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Abstract

Conservation of mass, momentum, energy, helicity, and enstrophy in fluid flow

are important because these quantities organize a flow, and characterize change

in the flow’s structure over time. Thus, if a simulation of a turbulent flow is to

be qualitatively correct, these quantities should be conserved in the simulation.

However, such simulations are typically based on turbulence models whose conser-

vation properties are little explored and might be very different from those of the

Navier-Stokes equations.

We explore conservation laws and approximate conservation laws satisfied by

LES turbulence models. For the Leray, Leray deconvolution, Bardina, and N
th

1Partially supported by NSF Grants DMS 0207627 and a CRDF grant from the Uni-

versity of Pittsburgh
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order deconvolution models, we give exact or approximate laws for a model mass,

momentum, energy, enstrophy and helicity. Comparisons among the models are

drawn based on these laws.

keywords : Navier Stokes, LES, deconvolution, conservation laws, helicity, Leray

AMS subject classifications: 76D05, 76F65, 35L65.

1 Introduction

A major difficulty in turbulence modelling is selecting a model from among

the plethora of turbulence models in existence. It is rarely known á priori if

a particular model will perform well for a given set flow setting. However,

there are other ways to compare turbulence models. For example, deter-

mining the physical relevance of a model’s solution can give insight into a

model’s accuracy. It is well known that kinetic energy, (E =
∫

Ω
|u|2 dx), is

critical in the organization of a flow, and hence if a model is to accurately

predict turbulent flow, it must also accurately predict the flow’s kinetic en-

ergy. Enstrophy (Ens =
∫

Ω
|∇ × u|2 dx) and helicity (H =

∫

Ω
u · (∇× u)dx)

are rotational quantities which play critical roles in the organization of two

and three dimensional fluid flow, respectively. An accurate turbulence model

must also predict these quantities correctly. In this paper, we compare four

popular turbulence models based on the analysis of their treatment of kinetic

energy, enstrophy, and helicity.
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The most fundamental physical property of fluid flow with respect to

kinetic energy, enstrophy, and helicity is that each of these quantities is

conserved in inviscid flow. If these are not conserved in a turbulence model,

non-physical energy or viscosity can be present in a model, which naturally

can lead to non-physical solutions. Furthermore, conserving these quantities

for inviscid flow is essential for a model to cascade these quantities through

the wave numbers for viscous flows.

Conservation of kinetic energy in turbulence models has been extensively

studied for many years. Kinetic energy conservation in a model yields sta-

bility, is the key step in an existence theory, and is the first step in proving

a model’s energy cascades from large to small scales. The conservation of

enstrophy for two dimensional turbulence has also been extensively studied,

and models such as the classical Arakawa scheme have been developed that

preserve both energy and enstrophy for inviscid flow. Enstrophy is not con-

served in three dimensions because of vortex stretching, a quantity which

vanishes in two dimensions but not necessarily in three dimensions.

The most interesting of these conserved quantities is helicity, which is the

streamwise vorticity of a flow. Helicity has only recently become a topic of

research in fluid mechanics, as its fundamental importance in turbulent flow

was unknown until 1961, when Moreau discovered helicity’s inviscid invari-

ance. Helicity’s fundamental role in the organization of large structure in

turbulent fluid flow was recognized in 1969 by Moffatt, who revealed a topo-

logical interpretation of helicity in terms of the linkage of vortices. It has

been found that a joint cascade of energy and helicity exists for the decay of
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three dimensional turbulence [DP01],[CCE03],[CCEH03]. Thus the impor-

tance of helicity in fluid flow is evident, and most recently, Liu and Wang

developed a scheme for three dimensional fluid flow that exactly conserves

both energy and helicity[LW04]. Using a vorticity-stream function formula-

tion of the Navier-Stokes equations (NSE), they recast the nonlinear terms

as Jacobians, and associate with the Jacobians a trilinear form equipped

with a permutation identity. They then devise a scheme to preserve the

permutation identities, which leads to preserving energy and helicity. Their

computational results found this scheme was able to effectively eliminate

numerical viscosity.

Many turbulence models, by their construction, cannot exactly conserve

energy, helicity, or enstrophy. Large Eddy Simulation (LES) models of tur-

bulence, for example, solve for approximate averages of flows. These models

are often used where fine scale detail is not necessary to estimate quantities

of interest accurately.

