided by the viscosity; ν is outward unit normal vector on $\partial\Omega$; and $\partial\Omega$ is decomposed into Γ^D and Γ^N .

The problem was solved using the parallel domain decomposition code *Parcel* [4] with some modifications made by the author. The code implements an expanded mixed finite element method developed by Arbogast, Wheeler and Yotov [2] where mixed method with tensor coefficient is writen as a cell-centered finite difference method by incorporating certain quadrature rules.

In the case of nonmatching grids we study the convergence of interior velocity (far from subdomain interfaces). The results show that the interior velocity error is superconvergent of $O(h^2)$, which means that majority of the error occurs near the interfaces. Therefore we need to apply some local postprocessing to obtain better convergence rate for the velocity error.

Second group of tests was run in the case of discontinuous tensor for both mathing and nonmatching grids. As the results show, because of the strong singularity at the cross-point (1/2, 1/2), there is no superconvergence even in the interior. The maximum rate of convergence for the interior velocity error is of O(h). Therefore to control the error we need some local refi nement near this cross-point.

Analyzing all test results in group 1 and group 2 we may conclude that interior velocity error depends on the smoothness of the solution in the whole domain Ω , but in a more weak sense, and that interior velocity error is better than the velocity error calculated over the whole domain.

The last group of tests studies the influence of the the low order term α in (2) on the constant C in the error estimate

$$||p - p_h|| \le Ch^2.$$

We compared the results when $\alpha = 0$ (no low order term) and $\alpha = 1$. The results show that this method works very well for both cases even if there are big variations of K and that the constant increases very slowly when the ratio goes up.

The rest of the paper is organized as follows. Interior error estimates in the case of nonmatching grids are presented in Section 2. Error estimates in the case of discontinuous tensor are presented in Section 3. In section 4 the influence of the low order term on the constant in the error estimates is studied.

2 Interior error estimates in the case of nonmatching grids

To study the interior velocity error we used six tests with known analytic solutions. All examples are on the unit cube. The domain is divided into four subdomains with interfaces along the x = 1/2 and y = 1/2 lines. The boundary conditions are Dirichlet on the left and right face and Neumann on the rest of the boundary. In test#58 we have

$$p(x, y, z) = x^3 y^2 + \sin(xy)$$
 and $K = \begin{pmatrix} 10 + 5\cos(xy) & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$.

In test#59

$$p(x, y, z) = \cos(\frac{\pi x}{2})\cos(\frac{\pi y}{2})$$
 and $K = I$.

In test#64 we have a problem with discontinuous coeffi cient

$$K = \begin{cases} I & , 0 \le x < 1/2 \\ 10 * I & , 1/2 < x \le 1 \end{cases}$$

The solution

$$p(x, y, z) = \begin{cases} x^2 y^3 + \cos(xy) &, \ 0 \le x < 1/2\\ \left(\frac{2x+9}{20}\right)^2 y^3 + \cos(\frac{2x+9}{20}y) &, \ 1/2 < x \le 1 \end{cases}$$

is chosen to be continuous and to have continuous normal flux at x = 1/2.

In the next three tests K is a full tensor.

In test#104

$$p(x,y,z) = x + y + z - 1.5$$
 and $K = \begin{pmatrix} x^2 + y^2 + 1 & 0 & 0\\ 0 & z^2 + 1 & \sin(xy)\\ 0 & \sin(xy) & x^2y^2 + 1 \end{pmatrix}$.

In test#107

$$p(x,y,z) = x^2(x-1)^2 y^2(y-1)^2 z^2(z-1)^2$$
 and $K = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Finally in test#110

$$p(x, y, z) = \begin{cases} xy & , \ 0 \le x \le 1/2\\ xy + (x - 1/2)(y + 1/2) & , \ 1/2 \le x \le 1 \end{cases}$$

and

$$K = \begin{cases} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} , 0 \le x < 1/2 \\ I & & , 1/2 < x \le 1 \end{cases}$$

For the 2*d*-problems (## 58, 59, 64, 110) the initial nonmatching grids are given in Figure 1 and the initial mortar grids on all interfaces are given in Table 1. For 3*d*-problems (#104, #107) we consider similar (but 3d-) grids. We use $\alpha = 0.1$.

 -										
 +	1	_	_	-						
 -	-									
	Γ			Ι		1			Γ	
				t	-	-	-			
				t		_	_			
				+						
				t						

Figure 1: Initial non-matching grids for Cases 1–3

mortar	1	2	3	4
elements	3	3	1	5

Table 1: Initial number of elements in mortar grids for Cases 1-3

2.1 Case 1

The code was first modified to calculate the error over the interiors of all subdomains that have a one-element border around it. Tests were only run using mortar 4 (piecewise constant) because it was obvious that even there exist some improvement of the the rate of convergence of the interior error, it is not essential. The results for this case are in Table 2. The rates were established by running all tests for 5 levels of grid refi nement (we halve the element diameters for each refi nement) and computing a least squares fit to the error.

2.2 Case 2

The second modification of the code produced a **scaled** interior error. The calculation $||\mathbf{u} - \mathbf{u}_h||/||\mathbf{u}||$ over the interior subdomains was used in an attempt to eliminate any possible influence in the size of the interior subdomains would have on the error calculations. Again the improvement wasn't essential. The results for this case are in Table 3.

	velocity	L^2 error	vel. L^2 err. Int.		velocity	velocity L^{∞} error		err. Int.
test	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
58	0.54367	0.78242	0.12750	0.55476	0.44620	0.26164	0.21674	0.18728
59	0.04109	0.52812	0.01805	0.62540	0.03793	0.04879	0.01935	0.18330
64	0.23754	1.15747	0.28418	1.40638	0.05094	0.19525	0.10549	0.61198
104	0.05610	0.47142	0.02044	0.51880	0.03826	-0.06980	0.02191	0.03434
107	0.01157	1.78657	0.00073	1.13243	0.01815	1.52227	0.00126	0.81571
110	0.06674	0.57901	0.01885	0.57524	0.05485	0.06251	0.08477	0.43350

