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Abstract

In this paper we present a non-symmetric interior penalty Galerkin formulation of
the two-phase flow equations. The wetting phase pressure and saturation equations
are decoupled and solved sequentially. Proposed adaptivity in space and time tech-
niques yield accurate and efficient solutions. Slope limiters valid on nonconforming
meshes are also presented. Numerical examples of homogeneous and heterogeneous
media are considered.
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1 Introduction

Accurate simulations of multiphase processes are essential in problems related
to the environment and the energy. There is a need for discretization methods
that perform well on very general unstructured grids. Standard methods such
as the finite difference methods, finite volumes and expanded mixed finite
element fail to capture the flow phenomena in the case of highly heteroge-
neous media with full permeability tensors. Recently, discontinuous Galerkin
(DG) methods have been applied to a variety of flow and transport problem
[13,14,1,15] and due to their flexibility, they have been shown to be competi-
tive to standard methods. Furthermore, DG methods allow for unstructured
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meshes and full tensor coefficients. Even though the discontinuous finite ele-
ment methods are more expensive than the finite difference methods, oil engi-
neers are willing to pay the price for accuracy and thus avoid costly mistakes
[12].

In this work, the pressure-saturation formulation (also known as the IM-
PES formulation) of the two-phase flow problem is discretized using the non-
symmetric interior penalty Galerkin method (NIPG). The unknowns are the
wetting phase pressure and saturation and the equations are solved sequen-
tially. One immediate advantage of the IMPES formulation is the fact that
the difficulty arising from the nonlinearity is removed by time-lagging the
coefficients.

The objective of this work is to investigate adaptive simulations in time and
space. We formulate error indicators for the spatial refinement and derefine-
ment techniques. We also present an algorithm that allows the time step to
vary during the simulation. One of the main difficulties is the development
of slope limiters that would handle meshes with hanging nodes. We propose
a limiting technique based on the one introduced by Durlofsky et al [6] for
conforming meshes. To our knowledge, there is little work in the literature on
applications of DG methods to two-phase flow. In [3], simulations were per-
formed on uniformly refined meshes and with a constant time step. In [2], DG
is applied to a total pressure-saturation formulation. In [11], DG and mixed fi-
nite elements are coupled. In [7], fully coupled DG formulations are considered
and in this case slope limiters are not needed even for high order of approxima-
tion. However, the solution of the fully coupled DG formulations require the
construction of a Jacobian matrix at each time step for the Newton-Raphson
method.

The plan of the paper is as follows. In the next section, we present the equa-
tions describing the two-phase flow problem. Section 3 contains the discrete
scheme and notation. The adaptive strategy in space and time, as well as the
slope limiting technique, are described in Section 4. Numerical examples are
given in Section 5. Some conclusions follow.

2 Model Problem

The mathematical formulation of two-phase flow in a porous medium Q in R?
consists of a coupled system of non-linear partial differential equations. The
phases considered here are a wetting phase (such as water) and a non-wetting
phase (such as oil). For each phase, the conservation of mass and a general-
ized Darcy’s law are obtained. Under the assumption of incompressibility, a
pressure-saturation formulation is derived, for which the primary variables are



the pressure and the saturation of the wetting phase denoted by p,, and s,:

-V ()‘tKpr) =V ()‘oKvPc)a (1)
O(h5s) Aotw o (e

The coefficients in Equations (1) and (2) are defined below:

e K is the permeability tensor and is spatially dependent; for heterogeneous
media, K is discontinuous.

e The coefficient ¢ denotes the porosity of the medium.

e )\, = )\, + ), is the total mobility, that is, the sum of the mobility of the
non-wetting phase and the mobility of the wetting phase. Mobilities are
functions that depend on the fluid viscosities y,, and u, and on the effective
wetting phase saturation s.. The effective saturation depends on the the
residual wetting phase and non-wetting phase saturations s,, and s,, as
follows:

Sw — Srw

Se = .
1.0 — Spoy — Srn

The mobilities are then given by the Brooks-Corey model [4]:
L4 1 2 2
Aw(Sw) = —S5,  Ao(Sw) = —(1 — 5¢)°(1 — s2).
o o
e The difference of the pressures of the two phases p. = p, — p,, is the cap-
illary pressure. From the Brooks-Corey model, it depends on the effective
saturation and a constant entry pressure py:

Pa

From this equation, we see that pl(s,) < 0 and we will write: Vp, =
—|pe| V5w

® u; = u,+u, is the total velocity, that is the sum of the two phases velocities.
Each phase velocity is given as:

pc(sw) =

us; = —KA\sVps, 6 =o,w.