The approach that an LES turbulence model takes to finding these “in

the large” solutions is to average the NSE spacially, which eliminates very

fine scale detail in the flow. To further illustrate this development, consider

the NSE in an L-periodic box Ω ⊂ R3 or R2.

ut + ∇ · (uu) + ∇p − ν∆u = f, ∇ · u = 0, (1)

u(0, x) = u0(x),

∫

Ω

p dx = 0, and u(x + Lei) = u(x). (2)

Note that from these equations, in absence of dissipation (ν = 0) and

external force (f = 0), one can derive for every t ≥ 0, the conservation of
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• mass: ∇ · u(x, t) = 0 ∀x ∈ Ω,

• momentum:
∫

Ω
u(x, t) =

∫

Ω
u0(x),

• energy: E(t) = 1
2

∫

Ω
|u(x, t)|2 = 1

2

∫

Ω
|u0(x)|2 = E(0),

• helicity: H(t) =
∫

Ω
u(t) · (∇× u(t)) =

∫

Ω
u0 · (∇× u0) = H(0),

• and enstrophy: Ens(t) = 1
2

∫

Ω
|∇u(t)|2 = 1

2

∫

Ω
|∇u0|

2 = Ens(0).

See, for example, [Fr95] or [GS98].

An LES model can be derived from the NSE as follows. Let φ denote a

spacial average of φ where the operator ( · ) is a differential filter (defined

precisely in Section 2). Then the spacially filtered NSE (SFNSE) are

ut + ∇ · uu + ∇p − ν∆u = f, ∇ · u = 0, (3)

u(0, x) = u0(x),

∫

Ω

p dx = 0, and u(x + Lei) = u(x) (4)

A closure problem arises in the SFNSE; the uu term must be modeled, and

each different way of modelling this term leads to a different LES model.

Since uu 6= ūū, not every LES model will conserve energy, helicity or en-

stophy. However, LES models can conserve naturally arising model quanti-

ties analogous to energy, helicity, or enstrophy. In the Navier-Stokes-alpha

(NSα) model studied by Foias, Holm and Titi in [FHT01], a model energy

and a model helicity were found:

ENSα =

∫

Ω

v · v̄, HNSα =

∫

Ω

v · (∇× v),
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where v is the model’s velocity solution and v̄ is a spacial average of the

solution. Both ENSα and HNSα are conserved under periodic boundary con-

ditions for inviscid flow [FHT01]. In the N th order Stolz-Adams approximate

deconvolution model (ADM) studied in [DE04], a model energy EADM , de-

fined in Section 2, was found to be conserved for inviscid flow under periodic

boundary conditions.

The work of [FHT01] motivated this paper, as it shows LES models can

conserve a model helicity as well as a model energy. For a turbulence model,

conservation of quantities analogous to the five conserved in the NSE is highly

desirable; it can provide a diagnostic check for stability and accuracy of a

model, and in practice, the presence of conserved quantities in a model allows

solutions to be monitorred for physical relevance of solutions. Furthermore,

as LES models are often used for modelling large scale rotational flows, such

as in geophysics or oceanic modelling, they should exhibit the conservation of

rotational quantities. Hence in this report we present a study of conservation

laws in four popular LES models to see if they also conserve quantities analo-

gous to those conserved in the NSE. The models we study are: the ADM, the

Leray model, the Bardina model, and a new alteration of the Leray model

proposed by A. Dunca and studied by Layton and Lewandowski [LL05] which

we will refer to as the Leray deconvolution model. Formal definitions of these

models will be given in Section 2.

The rest of this paper is arranged as follows. Section 2 will give notation

and preliminaries, Section 3 will present the conservation laws of the models,

and Section 4 presents comparisons and conclusions.
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2 Notation and Preliminaries

The domain Ω used throughout this article will be a box: Ω = (0, L)d, d =

2 or 3, with periodic boundary conditions. All results except for that of

enstrophy will hold for either d = 2 or d = 3, but conservation of enstrophy

(as explained above) is restricted in these models, as well as in the NSE, to

only two dimensions.

We shall assume that solutions are smooth enough to justify each manip-

ulation used.

