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Abstract

This paper gives a comprehensive numerical analysis of a multiscale method

for equilibrium Navier Stokes equations. The method includes pressure reg-

ularization and eddy viscosity stabilizations both acting only on the finest

scales. This method allows for equal order velocity-pressure spaces as well as

the linear constant pair and the usual (Pk, Pk−1) pair. We show the method is

optimal in a natural energy norm for all of these pairs of spaces, and provide

guidance in choosing the regularization parameters.

keywords : Navier Stokes, multiscale, subgrid eddy viscosity, pressure regu-

larization, equal order interpolations
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1 Introduction

Many practical simulations of fluid flow are underresolved: significant veloc-

ity and pressure scales can be lost on a computationally feasible mesh. Thus,

one central question in Computational Fluid Dynamics is how to account for

the effects of the unresolved velocity and pressure scales upon the resolved

ones in a discretization. This is the motivation behind turbulence modeling,

Large Eddy Simulation, and recent important algorithmic advances such as

the Variational Multiscale Method of Hughes [1],[2] and the Dynamic Multi-

level Methods of Temam [3].

One recent proposal to accomplish this reduction was to solve the non-

discretized Navier-Stokes equations using the constraint that the velocity and

pressure could be resolved on a given mesh as a model reduction. Hence, a

new problem can be formulated using two Lagrange multipliers [4], and using

penalizations, new eddy viscosity and new pressure regularization algorithms

arise. This leads to a method with (naturally arising from this approach to

model reduction) multiscale regularizations for both the incompressibility

constraint and the nonlinear convective term, where the regularizations are

used only on the finest resolved scales. Similar multiscale regularizations to

the fine scale eddy viscosity regularization used here have been previously

studied in [5],[6],and [7], and hence some of the analysis tools used in this

report will be quite similar.

An analysis of this new method for the linear Stokes problem was per-

formed in [4], with interesting results. The method is shown to be stable
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under a different and less restrictive inf-sup condition than typically used.

More specifically, the infimum is taken over all elements in the coarse pressure

mesh, but the supremum is taken over all velocity elements in the fine veloc-

ity mesh. Using this different inf-sup condition, it was shown that this new

method is also optimal for linear-linear and linear-constant velocity-pressure

element choices.

The pressure regularizations of the method would be even more beneficial

in the nonlinear Navier Stokes equations. The ubiquitious need for “one more

mesh” when solving flow problems often forces the use of low order elements

in order to get results in a reasonable turn-around time or within storage

limitations. The velocity regularization of the method is attractive for flow

problems for the additional reason that it does not create non-physical energy

dissipation in the large scale velocity scales.

The mathematical development of this method has only been performed

for the Stokes problem [4]; the goal of this report is to give a precise analysis

for the nonlinear Navier-Stokes equations. In particular, we show that the

method applied to the NSE is stable and optimally accurate for linear-linear

and linear-constant choices of velocity-pressure elements.

Consider the equilibrium Navier Stokes equations on a polygonal domain

Ω ⊂ Rd(d = 2 or 3).

−ν∆u + u · ∇u + ∇p = f in Ω (1)

∇ · u = 0 in Ω (2)

u = 0 on ∂Ω (3)
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∫

Ω

p dx = 0 (4)

Let X = H1
0 (Ω)d, and Q = L2

0(Ω). Then (1)-(4) can be written in its usual

variational form as: Find u ∈ X, v ∈ Q satisfying

(u · ∇u, v) + ν(∇u,∇v) − (p,∇ · v) = (f, v) ∀v ∈ X (5)

(∇ · u, q) = 0 ∀q ∈ Q (6)

Pick finite dimensional subspaces X ⊂ X, Q ⊂ Q, and solve (5)-(6) sub-

ject to the constraint that u ∈ X, p ∈ Q. This is exactly the assumption that

the pressure and velocity can be resolved. Decompose X and Q by

X = X
⊕

X ′ Q = Q
⊕

Q′

Decompose the space of velocity gradients L := {∇v | v ∈ X} into

L := {∇v | v ∈ X} L′ := L⊥ L = L
⊕

L′

Associated with these spaces are the following orthogonal projectors:

P : L → L PQ : Q → Q P ′ : L → L′ P ′

Q : Q → Q′

Then for q ∈ Q,

q = PQ(q) + P ′

Q(q) := q + q′,

and similarly for ∇v ∈ L,

∇v = P (∇v) + P ′(∇v) := ∇v + (∇v)′
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Formulating this method with Lagrange multipliers and then eliminating the

multipliers via penalty methods leads to the following reformulation of (5)-

(6): Find u ∈ X, v ∈ Q satisfying

(u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) + ε1((∇u)′, (∇v)′) = (f, v) ∀v ∈ X (7)