Let n denote the outward normal to 0€2. We associate to Equations (1) and
(2) several boundary conditions, by first decomposing the boundary of the
porous medium 0f2 into disjoint parts:

89 - Fpl U Fpg - Fsl U FSQ, Fpl N Fpg - Fsl N FSQ - 0
The boundary conditions for (1) are of Dirichlet and Neumann type:

Pw = Pdir, ON Fpla (3)
K\Vp, -n=0, on I (4)



The boundary conditions for (2) are of Robin and Neumann type:

AoAw
(swut + K N p’cVSw) ‘M = Sipuy - N, on Ly, (5)
¢
AoAw
(-K 3 p.Vsy,)-n=0, on Tg. (6)
¢

3 Scheme

In this section, we first establish some notation for the temporal and spatial
discretization and we present our numerical scheme. Let 0 = ¢ty < ¢! < --- <
tN = T be a subdivision of the time interval (0,7). For any function v that
depends on time and space, we introduce the notation v* = v(¢,) for i =
0,...,N. We also define the time step At* = t*t! — ¢*,

The domain {2 is subdivided into triangular elements that form a mesh. Be-
cause of the refinements and derefinements, the mesh changes at every time
step. Let us denote by & = {E}g the mesh at time #**1. Let A’ be the max-
imum diameter of the elements. Let I'y; be the union of the open sets that
coincide with interior edges of elements of £. Let e denote a segment of Iy
shared by two triangles E* and E' of £ (k > 1); we associate with e, once and
for all, a unit normal vector n, directed from E* to E' and we define formally
the jump and average of a function 9 on e by:

0] = @)l — @la)ler 16} = 5@los)le + 5 (Wl

If e is adjacent to OS2, then the jump and the average of ¥ on e coincide
with the trace of ¥ on e and the normal vector n. coincides with the outward
normal n.

For each integer r, we define a finite element subspace of discontinuous piece-
wise polynomials:

D, (&) ={v:v|p € P(E) VE €&},

where P,(F) is a discrete space containing the set of polynomials of total de-
gree less than or equal to r on E. We will approximate the wetting phase
pressure and saturation by discontinuous polynomials of order r, and r, re-
spectively.

We now derive the variational formulation for the two-phase flow problem, by
considering the pressure equation (1) and the saturation equation (2) sepa-
rately.



3.1 The pressure equation

We rewrite (1) by defining x = —K\,Vp. = K\, |p.|Vs,:
-V - (KA\Vpy) = -V - x. (7)

Multiplying (7) by a test function v € D,,, and using Green’s formula on one
element E' yields:

/EK)\thw-Vv—/aE(K)\thw-nE)v:/Ex-Vv—/aE(X-nE)v,

where ng is the outward normal to E. Summing over all the elements in
& and using the fact that p, and x are smooth enough, namely [p,] = 0,
[KA:VDy - 1] =0 and [x - 1] = 0, we have

> / K\ Vp, -Vo— Y /{K)‘thw ne}v]

EESZ CEFZ uos2
+ > /{K)\tVU e} pw] = / x - Vv — X - Te[v].

ecTt Ee&} eerhan €

Making use of the boundary conditions (3) and (4), we obtain

Z/K)\thw Vo— Y /{K)‘thw'ne}[v]

Ee&} €€l Uy ¢
+ Z /{K)\tVU N} [pw| = Z /x Vo
e€Ti Ul Be€i
— Z /x ne[v] + Z /K)\th 1) Ddir- (8)
eEl"ZLJaQ e€l'p1

3.2 The saturation equation

Similarly, we define the auxiliary vector ¢ = 3= “u;. Then, (2) can be rewritten
as:

- )=-V-¢ ©)

As for the pressure equation, we multiply by a test function z € D,, over one
element in £, sum over all elements, and use the regularity of s,, and {. We



finally obtain after some algebraic manipulation:

/ ‘/"9” Vs - V2 — Vs - 10} 7]
Q2 Fe E’ eEFZUOQ
+ {K Ipc\Vz Ne}[se] = ¢-Vz— ¢ - mefz].
eezl“2 / E‘%‘ / ’ eEF‘ZUBQ/ §

Making use of the boundary conditions (5), (6) and the continuity of pressure,
we have:

/ stw P Vs, -Vz — Z /swut N2
« Be€i ecTs1
]
eEF’ eEI”
Z / ¢-Vz— Z /C Nz Z /smut N2
EE&'Z eGI‘Z uon e€ls;
-y / KMV 2 -1} py] Z/K)\ V2 ne(Pw — Pair)- (10)
EF‘ Fpl

8.8 The discrete scheme

We discretize the time derivative by finite difference, which yields the back-
ward Euler scheme. The initial approximations P2, SS, are simply obtained by
a L? projection of the initial data p,(t = 0) and s,(t = 0). Based on (8) and
(10), we formulate the following numerical method:

given (P.,S:) € D,, x D,,, find (P,t',Sit") € D, x D,, such that for all
(v,2) € Dy, X Dy,:

> / K\(SD) VP . vy — 3 / [K\(SL)VPH - n ) o]

Ee€i €€l UTp1
+ X [{ENS)Ven P = X [ xi-
e€lt UT'py EcEl
- ¥ /X ‘nfv]+ ) /K)\t (S5,) Vv - 1)pair, (11)
€T UoQ e€l'p1



and

EESZ

) Aw(S5)
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s

w)
i+1gyi o(S0)Aw(Su)| 1 giy g gitt
- Y [SiUine - Y /{K#m(s )| VSH -} [2]

e€ly1 V€ e€l't )\t S“’)
Ao(S2) M (Sh) | 4 ¢ i _ i1
+e§ . K )\t(quv) ‘pc(sw)‘vz ne}[Sw ]
¢
= - Stz + Z ¢V — Z C ‘melz] — Z sinU?% - 1
/Q At? Ee gz / " ecT U1 / e€l's1 /

=X [ RSz n Pl - Y [ BASL)VE P~ )
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(12)
where U?, ¢} and x are the approximates of u?, ¢ and x’.
2 Sh h ¢

U} = —K\(S.,) VP, — K\ (SL)(p.(S,) VS, + VP)
Xh = KXo(S,,)P(S,)| VS,

(
;_ Aw(Sh)
Ch = {U3}.
Ae(Sh)
Because of the discontinuous approximations, there are two values for the
functions x* and ¢* on an 1nter10r edge. These quantities are then replaced by

the upwind numerical fluxes Xh and ¢! 5 - Upwinding is done with respect to
the normal component of the average of the total velocity U,

Y| g if {UL} -m, >0,

Ve =0E*NOE', (k>1), V¢, o= _

From the derivations in Sections 3.1 and 3.2, we obtain the consistency of the
NIPG scheme.

Lemma 1 If (py, Sw) is a solution of (1), (2), then (py, Sw) is also a solution
of (11), (12).

3.4 Local Mass Balance

Let us fix an element E and a test function v € D, that vanishes outside of
E. For simplicity, we assume that E' is an interior element in 2. The pressure



equation (11) becomes:
/ KX\ (SL)VPIL . vy — /6 [K\(SL)VPH - nygly
E E
1 i i i i
ST 51 [

If in addition, we let v to be equal to one over E, we obtain the local mass
property satisfied by the approximations:

—/ {KX\(SL)VP - nglo — / X) - mgv =0,
OF OF
3.5 Slope Limiting

Approximations of high order yield overshoot and undershoot in the neigh-
borhood of the front of the injected phase. Slope limiters are the appropriate
tools for decreasing the local oscillations [5,9]. To our knowledge there is no
analysis available for slope limiters in 2D and 3D, even on a conforming mesh.
We are also not aware of limiters that would handle nonconforming meshes.
In this section, we propose a limiting technique that can handle meshes with
hanging nodes. This procedure is successfully tested for our two-phase flow
problem. We apply the limiting technique to the approximations P5' and
SiH after each time step ¢+,

In what follows, we say that one element F is active if it belongs to the mesh
&L i.e., if it is used in the computation of (11), (12). The element can become
inactive if it is refined and thus its children are created and activated. The
limiting process consists of two steps.