The usual L2 norm and inner product will be denoted by ‖·‖ and (·, ·),

respectively:

(v, w) =

∫

Ω

v · w, ‖v‖ = (v, v)
1

2

Definition 2.1. (The differential filter · ) Given φ ∈ L2(Ω) and a filtering

radius δ, define the average of φ, φ, to be the unique L-periodic solution of

−δ2∆φ + φ = φ

This filtering operation will also be denoted by φ = A−1φ for ease of

notation. Note A = (−δ2∆ + I) is self adjoint.

Definition 2.2. (The approximate deconvolution operator GN) For a fixed

finite N , define the N th approximate deconvolution operator by

GNφ =

N
∑

n=0

(I − A−1)nφ

Note that since A is self adjoint, GN is also. GN was shown to be an

O(δ2N+2) approximate inverse to the filter operator in [DE05].
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Corollary 2.3. GN is compact, positive, and is an asymptotic inverse to the

filter A−1: for very smooth φ and as δ → 0,

φ = GNφ + (−1)(N+1)δ2N+2∆N+1A−(N+1)φ

The proof of Corollary 2.3 is found in ([DE05], Lemma 2.1).

Lemma 2.4. ‖·‖GN
defined by ‖v‖GN

= (v, GNv) is a norm on Ω equivalent

to the L2(Ω) norm, and (·, ·)GN
defined by (v, w)GN

= (v, GNw) is an inner

product on Ω.

Proof. See [BIL05].

2.1 The models considered

We have now provided enough preliminaries to define the four LES models

considered as well as the respective models’ energies, helicities and enstro-

phies.

Definition 2.5. The Stolz-Adams ADM:

The ADM is given by

vt + GNv · ∇GNv + ∇q − ν∆v = 0, ∇ · v = 0. (5)

If v is a solution to (5), then the energy, helicity, and enstrophy for the ADM

are defined to be

EADM = ‖v‖2
GN

+ δ2‖∇v‖GN
,

HADM = (v, ∇× v)GN
+

δ2

2

(

∇× v, (∇×)2v
)

GN

, and

EnsADM =
1

2
‖∇ × v‖2

GN
+

δ2

2
‖∆v‖GN

.
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Definition 2.6. The Leray/Leray-α model:

The Leray model is given by

vt + v · ∇v + ∇q − ν∆v = 0, ∇ · v = 0. (6)

If v is a solution to (6), then the energy, helicity, and enstrophy for the Leray

model are defined to be

ELeray =
1

2
‖v‖2,

HLeray = (v,∇× v), and

EnsLeray =
1

2
‖∇ × v‖2 +

δ2

2
‖∆v‖2.

Definition 2.7. The Bardina scale similarity model

The Bardina scale similarity model is given by

vt + v · ∇v + ∇q − ν∆v + ∇ · (vv − v̄v̄) = 0, ∇ · v = 0. (7)

If v is a solution to (7), then the energy, helicity, and enstrophy for the

Bardina model are defined to be

EBardina =
1

2
‖v‖2 +

δ2

2
‖∇ × v‖2,

HBardina = (v,∇× v) + δ2(∇× v, (∇×)2v), and

EnsBardina =
1

2
‖∇ × v‖2 +

δ2

2
‖∆v‖2.

Definition 2.8. (Leray-deconvolution Model)

The Leray devonvolution model is defined to be

vt + GNv · ∇v + ∇q − ν∆v = 0, ∇ · v = 0 (8)
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and if v is a solution to (8), then the energy, helicity, and enstrophy for the

Leray deconvolution model are defined to be

ELD =
1

2
‖v‖2,

HLD = (v,∇× v), and

EnsLD =
1

2
‖∇ × v‖2.

The next lemma gives four useful vector identities.

Lemma 2.9. For sufficiently smooth u,

u · ∇u =
1

2
∇u2 − u × (∇× u)

For sufficiently smooth, periodic u, v,

(u,∇× v) = (∇× u, v)

For sufficiently smooth, periodic u, v with v divergence free,

(u, ∆v) = −(∇× u,∇× v)

For suffiently smooth, periodic, two dimensional u

(u · ∇u, ∆u) = 0

For proofs, see, for example, [Fr95],[GS98].

3 Conservation Laws

We develop conservation laws for the models considered together for mo-

mentum, mass, energy, helicity and enstrophy. The conservation laws are
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presented for inviscid flow (i.e. ν = 0 or the Euler equations) and without

external force (f = 0). However, we leave ν arbitrarily non-negative until

the final step of each proof, as the case when dissipation is present is also be

of interest because it gives a clue about the decay of these quantities in the

presence of dissipation.