Table 2: Velocity errors for Case 1 mortar 4

mor		velocity	L^2 error	vel. L^2	err. Int.	velocity	L^{∞} error	vel. L^{∞}	err. Int.
tar	test	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
	58	2.66274	1.77322	0.10485	1.71342	2.00771	1.24683	0.04331	1.34017
	59	0.22929	1.69787	0.28510	1.92374	0.09980	0.94798	0.07066	1.31158
1	64	1.33161	1.78550	1.26313	1.96919	0.46868	0.86836	0.15226	1.34315
	104	0.14553	1.55720	0.03572	1.65734	0.08844	0.88043	0.00888	0.83621
	107	0.01688	1.95120	4.43731	1.62768	0.02860	1.72008	1.98867	1.17520
	110	0.25459	1.46322	0.12262	1.81978	0.17738	0.96047	0.02718	1.08433
	58	2.32761	1.71424	0.09601	1.66598	2.02304	1.24654	0.03760	1.29471
	59	0.26758	1.81129	0.28552	1.93455	0.11920	1.20358	0.09820	1.44864
2	64	1.95992	1.96678	1.33080	1.99125	0.51878	1.25044	0.58127	1.86492
	104	0.18661	1.61436	0.05468	1.76282	0.11574	0.96044	0.03387	1.17876
	107	0.02004	2.00490	5.77645	1.70399	0.02962	1.72968	2.37342	1.22172
	110	0.24784	1.45577	0.11780	1.80708	0.18424	0.96912	0.02429	1.06248
	58	0.20265	0.70098	0.01260	0.75098	0.21370	0.21300	0.00286	0.17287
	59	0.03542	0.75957	0.05237	1.12019	0.03058	0.24059	0.01960	0.51651
3	64	0.78962	1.65509	1.02173	1.90811	0.13897	0.74854	0.15094	1.39216
	104	0.21352	1.00307	0.09213	1.19911	0.18577	0.38702	0.01875	0.30153
	107	0.01509	1.91113	3.55414	1.55203	0.02489	1.66242	1.61587	1.12148
	110	0.04343	0.75239	0.01813	0.94637	0.03563	0.25080	0.00494	0.21490
	58	0.54367	0.78242	0.02276	0.75181	0.44620	0.26164	0.00897	0.31533
	59	0.04109	0.52812	0.04319	0.82989	0.03793	0.04879	0.01400	0.21155
4	64	0.23754	1.15747	0.47748	1.61093	0.05094	0.19525	0.03592	0.76608
	104	0.10682	0.48427	0.03329	0.61608	0.14464	-0.0051	0.00842	-0.2289
	107	0.01157	1.78657	2.88170	1.46652	0.01815	1.52227	0.92326	0.86969
	110	0.06674	0.57901	0.02669	0.77457	0.05485	0.06251	0.00924	0.13240

Table 3: Velocity errors for Case 2

2.3 Case 3

Thirdly, the code was modified to calculate the errors over **fixed** interior domains for each level of refinement. In this case it seems that the interior velocity error is superconvergent of $O(h^2)$, which means that majority of the error occurs near the interfaces. Therefore we need to apply some local postprocessing to obtain better convergence rate for the velocity error. The results for this case are in Table 4 and Table 5. Plots of the computed solution and the numerical error for the case of mortar 4 are shown in Figure 2 through Figure 7.

mor		flux e	error	pressure	L^2 error	λe	error
tar	test	C_f	α_f	C_p	α_p	C_{λ}	α_{λ}
	58	0.86618	1.14348	0.13977	2.00716	0.25063	1.92904
	59	0.13611	1.02397	0.15428	1.99830	0.18123	1.99922
1	64	0.42816	0.99543	0.03591	2.00812	0.07926	1.92863
	104	0.20796	1.34665	0.20782	2.02484	0.10682	1.93479
	107	0.00634	1.51331	0.00132	2.01518	0.00314	2.03247
	110	0.27076	1.30103	0.13936	2.00022	0.12387	1.92116
	58	0.75732	1.06461	0.14012	2.00717	0.24363	1.91795
	59	0.06147	0.96515	0.15483	1.99924	0.16323	1.99847
2	64	0.07839	1.00963	0.03109	1.95955	0.08556	1.96633
	104	0.32708	1.41856	0.20910	2.02645	0.15509	2.02785
	107	0.02873	2.03787	0.00152	2.05609	0.00422	2.12012
	110	0.19697	1.19006	0.13997	2.00161	0.14532	1.95482
	58	0.11513	0.12640	0.08315	1.79005	0.73177	1.06345
	59	0.02008	0.08901	0.13470	1.96377	0.06971	0.99552
3	64	0.00923	0.22353	0.03283	1.98314	0.02382	0.97858
	104	0.06591	0.19293	0.30498	1.93876	0.06700	0.74369
	107	0.00238	1.24266	0.00127	2.00185	0.00108	1.417078
	110	0.02073	0.05298	0.11937	1.94448	0.08108	0.96348
	58	0.21224	0.11464	0.13560	1.77063	0.12086	1.23240
	59	0.03114	-0.0819	0.09478	1.76410	0.07444	1.10489
4	64	0.02227	0.10901	0.02811	1.78406	0.01445	1.07005
	104	0.06653	-0.1480	0.14887	1.53792	0.13933	1.01947
	107	0.00107	0.81488	0.00127	1.98400	0.00231	1.87368
	110	0.05203	-0.0242	0.11900	1.78721	0.08153	1.10277

Table 4: Velocity errors for Case 3 Part I

mor		velocity	L^2 error	vel. L^2	err. Int.	velocity	L^{∞} error	vel. L^{∞}	err. Int.
tar	test	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
	58	2.66274	1.77322	1.83728	2.07849	2.00771	1.24683	5.25444	1.90940
	59	0.22929	1.69787	0.20752	2.01600	0.09980	0.94798	0.59001	1.97308
1	64	1.33161	1.78550	1.10879	1.98649	0.46867	0.86836	3.50649	1.97183
	104	0.14553	1.55720	0.08091	1.96243	0.08844	0.88043	0.20929	1.77685
	107	0.01688	1.95120	0.00615	2.06281	0.02860	1.72008	0.01078	1.74192
	110	0.25459	1.46322	0.17284	1.97959	0.17738	0.96047	0.42815	1.89051
	58	2.32761	1.71424	2.02425	2.08969	2.02304	1.24654	6.64471	1.94481
	59	0.26758	1.81129	0.20011	2.00933	0.11920	1.20358	0.57503	1.96715
2	64	1.95992	1.96678	1.13106	1.99507	0.51878	1.25044	3.45547	1.96728
	104	0.18661	1.61436	0.13642	2.10844	0.11574	0.96044	0.82962	2.14136
	107	0.02004	2.00490	0.00796	2.13705	0.02962	1.72968	0.01424	1.81625
	110	0.24784	1.45577	0.17167	1.97908	0.18424	0.96912	0.39475	1.87154
	58	0.20265	0.70098	3.75547	2.08824	0.21370	0.21300	5.03022	1.66747
	59	0.03542	0.75957	0.32442	2.03956	0.03058	0.24059	1.10888	1.98844
3	64	0.78962	1.65509	1.03225	1.97148	0.13897	0.74854	3.40828	1.96204
	104	0.21352	1.00307	0.78365	2.04442	0.18577	0.38702	0.75907	1.47399
	107	0.01509	1.91113	0.00503	1.99090	0.02489	1.66242	0.00767	1.61258
	110	0.04343	0.75239	0.25975	2.03322	0.03563	0.25080	0.78292	1.97619
	58	0.54367	0.78242	8.40882	2.17624	0.44620	0.26164	18.1699	1.86383
	59	0.04109	0.52811	0.42804	1.99718	0.03793	0.04879	1.14213	1.87719
4	64	0.23754	1.15745	1.14140	1.98235	0.05094	0.19525	3.52201	1.97291
	104	0.10682	0.48427	0.42934	1.63100	0.14464	-0.0051	0.36614	0.97479
	107	0.01157	1.78657	0.00446	1.94802	0.01815	1.52227	0.00687	1.59490
	110	0.06674	0.57901	0.54528	2.04151	0.05485	0.06251	1.06262	1.82550