First, we loop through all the active elements starting from the oldest genera-
tion to the youngest (in general this would mean that the order is in decreasing
size). For example, Fig. 1 shows an example of five elements of different gener-
ation: if G denotes the generation of the elements Fy and F'{, then elements F5
and F, are of younger generation G + 1 and element E; is of older generation
G — 1. Thus, it is assumed that the limiting process has been already applied
to Ejs.

1) Neighbor averages: We first compute the average saturation for the element
to be limited and all neighboring elements as follows. Let Sy denote the av-
erage saturation over F, and let S; denote a function associated to each side
j € {1,2,3} of E,. For E, and the neighbors of the same generation, we have
the usual averaging operator:

So= A(Ey), S = A(E), where A(E)= ﬁ [ s

To compute S, corresponding to the side 2 of Ey and the element E, that is



of older generation, we first locate the barycenter by of an imaginary child C,
of the same generation of E, (see dashed lines in Fig. 1). We then set

So = Si g, (b2)

We note that S, = A(C5). The smaller elements Ej5 and Ej belong to a parent
E (see dotted lines in Fig. 1). If we denote by FZ,..., FF the children of F,
we can write

N .
S3 = ZZB(FIE)’
=1

where the function B is defined recursively as (using the notation F}¥ for the
[™ child of E):

|—]§|fESf;J, if E active,

B(E) =
i Y, B(FF), otherwise.

If the edge j is a boundary edge, then S; is defined according to the boundary
conditions.

Sj = Sin On Psla Sj = S() on PSQ.

2) Test: We then compute the saturation Si|g,(m;) evaluated at the mid-
point m; of each edge j and we check that this value is between S; and Sj.
We stop here if the test is successful, otherwise we continue to step 3.

3) Construction of three linears: Based on the technique by Durlofsky et al
[6], we construct three linears using the points b; and the averages S;. For
instance, if we write the linears as £;(z,y) = a} + o]z + a}y, for j € {1,2,3},
they are uniquely determined by

L;(by) = Sy and L;(b) = S, for I # j.

We then rank the linears by decreasing \/(a})2 + (a})? and check that for the
values of the linears evaluated at the midpoint my, £;(my), is between S; and
So for 1 > 1 > 3. If none of the constructed linears satisfy the test then the
slope is reduced to 0.

Second, we loop through all elements and check that their slopes are not too

large in the euclidean norm. If it is larger than a cut-off value (set up by user),
we scale it by the ratio cut-off/norm.

4 Adaptivity strategy

In this section, we define the error indicators and present the adaptivity in
space and time techniques.



4.1  FError Indicators

The error indicators are based on a posteriori error estimates obtained for
linear parabolic problems [8] We define the following quantities:

bt A(SA(S5) i AlS5)
— _ 7 (gl _gi A K w) W\ w i i) _ . w
Rvol At (Sw Sw) +V /\t(quu) |pc(Sw)‘VSw \Y )\t(Szzu)
Rel:[SzJ—l—l]’
Al SDMSE) | i o e o
R = [K2EWMEW) iy Giv ) 4 Uy - msir),

A(S5)
4 o A (SE) Ay (S
Rei = snUl-n—S'U n+ K (Sw)u(Sy)

A (SE)
A (S (SE) | ) o -
W AW SHY|VSit . n.

Pe(SL,) VS, - m,

ResZ =K
Then the error indicator ng computed on each element F is

e = (h4E||Rv01||§,E + > (hellRealls, + (he + Dl Rerllg,)
e€COE\OQ

1/2
+ Y BIRalio+ X RIRali,)

ecOENT g1 ecOENT 42

where hg is the diameter of the element E and h, = max(hg,, hg,) if the edge
e is shared by elements Ej and E;. Note that the notation OF \ 02 means
that the edges are interior edges only.

4.2 Adaptive mesh refinement technique

Let us assume that the solution P! and S, have been obtained at the i time
step. We compute the error indicator ng for each active element E. Then,
we first refine the appropriate elements and second apply the derefinement
technique.

Refinement: We refine each element whose error indicator is greater than a
threshold value ng. Note that this threshold value can be a percentage of the
maximum of the error indicators. Fig. 2 show how one element (also called
parent) is refined into four smaller elements (also called children).
Derefinement: We consider a parent element for derefinement if (A) all of
its children are active, (B) the error indicator of each of its children is less
than a threshold value 7p, and (C) the element was not refined during the
current time step. For each parent element meeting these requirements, an L?
projection is performed to retrieve the degrees of freedom of the parent. Before

10
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actually doing the derefinement, we check that the parent error indicator is
less than ng. If it is, we then derefine. If it is not, we do not derefine.