3.1 Momentum and Mass

Solutions to each of the models conserve momentum and mass. The con-

servation of a model mass comes directly from ∇ · v = 0. Conservation of

momentum follows for each model because each term in all the models, ex-

cept for the time derivative term, is a spatial derivative (the nonlinear terms

all can be expressed as spatial derivatives because of the commutation of

differential operators under periodic boundary conditions coupled with the

constraint that v be divergence free). Hence, integrating the first equation

of each model over Ω vanishes all terms except the time derivative. Hence if

v is a solution to any of the models, we have the relation

d

dt

∫

Ω

v = 0

for that model. Thus integrating this equation from 0 to T yields

∫

Ω

v(T, x) =

∫

Ω

v(0, x),

which establishes conservation of model momentum.
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3.2 Energy

The ADM, Leray and Leray deconvolution models exactly conserve a model

energy, whereas the Bardina model conserves a model energy only approxi-

mately (asymptotically as δ → 0). For smooth flows and as δ → 0, the energy

estimate for the Bardina model of three dimensional flow is O(δ2), and for

two dimensional flow is O(δ4). However, for flows with chaotic behavior or

when large δ is required, a blow up to infinity of EBardina cannot be ruled

out.

Theorem 3.1. The following energy conservation laws hold, ∀T > 0.

EADM(T ) = EADM(0)

ELeray(T ) = ELeray(0)

ELD(T ) = ELD(0)

The Bardina model satisfies

E3d
Bardina(T ) = E3d

Bardina(0) − δ2

∫ T

0

{(v · ∇v − v · v, ∆v) − (v · ∇v, ∆v)}dt

E2d
Bardina(T ) = E2d

Bardina(0) − δ4

∫ T

0

{(v · v, ∆2v)}dt

Proof. For the ADM, multiplying (5) by AGNv and integrating over Ω, we

obtain

(vt, AGNv)+ (GNv · ∇GNv, AGNv)+ (∇q, AGNv)− ν(∆v, AGNv) = 0. (9)

As the operator A is self adjoint, the nonlinear term in (9) vanishes.

(GNv · ∇GNv, AGNv) = (GNv · ∇GNv, GNv) = 0
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The pressure term also vanishes, which can be seen by applying Green’s The-

orem, and using commutativity of the differential operators under periodic

boundary conditions.

(∇q, AGNv) = −(q,∇ · AGNv) = (q, AGN(∇ · v)) = 0

The time derivative and dissipation terms do not vanish, and so we rewrite

(9) and simplify by decomposing A.

−δ2(vt, ∆GNv) + (vt, GNv) + δ2ν(∆v, ∆GNv) − ν(∆v, GNv) = 0

Green’s Theorem and the fact that ∆ and GNv commute under periodic

boundary conditions allows this to be written as

1

2

d

dt
‖v‖2

GN
+

δ2

2

d

dt
‖∇v‖2

GN
= −ν‖∇v‖2

GN
− δ2ν‖∆v‖2

GN
. (10)

Setting ν = 0 and integrating over time in (10) gives the stated result.

For Leray and Leray deconvolution energy, the stated laws follow immedi-

ately by simply multiplying each model by its respective solution, integrating

over the domain, setting ν = 0, and integrating over time.

The equality for the Bardina model requires a little more effort. We begin

by multiplying (7) by Av, where v is a solution of the Bardina model.

1

2

d

dt
‖v‖2 +

δ2

2

d

dt
‖∇v‖2 + (v · ∇v, Av) + (∇ · (vv − v̄v̄), Av) = 0

The first nonlinear term, after decomposing A, may be written as

(v · ∇v, Av) = −δ2(v · ∇v, ∆v) + (v · ∇v, v) = −δ2(v · ∇v, ∆v).

13



For the second nonlinear term, using the fact that A is self adjoint, differential

operators commute under periodic boundary conditions and Aφ = φ, we have

(∇ · vv, Av) = (A∇ · vv, v) = (∇ · vv, v) = 0

The third nonlinear term reduces by decomposing A, using the identity v =

Av, and decomposing A again.