Table 5: Velocity errors for Case 3 Part II

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 2: Solution and error (magnified) for test#58 mortar4

B. Pressure and velocity error

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 4: Solution and error (magnified) for test#64 mortar4

B. Pressure and velocity error

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 6: Solution and error (magnified) for test#107 mortar4

B. Pressure and velocity error

Figure 7: Solution and error (magnified) for test#110 mortar4

3 Error estimates in the case of discontinuous tensor

Because it is hard to find problems with discontinuous tensor and known true solution for which the right-hand side f is a smooth function, we needed to make a bigger modification in the code. Thus, first the code was run for the finest grid and the solution was saved in files. Then the stored solution from this initial run was used to calculate the errors for all coarser grids.

Again all examples are on the unit cube; the domain was divided into four equal subdomains. The initial grid in the case of matching grids was chosen to be 128×128 . The initial nonmatching and mortar grids are shown in Table 6.

64×64	80×80	mort	r	1	2	3	4
80×80	64×64	eleme	its	48	48	16	80
Non-matc	hing grids		N	Mortar	grids		

Table 6: Initial grids for Case 4

In this case different test problems were tested. In problems 70 through 75 the permeability tensors were diagonal with piecewise constant diagonal elements. The prototype for the permeability tensor is

$$K = \left(\begin{array}{ccc} a(x,y) & 0 & 0 \\ 0 & a(x,y) & 0 \\ 0 & 0 & a(x,y) \end{array}\right)$$

where

$$a(x,y) = \begin{cases} 10^n & \text{, if } x < 1/2, y < 1/2 \\ 10^n & \text{, if } x > 1/2, y > 1/2 \\ 1 & \text{, otherwise} \end{cases}$$

For test problem #70, n = 1 and then *n* increments by 1 with each test problem through test #73. For test problem #74

$$a(x,y) = \begin{cases} 10^2 & , x < 1/2, y < 1/2 \\ 10 & , x > 1/2, y > 1/2 \\ 1 & , \text{ otherwise} \end{cases}$$

For test problem#75

$$a(x,y) = \begin{cases} 10 & , x < 1/2, y < 1/2 \\ 10^2 & , x > 1/2, y > 1/2 \\ 1 & , \text{ otherwise} \end{cases}$$

Test problem#170 is with full tensor

$$K = \begin{pmatrix} a(x,y) & .1a(x,y) & 0\\ .1a(x,y) & a(x,y) & 0\\ 0 & 0 & a(x,y) \end{pmatrix}$$

where a(x, y) is as in test problem#70.

The boundary conditions are Dirichlet on the left and right face and Neumann (**no flow**) on the rest of the boundary. For test problems#70,#71,#72, #73,#170

 $p|_{x=0} = 1$

while for test problems#74 and #75

$$p|_{x=0} = 10$$

For all tests

$$p|_{x=1} = 0$$

The results for this case are in Table 7 and Table 8. Plots of the computed solution and the numerical error for test problems#71 and #170 are shown in Figure 8 and Figure 9. As the results show, because of the strong singularity at the cross-point (1/2, 1/2), there is no superconvergence even in the interior. The maximum rate of convergence for the interior velocity error is of O(h). Therefore to control the error we need some local refi nement near this cross-point.

Conclusion: Analyzing all test results in Section 2 and Section 3 we may conclude that interior velocity error depends on the smoothness of the solution in the whole domain Ω , but in more weak sense, and that interior velocity error is better than the velocity error calculated over the whole domain.

		flux o	error	pressure	L^2 error	λe	rror
	test	C_f	α_f	C_p	α_p	C_{λ}	α_{λ}
S	70	2.63071	0.14077	0.15364	1.05311	0.77287	1.03731
rid	71	5.74425	0.09065	0.04845	0.67407	0.25210	0.70538
800	72	6.48755	0.07803	0.05149	1.03670	0.03005	0.64297
hin	73	6.56845	0.07630	0.06634	1.11448	0.00306	0.63601
atci	74	11.6789	0.12253	2.12416	0.91930	8.95074	0.90491
т	75	11.6788	0.12253	2.12416	0.91930	8.95073	0.90491
	170	3.46109	0.28146	0.15389	1.05316	0.77345	1.03728
	70	2.87058	0.14170	0.20148	1.06326	1.00424	1.04344
-	71	6.10402	0.09222	0.05755	0.67933	0.30058	0.70927
ur j	72	6.86057	0.07994	0.06501	1.03706	0.03521	0.64615
orta	73	6.94565	0.07842	0.08507	1.11449	0.00358	0.63884
ш	74	12.5847	0.12298	2.66909	0.92547	11.2241	0.90994
	75	12.5850	0.12298	2.66909	0.92547	11.2240	0.90994
	170	4.14805	0.28343	0.20179	1.06329	1.00500	1.04342
	70	2.65103	0.11212	0.20343	1.18225	0.99408	1.03561
•	71	5.76999	0.06879	0.05757	0.67919	0.27619	0.64336
ur 2	72	6.74202	0.07343	0.06499	1.03704	0.03521	0.64616
orte	73	6.88443	0.07526	0.08507	1.11449	0.00358	0.63921
ш	74	11.7169	0.09095	2.68899	0.92641	11.1267	0.90294
	75	11.6919	0.09022	2.68410	0.92583	11.1120	0.90253
	170	3.53285	0.20636	0.20374	1.06415	0.99484	1.03559
	70	2.64355	0.10357	0.20035	1.05759	0.30514	0.50878
~	71	6.01293	0.08727	0.05943	0.70188	0.10796	-0.0291
ur ĉ	72	6.57508	0.07120	0.05660	1.11356	0.09621	-0.1143
orte	73	5.47429	-0.0072	0.01310	0.54227	0.41838	0.07096
ш	74	11.7193	0.09411	2.64884	0.92685	3.72005	0.42120
	75	11.7236	0.09421	2.64983	0.92693	3.71763	0.42069
	170	3.52772	0.20854	0.20067	1.05763	0.30547	0.50888
	70	2.81382	0.13225	0.20157	1.07050	1.03948	1.05073
	71	6.06643	0.08742	0.05798	0.68121	0.30610	0.71235
ur 4	72	6.83717	0.07650	0.06511	1.03735	0.03578	0.64901
ortc	73	6.92509	0.07519	0.08508	1.11451	0.00364	0.64196
ш	74	12.4547	0.11595	2.70630	0.93120	11.5505	0.91556
	75	12.4545	0.11595	2.70630	0.93120	11.5504	0.91556
	170	3.98991	0.26285	0.20186	1.07051	1.04027	1.05071