(q,∇ · u) + ε−1
2 (p′, q′) = 0 ∀q ∈ Q (8)

To obtain the discrete problem, choose velocity-pressure spaces to be the

(Pk, Pk) or the (Pk, Pk−1) pair (k ≥ 1), where Pk denotes the space of polyno-

mials of degree less than or equal to k. Choose meshes TH(Ω), Th(Ω), H ≥ h

and for j = k or j = k − 1, define

XH = {vεC0(Ω) : v|∆εPk(∆) ∀∆εTH(Ω)} ∩ H1
0 (Ω)

Xh = {vεC0(Ω) : v|∆εPk(∆) ∀∆εTh(Ω)} ∩ H1
0 (Ω)

Q
j
H = {q : q|∆εPj(∆) ∀∆εTH(Ω)} ∩ L2

0(Ω)

Q
j
h = {q : q|∆εPj(∆) ∀∆εTh(Ω)} ∩ L2

0(Ω)

For notational convenience, we will denote PQH
(qh) by qH , and (I−PQH

)(qh)

by q′h This leads finally to the discretization: Find (uh, ph) ∈ (Xh, Qh)

satisfying

(uh · ∇uh, vh) + ν(∇uh,∇vh) − (ph,∇ · vh)

+ ε1((∇uh)
′, (∇vh)

′) = (f, vh) ∀vhεXh (9)

(∇ · uh, qh) + ε−1
2 (p′h, q

′

h) = 0 ∀qhεQh (10)
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The method’s regularizations can be considered similar to recent work in [8],

where a pressure stabilization dependes on the difference between a finite

element pressure solution and its average over a small “patch”.

We now present the main result of this report: If velocity and pressure

spaces satisfy a less restrictive discrete inf-sup condition (described above,

and presented in detail in Section 2), and for usual choices of ε1, ε2, ν, a

solution to (9)-(10) exists. Furthermore, if we assume a global uniqueness

condition Mν−2‖f‖∗ < 1, where ‖·‖∗ is the norm of the dual space of X and

M is a constant (defined in Section 2) depending only on Ω, there holds a

quasi-optimal error bound for the difference between the solution to (9)-(10)

and the solution to (5)-(6). This bound is given in the naturally arising energy

norm for the method, ‖(·, ·)‖ε, which will be carefully defined in Section 2.

Theorem 1.1. Given finite element spaces (Xh, QH) satisfying the different

discrete inf-sup condition (12), 0 < ε2, ε1, ν ≤ 1, then there exists a solu-

tion (uh, ph) to (9),(10). If (u,p) satisfies (5)-(6) and we assume a global

uniqueness condition M(Ω)ν−2‖f‖∗ < 1, then

‖(u − uh, p − ph)‖
2
ε ≤ inf

vh∈Xh

inf
qh∈Qh

C(βh, ν, α){ε1‖(∇u)′‖2+

ε−1
2 ‖p′‖2 + ‖(u − vh, p − qh)‖

2
ε} (11)

Proof. (See Section 4 for proof of this theorem)

In Section 3, we use this theorem to show that the method is optimally

accurate for both the (Pk, Pk) and (Pk, Pk−1) pairs (k ≥ 1), when Th is gen-
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erated by refinements (refinements which depend on the choice of elements)

of TH . The proof is then given in Section 4.

2 Notation and Preliminaries

Theorem 1.1 assumes the following discrete inf-sup condition with the in-

fimum taken over the coarse pressure scales and the supremum over the

fine velocity scales. It is less restrictive than the usual inf-sup condition,

and when coupled with properly chosen meshes (examples given in Section

3) allows the method to be stable with velocity-pressure element choices of

linear-linear and linear-constant.

inf
qH∈QH

sup
vh∈Xh

(qH ,∇ · vh)

‖qh‖‖∇vh‖
≥ βh > 0 (12)

Next we define the naturally occurring energy norm ‖(·, ·)‖ : (X, Q) → R,

by

‖(v, q)‖2
ε := ν ‖∇v‖2 + ε1 ‖(∇v)′‖

2
+ ε−1

2 ‖q′‖
2
+ ‖q‖2

The following well known lemma (whose proof we include for complete-

ness) gives the existence of a constant M which is used in the assumed

global uniqueness condition and when bounding the trilinear forms that oc-

cur throughout the proof.

Lemma 2.1. There is a constant M = M(Ω) such that ∀ u, v, w ∈ X,

|(u · ∇v, w)| ≤ M‖∇u‖‖∇v‖‖∇w‖ (13)
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Proof. By Holder,

|(u · ∇v, w)| ≤ M‖u‖Lp‖∇v‖‖w‖Lr ,
1

p
+

1

r
=

1

2

Then by the Sobolev embedding theorem, ‖u‖L4 ≤ C‖∇u‖ in 2d and 3d.

Thus the result follows by picking p = r = 4.