4.8 Adaptive time stepping technique

For time strategy, we allow the time step to vary during the simulation. We
uniformly divide the simulation interval (0,T) into whole steps of length At'.
At the start of each whole step, we try to compute the saturation for time
t' + At', where t' is the current time. If the resulting saturation function is
satisfactory, then we record it, calculate the new pressure function, and pro-
ceed to the next whole step.

On the other hand, if the resulting saturation function is unsatisfactory, then
we discard it and subdivide the whole step into two half steps. We then com-
pute the saturation for the time at which the first half step ends. If the result
is acceptable, we proceed to the second half step, and if its result is also
acceptable, then we continue on to the next whole step. If one of the half
steps does not yield satisfactory results, then we divide it into quarter steps,
proceeding in the same manner as before, with the exception that we accept
the results of the quarter steps regardless of how satisfactory they are. For
the numerical simulations in this paper, a resulting saturation function was
deemed unsatisfactory if the average saturation in any element exceeded the
physically permissible range by more than 0.01; otherwise, it was considered
satisfactory.

The main purpose of this time stepping technique is to speed up computation
without losing accuracy, thus to increase the efficiency of the method.

5 Numerical examples

In the following simulations, we assume that the fluid and medium properties
are:

to = 0.002kg/(ms), p, = 0.0005kg/(ms), ¢ =0.2,
55(t=0)=0.2, pu,(t=0)=345x10 °Pa,
Sin = 0.95, s, =0.15, s, =0,
pg =5 x 10°Pa.

The orders of approximation are discontinuous piecewise linears for the satura-
tion and discontinuous piecewise quadratics for the pressure. For the adaptive
refinements and derefinements, we chose np = 1 x 107! and np = (1/3)n&.
The well-known five-spot problem on homogeneous and heterogeneous me-
dia is first considered, then simulations with highly varying permeability are

11



presented.

5.1 Five-spot on homogeneous medium

The permeability tensor is K = 10~Im?, where I is the identity matrix.
Fig. 3 shows the coarse mesh and the domain 2 embedded into the square
(=300, 300)2. Four injection wells are located at each corner of the domain;
the well bore corresponds to the boundary I'y; and part of I'y;, where we
assume that pg;, = 3.45 x 10°Pa. A production well is located in the interior
of the domain; the well bore corresponds to the remainder of I'y; and the
pressure is set pgi; = 2.41 x 10°Pa. The flow of the phases is thus driven by
the gradient of pressure from the injection wells to the production wells.

The simulation is run for 52.5 days with a time step varying between 0.001875
days and 0.0075 days. Three dimensional views of contours of wetting phase
pressure and saturation at selected times are shown in Fig.4 and Fig. 5.

In order to better analyze this example and because of the symmetry of the
problem, we re-run the simulations on one quarter of the domain; this yields
the quarter-five spot problem shown in Fig. 6. The injection well is at the left
bottom corner whereas the production well is at the right top corner. The
domain is now embedded into (0, 300)2.

The contours of wetting phase pressure and saturation at selected times are
shown in Fig.7 and Fig. 8. The locally refined and derefined meshes are also
given on these figures. One can conclude that the proposed error indicators
capture well the location of the front. As expected, the mesh is more refined in
the neighborhood of the saturation front. It also appears that the mesh stays
refined at the neighborhood of the injection well bore.

We compare the adaptive results with those obtained on the coarse mesh re-
fined uniformly three times. The pressure and saturation contours are given in
Fig. 9 and Fig. 10. Here, the time step varies between 0.015 days and 0.00375
days. The contours are similar to the adaptive ones. For better comparison, we
show the pressure and saturation profiles along the diagonal {(z,y) : z = y}
(see Fig. 11). Using adaptive refinement and derefinement decreases signifi-
cantly the cost of the computation, as shown in Table 1. The columns for
AMR correspond to adatively refined meshes, and the columns for UNI cor-
respond to uniformly refined meshes.