Table 7: Errors for Case 4 Part I

		velocity	L^2 error	vel. L^2	err. Int.	velocity.	L^{∞} error	vel. L^{∞}	err. Int.
	test	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
S	70	5.02826	0.80760	3.16430	1.13060	2.24790	-0.1318	7.24114	0.98681
rid	71	19.5352	0.60120	9.33316	0.73624	9.49735	-0.2476	22.2446	0.62329
80	72	23.7806	0.55261	11.0525	0.66849	11.9794	-0.2722	26.6700	0.56086
un	73	24.2655	0.54673	11.2627	0.66136	12.2589	-0.2759	27.2236	0.83473
atcl	74	92.7638	0.73567	50.8235	0.96406	43.5174	-0.1777	123.086	0.83473
ш	75	92.7634	0.73567	50.8245	0.96407	43.5213	-0.1777	123.085	0.83473
	170	5.03173	0.80762	3.16635	1.13047	2.24876	-0.1318	7.24688	0.98681
	70	6.35111	0.80766	20.5492	1.64331	2.86067	-0.1191	22.0366	1.23625
	71	23.4454	0.60740	13.5818	0.73726	11.5272	-0.2309	28.8878	0.60806
ur l	72	28.1822	0.55933	15.8126	0.66910	14.4447	-0.2539	33.5560	0.54250
ortc	73	28.7154	0.55350	16.0688	0.66135	14.7786	-0.2572	34.1529	0.53564
ш	74	115.035	0.73837	77.4494	0.96422	54.3464	-0.1640	172.361	0.82124
	75	115.030	0.73836	77.4548	0.96425	54.3452	-0.1640	172.411	0.82136
	170	6.35561	0.80768	4.98072	1.13034	2.86191	-0.1191	10.6355	0.97250
	70	6.23825	0.79586	4.92724	1.12636	2.69003	-0.1528	10.0805	0.95716
~	71	23.3687	0.60462	13.5857	0.73701	10.9453	-0.2546	28.4547	0.60378
ur 2	72	28.0979	0.55838	15.8298	0.66939	14.0227	-0.2649	33.4987	0.54209
ortc	73	28.6897	0.55336	16.0938	0.66192	14.4348	-0.2653	34.0587	0.53482
ш	74	113.537	0.73029	77.0655	0.96194	51.1419	-0.1942	166.450	0.81096
	75	113.523	0.73029	77.0163	0.96173	51.1524	-0.1941	166.580	.81125
	170	6.24275	0.79589	4.93047	1.12626	2.69127	-0.1528	10.0881	0.95719
	70	6.07333	0.79065	20.2001	1.63663	2.89122	-0.1171	21.2636	1.22538
~	71	24.7832	0.63538	14.4814	0.76852	12.7548	-0.1867	30.5703	0.63750
ur 3	72	27.4119	0.56672	15.1191	0.66777	14.8135	-0.2258	32.1567	0.54070
orta	73	24.6847	0.49919	13.7162	0.58979	12.0942	-0.3260	31.2366	0.47901
ш	74	111.059	0.73119	76.1713	0.96367	55.0603	-0.1539	167.261	0.81792
	75	111.091	0.73135	76.3615	0.96482	55.1061	-0.1537	167.482	0.81866
	170	6.07766	0.79067	4.89698	1.12373	2.89246	-0.1171	10.2909	0.96263
	70	6.34711	0.80107	5.03046	1.13980	2.83992	-0.1323	10.8196	0.98179
+	71	23.6418	0.60633	13.7003	0.73942	11.6003	-0.2349	29.2555	0.61080
ur 4	72	28.4218	0.55910	15.9559	0.67129	14.5522	-0.2560	34.0070	0.54555
orte	73	28.9680	0.55346	16.2248	0.66390	14.8990	-0.2586	34.6187	0.53904
ш	74	115.837	0.73468	78.5609	0.97004	54.5911	-0.1724	176.555	0.82858
	75	111.091	0.73135	76.3615	0.96482	54.5922	-0.1724	176.507	0.82848
	170	6.35174	0.80110	5.03374	1.13970	2.84132	-0.1323	10.8275	0.98181

Table 8: Errors for Case 4 Part II

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 9: Solution and error (magnified) for test#170 matching grids

4 Influence of the low order term on the constant in the error estimates

Theory indicates that the constant C in the error estimate

$$||p - p_h|| \le Ch^2$$

depends on K_{max}/K_{min} . We study the dependence of the constant on the low order term α in (2). We tested three groups of problems. For all of them the permeability tensor K was chosen to be diagonal matrix with diagonal elements

$$a(x) = e^{-\beta(x-\frac{1}{2})^2}$$

where β is a real, nonnegative parameter. The values of β and corresponding values (approximately) of the ratio K_{max}/K_{min} are given in Table 9.

β	0	9	18.5	28	37	46
ratio	10^{0}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}
				V		

Table 9: Values of
$$\frac{K_{max}}{K_{min}}$$

Test problems#81 and #82 used true analytic solutions. For test#81 p = 1 - x and for test#82

$$p = x^3y^4 + x^2 + \sin(xy)\cos(y)$$

For test#83 we used again fi les to save the solution for the fi nest grid. For this test

$$f \equiv 0, \ p|_{x=0} = 1, \ p|_{x=1} = 0 \text{ and } \mathbf{u} \cdot \nu = 0 \text{ on } \Gamma^N.$$

For all test problems we used matching grids and the boundary conditions were Dirichlet on the left and right face and Neumann on the rest of the boundary.