Another assumption of Theorem 1.1 was a global uniqueness condition on

the data, i.e. that α
def
:= Mν−2‖f‖∗ < 1. This combination of terms appears

often in the proof the Theorem, and hence it will be convenient to replace it

with a single letter. Thus the assumed global uniqueness condition can now

be restated as α < 1.

Lastly, recall that we shall denote the fine scales of the velocity gradient

by

(∇v)′ = (I − PLH
)(∇v)

and the notation for the splitting of the pressure into its parts on and off of

the large scales by

q = PQH
(q) + (I − PQH

)(q) = qH + q′

3 Application of the Theorem

To provide analytic guidance in choosing spaces and regularization parame-

ters, it is necessary to consider specific examples of velocity-pressure spaces.

This first corollary shows that linear-linear elements can be used, and with

this choice the method is optimal in the ε norm.
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Figure 1: Two possible refinement of TH which allow linear-linear elements

on (Xh, Qh) to satisfy the less restrictive discrete inf-sup condition. For the

first refinement example, made from the red and green refinements of [9], the

minimum angle for a triangle in the fine mesh will be either the minimum

angle or half of the maximum angle of its parent.
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Corollary 3.1. (Linear-Linear Elements) Suppose velocity-pressure elements

are chosen to be the linear-linear pair (P1, P1), and 0 < ε1, ε2, ν ≤ 1. If Th

is any refinement of TH which generates an interior basis function for each

element which vanishes on the element’s boundary, (examples of such refine-

ments are shown in figure 1) then (Xh, QH) satisfies (12), and

‖(u − uh, p − ph)‖
2
ε ≤ C(βh, α, |u|22, |p|

2
2, ν){ε1h

2 + ε−1
2 h4 + h2 + h4} (14)

Proof. The fact that (Xh, QH) satisfies the discrete inf-sup follows, e.g., by

the same proof as in [10] since the interior basis function can replace the

cubic bubble function.

For the error bound, note that ‖p′‖ ≤ CH2 |p|2, and ‖(∇u)′‖ ≤ CH |u|2.

Then by Theorem 1.1,

‖(u − uh, p − ph)‖
2
ε ≤ C(βh, α, ν){ε1H

2 + ε−1
2 H4

+ νh2|u|22 + ε1h
2|u|22 + ε−1

2 h4|p|22 + h4|p|22} (15)

and taking H = 2h gives the result.

The error for the linear-linear pair is O(h) provided ε2 ≥ h2. Since the

velocity space was chosen to be P1, the error in the velocity gradient arising

from the discretization is O(h). Hence the O(h) error in the method is

optimal.

We next consider the (Pk, Pk−1) pair. It is known [11] that for k ≥ 2,

(XH , QH) satisfies the discrete inf-sup condition on a mesh TH , and so if

Th ⊂ TH and Xh ⊂ XH , then (Xh, QH) satisfies (12). If k = 1 and Th
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is generated by one uniform mesh refinement of TH , it is known [12] that

(Xh, QH) satisfies (12).

Corollary 3.2. (Higher Order Elements) Consider velocity-pressure elements

to be (Pk, Pk−1) for k ≥ 1, with Th being one uniform refinement of TH . The

(Xh, QH) satisfies (12), and

‖(u − uh, p − ph)‖
2
ε ≤ C(βh, α, ν, |u|k+1 , |p|k){ε1h

2k + h2k + ε−1
2 h2k}

Hence the method is O(hk) when ε2 = O(1).

Proof. From Theorem 1.1 and the usual seminorm bounds, we get

‖(u − uh, p − ph)‖
2
ε ≤ C(βh, α, ν){ε1H

2k |u|k+1 + ε−1
2 H2k |p|k

+ h2k(|u|k+1 + |p|k) + ε1h
2k |u|k+1 + ε−1

2 h2k |p|k} (16)

Taking H = 2h gives the result.

We also consider the case of velocity-pressure elements (Pk, Pk) for k ≥ 2.

From [10], it is known that velocity-pressure spaces on a triangulation chosen

to be the same degree polynomial (degree k ≥ 1) spaces will satisfy the dis-

crete inf-sup condition if the velocity space is enriched with the degree (k+2)

bubble functions (or, equivalently, linearly independent basis functions which

vanish on the boundary) which provide k(k+1)
2

degrees of freedom. Since n

uniform mesh refinements (dividing a triangle into 4 congruent triangles)

generate (2n−1)(2n−1−1) linearly independent basis functions which vanish

on the element’s boundary, generating Th by enough uniform refinements of

TH (so that the degrees of freedom generated is at least as many as needed)
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will guarantee (Xh, QH) satisfies the discrete inf sup condition. More specif-

ically, for a selected polynomial degree k, n must be chosen large enough to

satisfy

(2n − 1)(2n−1 − 1) ≥
k(k + 1)

2

Note that the degrees of freedom needed increases quadratically with the

polynomial degree, and the degrees of freedom generated by refinements in-

creases exponentially. Thus for reasonable k, the number n of refinements

needed will be small.