(v · ∇v), Av) = −δ2(v · ∇v, ∆v) + (v · ∇v, v)

= −δ2(v · ∇v, ∆v) + (v · ∇v, Av)

= −δ2(v · ∇v, ∆v) − δ2(v · ∇v, ∆v)

Recombining the terms, setting ν = 0 and integrating over time, yields the

three dimensional Bardina energy result.

In two dimensions, this result will reduce further. By Lemma 2.9,

(v · ∇v, ∆v) = (v̄ · ∇v̄, ∆v̄) = 0.

The remaining extra term can be decomposed as

(v̄ · ∇v̄, ∆v) = (v̄ · ∇v̄, ∆Av̄) = −δ2(v̄ · ∇v̄, ∆2v̄).

Inserting these reductions into the three dimensional Bardina energy result

yields the two dimensional Bardina energy result.

3.3 Helicity

We now present the helicity conservation of the models. Only the ADM was

found to exactly conserve an model helicity. The other three models were
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found to only approximately (asymptotically as δ → 0) conserve a model

helicity. For each of these other three models, a blow up of helicity cannot

be ruled out in this analysis.

Theorem 3.2. The ADM conserves a model helicity: ∀T > 0.

HADM(T ) = HADM(0)

The remaining models satisfy, ∀T > 0,

HLeray(T ) = HLeray(0) + 2δ2

∫ T

0

((v · ∇v,∇∆v) + (v · ∇(∆v),∇× v)) dt

HBardina(T ) = HBardina(0) + 2δ2

∫ T

0

( (v · ∇v,∇× ∆v)

−(v · ∇v,∇× ∆v) − (v · ∇v,∇× ∆v) ) dt

HLD(T ) = HLD(0) + (−2)Nδ2N+2

∫ T

0

(∆N+1A−(N+1)v · ∇v,∇× v) dt

Proof. The proof for ADM helicity is similar to that of ADM energy. Multiply

(5) by (∇× AGNv), where v solves (5), and integrate over Ω.

(vt,∇× AGNv) + (GNv · ∇GNv,∇× AGNv)+

(∇q,∇× AGNv) − ν(∆v,∇× AGNv) = 0 (11)

As in the energy proof, the nonlinear term vanishes. To show this, we use the

commutativity of differential operators under periodic boundary conditions,
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the fact that A is self adjoint, and apply Lemma 2.9.

(GNv · ∇GNv,∇× AGNv)

= (GNv · ∇GNv,∇× GNv)

= (
1

2
∇((GNv)2),∇× GNv) − (GNv × (∇× GNv),∇× GNv)

=
1

2
(∇×∇((GNv)2), GNv) − 0

= 0

The pressure term also vanishes.

(∇q,∇× AGNv) = (∇× (∇q), AGNv) = 0

The time derivative term is simplified using commutativity of the differential

operators after decomposing A and applying Lemma 2.9.

(vt,∇× (−δ2∆ + I)GNv) = −δ2(vt,∇× ∆(GNv)) + (vt,∇× GNv)

= δ2((∇× v)t,∇× GN(∇× v)) + (vt,∇× GNv)

=
δ2

2

d

dt

(

∇× v, ∇×)2v
)

GN

+
1

2

d

dt
(v, ∇× v)GN

The dissipation term simplifies by decomposing A and applying Lemma 2.9.

− ν(∆v,∇× AGNv) = δ2ν(∆v,∇× (∆Gnv)) − ν(∆v,∇× GNv)

= δ2ν
(

(∇×)2v, (∇×)3v
)

GN

+ ν
(

∇v, (∇×)2v
)

GN

(12)

Recombining all the terms and setting ν = 0 gives

δ2

2

d

dt

(

∇× v, ∇×)2v
)

GN

+
1

2

d

dt
(v, ∇× v)GN

= 0 (13)
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Integrating over time give the stated conservation law.

For the Leray helicity relation, we multiply (6) by the curl of its solution,

(∇× v), and integrate over the domain. After simplifying, this yields

1

2

d

dt
(v,∇× v) = −ν(∇× v, (∇×)2v) − (v · ∇v,∇× v) (14)

Expand the nonlinear term by using the identity v = Av and simplifying.