We compared the results when $\alpha = 0$ (no low order term) and $\alpha = 1$. The results are in Table 10 through Table 15.. Plots of the computed solution and the numerical error for $\alpha = 0$ and $\alpha = 1$ are shown in Figure 10 through Figure 15. They show that this method works very well for both cases even if there are big variations of K and that the constant increases very slowly when the ratio goes up.

tio		flux ei	rror	pressure	L ² error	λerr	ror
ra	α	C_f	α_f	C_p	α_p	C_{λ}	α_{λ}
	0	1.520E-05	-1.0184	5.223E-09	-0.4163	2.623E-08	-0.4938
10^{0}	1	2.520E-05	-0.8979	9.024E-09	-0.3304	4.684E-08	-0.3745
	0	1.18544	1.00582	1.11186	1.99857	1.57440	1.99900
10^{1}	1	0.88688	1.01210	1.05436	1.99651	1.49051	1.99636
	0	1.72450	1.00050	2.55276	1.98550	3.61007	1.98549
10^{2}	1	1.13756	1.02740	2.16116	1.97790	3.05399	1.97764
	0	2.53682	1.00673	4.54492	1.96592	6.42815	1.96596
10^{3}	1	1.92024	1.04562	2.87016	1.94721	4.05745	1.94707
	0	3.10393	1.01237	6.74732	1.94627	9.53957	1.94618
10^{4}	1	2.49763	1.04793	3.31429	1.95384	4.68600	1.95375
	0	6.35081	2.03410	9.10429	1.92649	12.8703	5.29718
10^{5}	1	4.45480	2.09359	3.74429	1.95838	1.92635	1.95851

Table 10: Errors for Test#81 Part I

tio		velocity L	L^2 error	vel. $L^2 e$	rr. Int.	velocity L	error	vel. $L^{\infty}e$	rr. Int.
ra	α	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
	0	1.959E-08	-0.8815	2.822E-08	-0.1845	1.595E-08	-1.3747	4.406E-08	-0.4704
10^{0}	1	1.117E-08	-0.9970	3.896E-08	-0.1997	2.907E-08	-1.2267	9.665E-08	-0.3208
	0	0.91658	2.00282	0.24832	1.97709	1.44057	1.94041	0.58024	1.85035
10^{1}	1	1.04796	2.00076	0.29905	1.97719	1.71072	1.95797	0.72373	1.86202
	0	1.60093	2.00913	0.26881	1.93611	3.00145	1.96145	0.53670	1.81068
10^{2}	1	1.87700	2.00235	0.25119	1.91043	3.60231	1.96361	0.39762	1.65979
	0	2.06907	2.00956	0.66296	2.00152	3.53206	1.93215	1.55599	1.95890
10^{3}	1	2.37246	1.99846	0.32107	1.99301	4.50453	1.93396	0.42730	1.73236
	0	2.51460	2.00756	1.04688	2.03072	3.83614	1.89745	2.75755	2.00510
10^{4}	1	2.79471	1.99700	0.67433	2.11495	5.05376	1.90684	1.86876	2.06975
	0	2.83901	1.99846	1.30681	2.03978	4.02057	1.86281	3.41880	2.00177
10^{5}	1	3.11272	1.99131	0.95971	2.12676	5.36164	1.87915	2.31484	2.04601

Table 11: Errors for Test#81 Part II

		flux e	error	pressure	L^2 error	λe	rror
ratio	α	C_f	α_f	C_p	α_p	C_{λ}	α_{λ}
	0	0.48058	0.92198	0.29886	1.99667	0.39792	2.00045
10^{0}	1	0.39681	0.87120	0.27677	1.99533	0.37104	1.99594
	0	1.58922	1.00151	2.06764	1.99694	2.85774	2.00007
10^{1}	1	1.31857	0.99968	1.94081	1.99468	2.64292	1.99813
	0	2.16148	0.99954	4.54800	1.98593	6.26899	1.98799
10^{2}	1	1.55603	1.00823	3.86108	1.97652	5.28056	1.97920
	0	3.12151	1.00590	8.23068	1.96967	12.5596	1.97820
10^{3}	1	2.36137	1.03718	4.90257	1.94078	6.93021	1.94673
	0	3.81211	1.01168	11.8719	1.94853	17.8129	1.97492
10^{4}	1	3.05579	1.04467	5.39610	1.94485	7.68368	1.94838
	0	9.61315	2.03300	16.4131	1.76500	23.0464	1.71409
10^{5}	1	6.68535	2.09079	6.10213	1.95496	8.61460	1.95559

Table 12: Errors for Test#82 Part I

		velocity	L^2 error	vel. L^2	err. Int.	velocity	L^{∞} error	vel. L^{∞}	err. Int.
ratio	α	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
	0	0.51967	1.98672	0.18760	1.99842	1.32760	1.79569	0.90474	1.91797
10^{0}	1	0.52388	1.97723	0.19538	1.99463	1.27471	1.77775	0.91529	1.91845
	0	1.70894	1.99882	0.68123	1.99665	4.27849	1.91655	2.55625	1.89986
10^{1}	1	1.87290	1.99771	0.71191	1.99283	4.47469	1.90753	2.84745	1.90317
	0	2.74123	2.00611	0.69310	1.97321	9.01643	1.95499	1.59156	1.72722
10^{2}	1	3.16910	2.00064	0.71311	1.96552	10.2015	1.95629	2.62397	1.78597
	0	3.46317	2.00788	1.12040	1.99457	11.7216	1.95136	2.96550	1.92528
10^{3}	1	3.93653	1.99727	0.69361	1.98080	13.7282	1.95030	1.57091	1.68975
	0	4.16972	2.00827	1.64383	2.02131	13.4855	1.93658	5.16595	1.99412
10^{4}	1	4.60159	1.99738	1.05977	2.06600	15.9724	1.93683	2.13064	1.81785
	0	4.73005	2.00294	2.02860	2.03314	14.9040	1.91828	6.82549	2.00437
10^{5}	1	5.14499	1.99477	1.45510	2.09869	17.6947	1.92183	4.56553	2.01597

Table 13: Errors for Test#82 Part II

		flux ei	rror	pressure	L ² error	λerr	ror
ratio	α	C_f	α_f	C_p	α_p	C_{λ}	α_{λ}
	0	4.342E-06	0.38460	6.309E-08	0.33978	3.564E-07	0.19340
10^{0}	1	3.803E-06	0.38418	6.318E-08	0.35544	3.321E-07	0.20265
	0	1.69532	2.08386	1.02830	2.06002	1.45382	2.05990
10^{1}	1	1.28574	2.08814	0.98923	2.06111	1.39853	2.06099
	0	1.66590	2.08796	2.56514	2.00134	3.62735	2.00131
10^{2}	1	0.56148	2.22665	2.41972	2.01461	3.42218	2.01463
	0	0.66009	2.10511	3.59111	1.92632	5.07830	1.92629
10^{3}	1	0.75200	1.96891	3.24561	1.97698	4.58996	1.97698
	0	0.19089	2.13192	4.01591	1.85285	5.67940	1.85285
10^{4}	1	0.88100	1.93894	2.32435	1.92743	3.28695	1.92741
	0	0.04673	2.16905	4.09979	1.78221	5.79796	1.78221
10^{5}	1	0.74871	1.88571	1.42642	1.80294	2.01720	1.80293