12



5.2 Five spot on heterogeneous medium

This simulation is identical to the one above except for the permeability tensor.
Here, K is discontinuous and is equal to 1073m?I in a small subdomain. In
the rest of domain, K = 10~"Im?. We present the contours of the pressure
and saturation at different times in Fig. 12 and Fig 13. Clearly, the region
of low permeability is not invaded by the injected wetting phase. This shows
that the scheme has very little numerical diffusion.

5.3  Highly varying permeability field

We consider a square domain (0, 400)? with varying permeability as shown in
Fig. 14. The permeability is 107''Im? except in several small regions where it
is 10° times smaller (see [10]). The simulation is run for 70 days. The time step
varies between 2.1875x 1072 days and 8.75x 1072 days. The vertical boundaries
correspond to I',; where the same pressure pgir as in the previous examples is
imposed. The left vertical boundary corresponds to I'y;. Saturation contours
on adaptively refined meshes are shown in Fig. 15. The degrees of freedom
are 8232,13281,17070 and 19131 for the respective times 17.5,35,52.5 and
70 days. The figures show clearly that there is very little numerical diffusion.
For comparison, we show the contours obtained on a uniform mesh, which
corresponds to 38400 degrees of freedom (see Fig. 16). The coarse mesh has
been refined twice, and this produces a computational time of 24 hours on a
single processor. For another level of refinement, the simulation would run for
one week.

6 Conclusions

This paper present adaptivity techniques in space and time. We show that
the adaptive simulations are more efficient than the simulations obtained on
uniform meshes and with constant time step. The proposed DG scheme yields
very little numerical diffusion. Finally, we define new slope limiters that are
robust on nonconforming meshes.
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Fig. 1. Slope limiting on non-conforming meshes.

TN

Fig. 2. Refinement of a triangular element.

Table 1
Number of degrees of freedom for adaptive and non-adaptive simulations.

DOFS press DOFS sat
t (days) AMR UNI AMR UNI
7.5 2538 25344 1269 12672
15 2412 25344 1206 12672
22.5 2142 25344 1071 12672
30 2466 25344 1233 12672
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Fig. 3. Five-well example: coarse mesh at initial time and adaptive meshes obtained
at 15 and 45 days.

16



3.4E+06 3.4E+06
3.3E+06 3.3E+06
3.2E+06 3.2E+06
3.1E+06 3.1E+06
3E+06 3E+06

2.9E+06 2.9E+06
2.8E+06 2.8E+06
2.7E+06 2.7E+06
2.6E+06 2.6E+06
2.5E+06 2.5E+06
3.4E+06 3.4E+06
3.3E+06 3.3E+06
3.2E+06 3.2E+06
3.1E+06 3.1E+06
3E+06 3E+06

2.9E+06 2.9E+06
2.8E+06 2.8E+06
2.7E+06 2.7E+06
2.6E+06 2.6E+06
2.5E+06 2.5E+06

Fig. 4. Five-well example: three-dimensional pressure contours at 15, 30, 45 and
52.5 days.
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Fig. 5. Five-well example: three-dimensional saturation contours at 15, 30, 45 and
52.5 days.
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Fig. 7. Two-dimensional pressure contours at 7.5, 15, 22.5 and 30 days.
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Fig. 8. Two-dimensional saturation contours at 7.5, 15, 22.5 and 30 days.
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Fig. 9. Two-dimensional pressure contours at 7.5, 15, 22.5 and 30 days obtained on

uniformly refined meshes.
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Fig. 10. Two-dimensional saturation contours at 7.5, 15, 22.5 and 30 days obtained
on uniformly refined meshes.
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Fig. 11. Saturation (left) and pressure (right) fronts along the diagonal line x = y at
7.5, 15, 22.5 and 30 days. The solid line corresponds to a uniform mesh refinement
(h3) and the dashed line to an adaptively refined mesh
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Fig. 12. Two-dimensional pressure contours

inhomogeneous medium.
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Fig. 13. Two-dimensional saturation contours at 7.5, 15, 22.5 and 30 days on an

inhomogeneous medium.
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Fig. 14. Permeability field and coarse mesh: permeability is 10~!! in white regions
and 10716 elsewhere.
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Fig. 15. Two-dimensional saturation contours at 17.5, 35, 52.5 and 70 days.
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Fig. 16. Two-dimensional saturation
uniform meshes.
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