(v · ∇v,∇× v) = (v · ∇v,∇× Av)

= −δ2(v · ∇v,∇× ∆v) + (v · ∇v,∇× v)

= −δ2(v · ∇v,∇× ∆v) − δ2(v · ∇(∆v),∇× v)

Recombing terms and setting ν = 0 gives

1

2

d

dt
= δ2(v · ∇v,∇× ∆v) + δ2(v · ∇(∆v),∇× v) (15)

Integrating over time will now give the stated Leray helicity conservation.

For Bardina, multiply (7) by (∇ × Av), where v solves (7). Perform-

ing analysis very similar to that in the ADM proof for the time derivative,

dissipation, and pressure terms reduces this to

1

2

d

dt
(v,∇× v) +

δ2

2

d

dt
(∇× v, (∇×)2v) = −ν(∇× v, (∇×)2v)

− (v · ∇v,∇× Av) − (∇ · vv,∇× Av) + (∇ · vv,∇× Av) (16)

The first nonlinear term is expanded by decomposing A and simplifying.

(v · ∇v,∇× Av) = −δ2(v · ∇v,∇× ∆v) + (v · ∇v,∇× v)

= −δ2(v · ∇v,∇× ∆v)
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The second nonlinear term vanishes by using the fact the A is self adjoint

and that differential operators commute under periodic boundary conditions.

(∇ · vv,∇× Av) = (A∇ · vv,∇× v) = (∇ · vv,∇× v) = 0 (17)

For the third nonlinear term, we decompose A and use the identity v = Av.

(∇× vv,∇× Av) = −δ2(v · ∇v,∇× ∆v) + (v · ∇v,∇× v)

= −δ2(v · ∇v,∇× ∆v) + (v · ∇v,∇× Av)

= −δ2(v · ∇v,∇× ∆v) − δ2(v · ∇v,∇× ∆v)

Recombining terms, setting ν = 0, and integrating over time gives the Bar-

dina helicity conservation.

For the Leray deconvolution model, the analysis is exactly the same as

the Leray model except for the nonlinear term, after multiplying (8) by the

curl of its solution. The nonlinear term can be written as

(GNv · ∇v,∇× v) = ((v − (−1)N+1δ2N+2∆N+1A−(N+1)v) · ∇v,∇× v). (18)

Thus we have the stated result, since (v · ∇v,∇× v) = 0.

3.4 Enstrophy (2d)

The ADM and Leray model exactly conserve 2d model enstrophy. As in

the helicity case, the other models have approximate laws which may not be

useful without restrictive assumptions on the size of higher derivatives and

the size of δ.
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Theorem 3.3. The ADM and Leray model conserve enstrophy in 2d: ∀T >

0.

EnsADM(T ) = EnsADM(0)

EnsLeray(T ) = EnsLeray(0)

The remaining models, in 2d, satisfy

EnsBard(T ) = EnsBard(0) + δ2

∫ T

0

(

v · ∇v, ∆2(v + v)) − (v · ∇v, ∆2v)
)

dt

EnsLD(T ) = EnsLD(0) + (−1)Nδ2N+2

∫ T

0

(∆N+1A−(N+1)v · ∇v, , ∆v) dt

Proof. To prove the (2d) ADM enstrophy relation, we multiply (5) by ∆AGNv

where v solves (5) and integrate over Ω.

(vt, ∆AGNv) + (GNv · ∇GNv, ∆AGNv) + (∇q, ∆AGNv)

− ν(∆v, ∆AGNv) = 0 (19)

The nonlinear term is handled differently than in any of the previous proofs,

and it is this term which makes the stated enstrophy relation hold only in

two dimensions (it does not necessarily vanish in 3d). We use that A is self

adjoint, A and ∆ commute, and that GNv is two dimensional.

(GNv · ∇GNv, ∆AGNv) = (GNv · ∇GNv, ∆GNv)

= 0

The pressure vanishes.

(∇q, ∆AGNv) = −(∇×∇q,∇× AGNv) = 0
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For the time derivative, decompose A, apply Lemma 2.9, and simplify.

(vt, ∆AGNv) = −δ2(vt, ∆∆GNv) + (vt, ∆GNv)

= −δ2((∆v)t, ∆v) − ((∇× v)t,∇× v)

= −
δ2

2

d

dt
‖∆v‖2

GN
−

1

2

d

dt
‖∇× v‖2

GN

The dissipation term also requires decomposition of A and Lemma 2.9.