Table 14: Errors for Test#83 Part I

		velocity L	L^2 error	vel. $L^2 e$	rr. Int.	velocity L	error	vel. $L^{\infty}e$	err. Int.
ratio	α	C_u	α_u	C_u	α_u	C_u	α_u	C_u	α_u
	0	6.315E-07	-0.0915	8.596E-08	0.39917	5.106E-07	-0.7172	2.225E-07	0.15937
10^{0}	1	6.366E-07	-0.0597	1.033E-07	0.39344	4.386E-07	-0.7236	3.156E-07	0.25133
	0	1.20316	2.08523	0.60161	2.08525	1.08091	2.04545	1.20239	2.08498
10^{1}	1	1.02448	2.09032	0.47528	2.09072	1.15857	2.02808	0.95384	2.06170
	0	1.17719	2.08771	0.58860	2.08771	1.13300	2.07356	1.17688	2.08757
10^{2}	1	0.59393	2.13819	0.19821	2.22732	0.71378	1.91463	0.35860	2.08571
	0	0.46627	2.10473	0.23314	2.10473	0.45246	2.09366	0.46596	2.10447
10^{3}	1	0.50664	1.96340	0.28805	1.97335	0.62015	1.97963	0.61683	1.97954
	0	0.13499	2.13195	0.06750	2.13195	0.13153	2.12240	0.13498	2.13192
10^{4}	1	0.57140	1.93648	0.31943	1.93825	0.71538	1.95218	0.70779	1.94979
	0	0.03302	2.16883	0.01651	2.16883	0.03205	2.15785	0.03302	2.16882
10^{5}	1	0.45583	1.87963	0.23836	1.86526	0.61667	1.90274	0.60471	1.89878

Table 15: Errors for Test#83 Part II

	 	$\rightarrow \rightarrow \rightarrow$	11	V (()) · ·			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow			
	 		$\langle \langle \langle \rangle$	XXXXX			
				XXX			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
			$\langle \langle \langle \rangle \rangle$	XXXXX			
			$\overline{\langle}$	XXXX ····			
	 	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	<u> </u>			
			$\langle \langle \langle \rangle \rangle$	X X X X X X			
		$\rightarrow \rightarrow \rightarrow$	77	VIIII -			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
	 	$\rightarrow \rightarrow \rightarrow$	55	1 1 1 1 + -			
			$\langle \langle \rangle$	XXXXX			
	 	$\rightarrow \rightarrow \rightarrow$	11	1 1 mm			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
	 		$\dot{\boldsymbol{x}}$	XXIII .			
			$\langle \langle \langle \rangle$	XXXXX			
1.1	 · · ·	$\rightarrow \rightarrow \rightarrow$	\rightarrow				
	 · · · · · · · · · · · · · · · · · · ·	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
	 	- i i	$\langle \langle \rangle$	XXXXX .			
			$\langle \langle \rangle$	XXXXX			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	• •		
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
	 		$\langle \langle \rangle$	XXXIII .			
			$\langle \langle \langle \rangle$	XXXX			
	 	$\rightarrow \rightarrow \rightarrow$	11	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	 	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow			
	 		$\langle \langle \langle \rangle$	XXXIII			
			$\langle \langle \langle \rangle$	XXXX			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	· · · · · · · ·			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
			$\langle \langle \langle \rangle \rangle$	X XXXXX			
			$\langle \langle \langle \rangle$	XXX			
	 · · ·	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $	- ·		
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow $			
			$\langle \langle \langle \rangle \rangle$	XXXXXXX			
				XXX CONT			
	 	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow		• • •	
	 	$\rightarrow \rightarrow \rightarrow$	55				
			$\langle \langle \rangle$	XXXXX			

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 10: Solution and error (magnified) for test#81 $\alpha=0$ $\beta=46$ matching grids

										× .	~			1	1	11										
			1					~		<u></u>	~	$\langle \rangle$			$\langle \cdot \rangle$		~	17				÷.,	÷.	÷.	1	Ξ.
				-	-	-		\rightarrow		\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow -	÷ -	-		•	•	٠.	•	•	-
					-	-		\rightarrow	_	<u> </u>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow -									-
										(III)	 (<	\times	<	~~	11									
	• •		•	•			-	~	-	7	1	$\overline{\langle}$	$\overline{}$	$\overline{\langle}$	<	<u>.</u>	<i>,</i> ,,			÷.	•	۰.	•	÷.,	÷.	÷.
	• •	1.1	•	•	-	-	-	\rightarrow		\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow -	• •	•		•	٠.	•	•	•	•
		1.1						\rightarrow	_	>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\leftrightarrow	\rightarrow									
										(I	ί.		<	\times	<	~~	ί.									
								~		~	1	$\langle \rangle$	$\overline{}$	$\overline{\langle}$	$\overline{\langle}$	<u>.</u>	~ ~			÷.,				÷.,	1	
1.1	• •	1.1				-	-	\rightarrow	-	} -	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	\rightarrow	• •		•		٠.	٠.	•	٠.	•
		1.1			-	-		\rightarrow	_	>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	κλ	\rightarrow									
										1	1 (L		<	\times	Κ.	~~	÷.,									
						-	-	-		~	1	<	~	X	<	~	~ ~					-	•			
1.1		1	•		-	-	-	\rightarrow	-) -	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→ -	÷ -•	-	•	٠.	٠.	۰.	٠.	÷.,	÷.,
						-	-	\rightarrow	_	<u> </u>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow -	÷								4
										<u>.</u>	$\langle \cdot \rangle$	$\langle \rangle$	<	\mathbf{X}	$\langle \cdot \rangle$	\sim	÷.									
							-	-		1	<	<	~	X	<		~ ~	1.1							-	
				-	-	-	-	\rightarrow	-) -	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	→ -	• •	-		•	•	•		•	-
						-		\rightarrow	_	>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	• •								
											$\langle \cdot \rangle$	$\langle \rangle$	<	\mathbf{X}	$< \cdot$	222	÷									
								-		1	~	<		$\overline{\langle}$	<		1								-	
	• •		•		•	-	-	\rightarrow	-)	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	→ →-	• •	•		٠.	٠.	•		•	•
						-		\rightarrow	_	}	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	• •								
								_			<u>`</u>	$\langle \rangle$	<	\mathbf{X}	$\langle \cdot \rangle$	122	÷									
										1	<u> </u>	$\langle \rangle$		$\overline{\langle}$	$\langle \langle \langle \rangle \rangle$		11						1	•		
• •	• •	1				-	-	\rightarrow) -	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	\rightarrow	• •	۰.		٠.	۰.	•	٠.	٠.	٠.
					-	-		\rightarrow		}	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	• •	-							
										2	ΞĘ.	ι (<	\times	Χ.	~~	× .									
								~		1		$\langle \rangle$		$\overline{\mathbf{X}}$	$\langle \langle \langle \rangle \rangle$		17		1							Ť.
				-	-	-	-	\rightarrow) -	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow -	• •	•		•	•	•		•	-
				-	-	-	-	\rightarrow	_	>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	÷ -•	-				-			-
							_	_		× .	1	$\langle \cdot \rangle$	\leq	X	<	i))										
								7			$\langle \cdot \rangle$			K	$\langle \cdot \rangle$	$\langle \rangle$										
	• •		•		•	-	-	\rightarrow	-) _	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	\rightarrow -	• •	•		•		•		٠.	•
						-	-	\rightarrow	_	>	\rightarrow	\rightarrow	\rightarrow	\rightarrow	÷.	\rightarrow	\rightarrow	÷ -+					•		•	
										<u> </u>	<u>`</u>	$\langle \cdot \rangle$	<	$\boldsymbol{\cdot}$	<	ίλ										
										1	1			\overline{x}	$\langle \langle \cdot \rangle$		1									
	• •		•		•	-	-	\rightarrow	-)	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	→ →-	• •			•	٠.	•		•	•
						-		\rightarrow	_	}	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	• •								
								_			<u>`</u>	$\langle \cdot \rangle$	<	\mathbf{X}	$\langle \cdot \rangle$	122	÷									
										1	<u> </u>	$\langle \rangle$		$\overline{\mathbf{X}}$	$\langle \langle \langle \rangle \rangle$		11					-	1			Ĩ.
	• •		•			-	-	\rightarrow		}	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	• •		•		•	•		•	

_				_	_															_					
	-	-	-			-	-	-	-	-	-		$\leftarrow \leftarrow$	•	-	• •	• •	-			-	•	•	-	-
	-	-	-		-	-	-	-	-	-	-	· · · · · ·	$\rightarrow \rightarrow$	•	-	• •	• •	-			-	-		-	-
	-	-			•	-	-	-	-	-	-	· · · · · · · · · · · · · · · · · · · 	← ←	•	-	• •	• •	-			÷	÷	•	•	-
	-						-	-	-	-	-	· · · · · · · · · · · · · · · · · · ·	← ←	•		• •		-							-
								-	-	-	-	· · · · · · · · · · · · · · · · · · ·	← ←												
									-	-			\leftarrow								λ.	λ.			
									-				← ←									λ.			
									-	4			← ←												
									-				<u> </u>												
									-			····	<u> </u>												
									_		_														
											1								÷.				1		
													$\sum \sum$				17								
	-	÷.	1	1	1	1	1	1	-	1	1		<u> </u>	•	÷.			-	÷.		1	÷.	÷.	÷.,	1
1	-	-	1	1	1	-	1	-	-	-	1		\leftarrow	•	1		• •	-	•		1	1		•	-
	•	1	1	1	1	1		1	-	1	1		<u> </u>	۰.	- L			1	•		1	1		1	-
	•		1	1	1	1		1	-	-	۰.		← ←	•		1	•					٠.	•	۰.	•
	•	۰.	1	1	1	•	1	1	-	-	1	• • • • • • •	← ←	•				-			1	۰.	•	•	•
	•	۰.	1		٠.				-	-	1	• • • • • •	← ←	•		•	•	•	1		1	1	•	٠.	•
٠.	•		1	1	٠.	٠.	•	-	-	-	2	• • • • • •	← ←	۰.			• •			•	1	۰.	•	۰.	•
٠.	•	٠.	•		٠.	•	•	-	-	-	-	· · · · · · · · · · · · · · · · · · ·	← ←	•		•	• •	-		•	1	٠.	•	•	•
٠.	•		÷		÷	•	-	-	-	-	-	· · · · · · ·	\leftarrow	-		• •	• •	-		•	÷	÷		•	•
	-	-	÷	+	•	-	-	-	-	-	-	· · · · · · · · · · · · · · · · · · · 	← ←	+	-		• •	-	•	•	÷	•	•	•	-
	-	-	÷	•	•	-	-	-	-	-	-		← ←	-	-	- ·	• •	-	÷	•	÷	÷	-	-	-
	-	-	÷		•	-	-	-	-	-	-		← ←	-	-			-	÷		÷	÷	•	-	-
	-	-	-			-	-	-	-	-	-		← ←	+	-			-	-		-	-		-	-
	-	-						-	-	-	-	· · · · · · · · · · · · · · · · · · ·	← ←					-							-
								-	-	-	-	· · · · · · · · · · · · · · · · · · ·	← ←												
								-	-	-			← ←	-											
									-				<u> </u>												
									-				<u> </u>												
									-			····	È È												
		1																							
														÷.					×.		1	1		÷.	×.

A. Computed pressure and velocity

B. Pressure and velocity error

· · · · · · · · · · · · · · · · · · ·	-						-
	2						
							2
THE FEEL STREET FEEL							
THEFT PERFECT F							
HEALTER.							
and the second sec							
ALLER CONTRACTOR							
A A A A A A A A A A A A A A A A A A A							
and the second s							
attent to the second se	÷						
THEFTER .							
"MARTER		11		1		2	2
and the second s						1	÷.
MARKEN						2	2
MARCONT		1	÷.	1		÷.,	2
THEREFER T. T.	1	1					÷.
mallerr	1	÷.		•			÷.
Mallerre	1		1	1	1	1	Ξ.
maarver	1	· ·		•		1	۰.
maan	1	1	1	•			1
"Maaker"	1	· ·		-		1	Ξ.
				•			
	1			•		•	
······································	1			•			
	1			•			1
······································	1	· ·		1			1
······································	•	•		•			
Contraction and the contraction of the contraction	1			•			