− ν(∆v, ∆AGNv) = −δ2ν(∇×∆v,∇×∆GNv)+ ν(∇×∆GNv,∇×GNv)

= −δ2ν‖∇ × ∆v‖2
GN

− ν‖∆GNv‖GN
(20)

Recombining the terms and setting ν = 0 gives

1

2

d

dt
‖∇ × v‖2

GN
+

δ2

2

d

dt
‖∆v‖2

GN
= 0. (21)

Integrating over time now gives the stated ADM 2d enstrophy conservation

law.

For the Leray enstrophy result, multiply (6) by ∆v, where v solves (6),

integrate over the domain, and write v = Av.

((Av)t, ∆v) + (v · ∇(Av), ∆v) + (q, ∆v) − ν(∆(Av, ∆v) = 0

Next decompose each A, and simplify. The pressure term vanishes by apply-

ing Lemma 2.9.

(vt, ∆v) − δ2(∆vt, ∆v) − δ2(v · ∇(∆v), ∆v) + (v · ∇v, ∆v)

− νδ2‖∇ × (∆v)‖2 − ν‖∆v‖2 = 0
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Since both nonlinear terms vanish, this expression can be simplified and

rewritten as

1

2

d

dt
‖∇ × v‖2 + δ2‖∆v‖2 = −ν‖∆v‖2 − δ2‖∇ × ∆v‖2

Setting ν = 0 and integrating over time gives the result.

For the Leray-deconvolution enstrophy, multiply (8) by ∆v, where v is a

solution to (8), integrate over the domain, and simplify. This gives

1

2

d

dt
‖∇v‖2 = −ν‖∆v‖2 + (GNv · ∇v, ∆v) (22)

For the nonlinear term, we reduce by expanding the GNv term.

(GNv · ∇v, ∆v) = (v − (−1)N+1δ2N+2∆N+1A−(N+1)v · ∇v, ∆v) (23)

Applying Lemma 2.9, setting ν = 0 and integrating over time will then give

the desired result.

For the Bardina model, we multiply (7) by ∆Av, where v solves (7) and

integrate over the domain. We do the analysis term by term, except for the

pressure term, which will vanish in the same manner as in all other cases.

Rewrite the time derivative by decomposing A and simplifying.

(vt, ∆Av) = −δ2(vt, ∆∆v) + (vt, ∆v) = −
1

2

d

dt
‖∇ × v‖2 −

δ2

2

d

dt
‖∆v‖2 (24)

For the first nonlinear term, we decompose A.

(v · ∇v, ∆Av) = −δ2(v · ∇v, ∆∆v) + (v · ∇v, ∆v) = −δ2(v · ∇v, ∆∆v) (25)

The dissipation term also gets expanded by decomposing A.

−ν(∆v, ∆Av) = δ2ν(∆v, ∆∆v) − ν(∆v, ∆v) = −ν‖∆v‖2 − δ2ν‖∇ × ∆v‖2

(26)
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The second nonlinear term vanishes, using the fact the A is self adjoint, the

restriction to 2d, and Lemma 2.9.

(∇ · vv, ∆Av) = (∇ · vv, ∆v) = 0 (27)

The third nonlinear term takes the most work. First we decompose A, then

we use the identity v = Av and Lemma 2.9.

(∇ · vv, ∆Av) = −δ2(v · ∇v, ∆∆v) + (v · ∇v, ∆v)

= −δ2(v · ∇v, ∆∆v) − δ2(v · ∇v, ∆∆v) (28)

Recombining all the terms, setting ν = 0, and integrating over time gives the

Bardina result.

4 Conclusions

This report studied conservation laws in the Bardina, ADM, Leray and Leray

deconvolution models in an effort to establish which of these models had

conservation laws analogous to those of the Navier Stokes equations. All of

the models exactly conserved a model mass and model momentum. However,

only the ADM was found to exactly conserve a model helicity, and only the

ADM and Leray model exactly conserved a model enstrophy. The Bardina

model was the only model found to not conserve a model energy. This is

consistent with the stability problems reported in simulations of the Bardina

model.
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Nonconservation a rotational quantity such as helicity or enstrophy could

significantly affect the dynamics of a model’s prediction, causing serious in-

accuracy. Hence our results suggest that if one is modelling a flow with

rotation, then in three dimensions, the ADM appears to be the best of these

four models, and in two dimensions, the ADM and Leray models apprear to

be the best.
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