B. Pressure and velocity error

																~											
		÷.		-	-	÷ •	•	- •	-	•	-		\rightarrow	-	\rightarrow	\rightarrow	\rightarrow	٠	٠	-	•		-	-	-	-	•
							⊢ •	- +	-	κ.	_	}	\rightarrow	_	÷	X	¥.	-	-			•					
								- +	-	χ.	_	>	\rightarrow	_	×.	Ϋ́	<u>د ک</u>	~	~								۰.
							-		_	χ.	_	•	+		<u> </u>	$\mathbf{X}\mathbf{X}$		Ľ.									
									_	τ.	~	•	÷		<u>Ś</u> .	$\leq \leq$	CĽ.	۴.	1								
											~		ż	1	\$	\leq	Ĩ.	۴.	۴.	÷.							
		11						Ľ.,	Ċ.	÷		Ľ.	>	1	<	$\overline{\mathcal{C}}$	n ~	1	٢	٢.					÷.		
		1.	1		1				. T.	4	٢,		3	~	\sim	~	" ~	1	٢	-	1				÷.,	÷.,	1
		1.			•	÷.,	- 1			2	1		1	~	1	7	• •	۲	۲.	۰.	÷.	•	•		۰.	÷.	
		1			•	•	~ '	- 1	<u> </u>	÷.	1	-	7	~	1	÷	• •	۲	۲	۳.	٠.	•	•		٠.	٠.	
		÷.		1	•	۰.	~ '	~ '	× .	٠.	1	-	7	1	~	≫	• •	۲	۲	٠.	٠.	•	•	1	-	•	
	• •	÷.		-	•	۰.	~	~ '	5	1	~		*	\rightarrow	\rightarrow	≫	• •	۲	٣	٠.	٠.	•	•	-		-	-
	• •	÷.		•	•	۰.	~	~ '	5	1	~		2	\rightarrow	\rightarrow	≫		۲	-	۰.	٠.		-	-		-	-
					٠.	۰.	÷	~ '	~	1	~	-	+	\rightarrow	\rightarrow	₩,		*	٠	-			-	-		-	-
			•		•	•	•	~ '	5	٩.	~	-	+	\rightarrow	\rightarrow	÷.,		-	-	-		-	-	-		-	
							•	~	~	۰.	~	-	*	\rightarrow	÷	÷.,		-	-	-							
						ч.	•	~ •	~	۰.	~	-	*	\rightarrow	÷	÷,		-	-	2							
				Ξ.		ς.	•	~	ς.	۰.	~	-	*	÷	Ś	÷.		-	-								۰.
				Ξ.	τ.	τ.	~	~ .	~		-	_	*	÷	Ś	52	· -	Ľ.		2							۰.
						2	~	~ .	~		~	_	}	Ś.	5	12	1.	Ľ.	Ľ.								
											~		÷	Ś	\leq	5	11	1	1								
		11	1			÷.	2	<u> </u>	Č.	÷.			5	3	$\langle \cdot \rangle$	~	• •		Γ.			÷.,	÷.	1	1	÷.	
						Ξ.	Ξ.	Ξ.		÷.		Ξ.	5	$\langle \rangle$	$\langle \cdot \rangle$	77+	• •	-	-	1							
		1		1	•	۰.	2	Ξ.		2	1	_		~	< :	***	• •	-	-	1	÷.	÷.	·	÷.	÷.	÷.	
		1		÷.	•	۰.	۰.	-		÷.	1			7	1	***	• -	٣	-	1	۰.	•	•	1	÷.	÷.	
		1			٠.	۰.	۰.	~	<u> </u>	÷.	1	-		?	~	**	• -	٣	٣	1	÷.	1	•	-		-	
	• •	1	٠.		٠.	۰.	۰.	~	<u>۰</u>	٠.	^	-	~	`	\rightarrow	↔	• •	-	•	۰.	÷.,	1		-	-	-	-
	•	•	•		•	•	•	~	~	۰.	^	-	~	<i>></i> -	\rightarrow	++	• •	٠	-	-	•		•	-		-	-
	•	•	•	•	•	•	•	~	~	٠.	^	-	<u> </u>	}	\rightarrow	\rightarrow	• •	•	-	۰.	•	•	•	-	•	•	•
• • •	•	•	•	•	•	•	•	•	•	۰.	~		-	}	\rightarrow	\rightarrow	• •	-	-	-	•	•	•	•	•	•	۰.
	•	•		•	•	*	•	•	•	۰.	~	-		}	\rightarrow	++		-	-	-		•			•	•	۰.
		•		•	•	-	•	•	~	•	-	\rightarrow) -	\rightarrow	,		-	-	-						•	۰.
						-		÷	-	ς.	-	\rightarrow	_		\rightarrow	, .		-	-								۰.
								÷ .	-				-		\rightarrow	→ →		-	-								۰.

A. Computed pressure and velocity

B. Pressure and velocity error

Figure 14: Solution and error (magnified) for test#83 $\alpha = 0$ $\beta = 46$ matching grids

	 $\rightarrow \rightarrow $	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	\rightarrow \rightarrow	$\overleftrightarrow{\rightarrow}$	$\rightarrow \rightarrow$	$\overleftrightarrow{\rightarrow}$	\rightarrow	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	ŚŚ	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	\rightarrow \rightarrow	$\stackrel{\cdot}{\rightarrow}\stackrel{\cdot}{\rightarrow}\stackrel{\cdot}{\rightarrow}$	ŚŚ	$\overleftrightarrow{\rightarrow}$	\rightarrow	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\stackrel{.}{\rightarrow}\stackrel{.}{\rightarrow}\stackrel{.}{\rightarrow}$	ŚŚ	\overleftrightarrow	\rightarrow	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\dot{\rightarrow}\dot{\rightarrow}\dot{\rightarrow}$	ŚŚ	$\dot{\rightarrow}\dot{\rightarrow}$	\rightarrow	$\rightarrow \rightarrow \rightarrow$			
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$		\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	\rightarrow \rightarrow		\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 <mark>→ → → → →</mark>	\rightarrow \rightarrow	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	\rightarrow	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 <mark>→ → →→→</mark>	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	$\rightarrow\rightarrow$	\rightarrow	$\rightarrow\rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	·		
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	·	• •	•
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	·		•
	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$	·		
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		-
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$			-
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		-
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		-
 	 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	\rightarrow	$\rightarrow \rightarrow$	$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$.		-

References

- [1] T. ARBOGAST, L. C. COWSAR, M. F. WHEELER, AND I. YOTOV, *Mixed finite element methods on non*matching multiblock grids, SIAM J. Numer. Anal., 37 (2000), pp. 1295–1315.
- [2] T. ARBOGAST, M. F. WHEELER, AND I. YOTOV, *Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences*, SIAM J. Numer. Anal., 34 (1997), pp. 828–852.
- [3] L C. COWSAR AND M. F. WHEELER, *Parallel domain decomposition method for mixed finite elements for elliptic partial differential equations*, in Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1991.
- [4] L C. COWSAR, C A. SAN SOUCIE, AND I YOTOV, Parcel v1.04 User Guide, May 1996.
- [5] R. GLOWINSKI AND M. F. WHEELER, *Domain decomposition and mixed finite element methods for elliptic problems*, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia, 1988, pp. 144–172.
- [6] I. YOTOV, *Mixed finite element methods for flow in porous media*, PhD Thesis, Rice University, Houston, Texas. TR96-09, Dept. Comp. Appl. Math., Rice University and TICAM report 96-23, University of Texas at Austin.