Corollary 3.3. (Higher Order Equal Order Elements) Suppose velocity-pressure

elements are chosen to be (Pk, Pk) for k ≥ 2, and Th to be enough (as defined

above) uniform refinements of TH so that (Xh, QH) satisfies (12). Then by

Theorem 1.1,

‖(u − uh, p − ph)‖
2
ε ≤ C(βh, α, ν, |u|2k+1, |p|

2
k+1){ε1H

2k

+ ε−1
2 H2k+2 + h2k + h2k+2 + ε1h2k + ε−1

2 h2k+2} (17)

Taking H = 2nh, we see that the method is O(hk) (optimal) provided

ε1 ≤ 2−2kn and ε2 ≥ 2n(2k+2)h2.

4 Proof of Theorem 1.1

We break the proof into several steps: development of the error equations,

preliminary lemmas, existence of a solution, analysis of the linear terms in

the error equations, and finally analysis of the nonlinear terms in the error
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equations. We begin the proof by subtracting (9)-(10) from (5)-(6) to obtain

the error equations:

(u · ∇u − uh · ∇uh, vh) + ν(∇(u − uh),∇vh) − (p − ph,∇ · vh)

+ ε1(∇(u − uh)
′, (∇vh)

′) = ε1((∇u)′, (∇vh)
′) ∀vh ∈ Xh (18)

(∇ · (u − uh), qh) + ε−1
2 ((p − ph)

′, q′h) = ε−1
2 (p′, q′h) ∀qhεQh (19)

These equations will be used frequently throughout the rest of this report.

4.1 Preliminary bounds

To keep the proof as clean as possible, it will be helpful to first present the

following bounds frequently used in the proof.

Lemma 4.1. We have the following inequalities

ν

2
‖∇uh‖

2 + ε−1
2 ‖p′h‖

2
+ ε1 ‖(∇uh)

′‖
2
≤

1

2ν
‖f‖2

∗
(20)

‖∇uh‖ ≤ ν−1‖f‖∗ (21)

‖∇u‖ ≤ ν−1 ‖f‖
∗

(22)

Proof. For the first inequality, let vh = uh and qh = ph in (9)-(10) and add

the equations. This gives

ν ‖∇uh‖
2 + ε−1

2 ‖p′h‖
2
+ ε1 ‖(∇uh)

′‖
2

= (f, uh) (23)
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Since (f, uh) ≤ ‖f‖
∗
‖∇uh‖ ≤ 1

2ν
‖f‖2

∗
+ ν

2
‖∇uh‖

2
, we have the first inequal-

ity. For the second, by (23) we have ν‖∇uh‖
2 ≤ (f, uh), so

ν‖∇uh‖
2 ≤ 1

2ν
‖f‖2

∗ + ν
2
‖∇uh‖

2.

For the third inequaltity, let v = u and q = p in (5)-(6) and add the

equations. This gives ν ‖∇u‖2 = (f, u) ≤ 1
2ν

‖f‖2
∗
+ ν

2
‖∇u‖2

, from which the

result follows.

4.2 Existence of Solution

We now show that a solution to the method (9)-(10) exists, so that we may

proceed to show convergence of the method.

Lemma 4.2. If (Xh, QH) satisfy (12) and 0 < ε1, ε2, ν, then a solution to

(9)-(10) exists.

Proof. Define T : X∗ → (Xh, Qh) to be the solution operator of the linear

problem: Given f ∈ X∗, find (uh, ph) ∈ (Xh, Qh) satisfying

ν(∇uh,∇vh) − (ph,∇ · vh) + ε1((∇uh)
′, (∇vh)

′) = (f, vh) ∀vh ∈ Xh (24)

(∇ · uh, qh) + ε−1
2 (p′h, q

′

h) = 0 ∀qh ∈ Qh (25)

Since T is linear, we show T exists uniquely by showing T (f) = (uh, ph) = 0

when f = 0. Thus assume f=0. Let vh = uh and qh = ph in (24)-(25) and

add the equations. This gives

ν‖∇uh‖
2 + ε1‖(∇uh)

′‖2 + ε−1
2 ‖p′h‖

2 = 0

Thus p′h = 0, and since uh ∈ H1
0 , uh = 0. We still need pH to be 0 if T (f)

is to be zero, since ph = pH + p′h. Write ph = pH + p′h in (23), isolate the
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(pH ,∇ · vh) term, apply Cauchy Schwarz to the right hand side, and divide

both sides by ‖∇vh‖. This gives

(ph,∇ · vh)

‖∇vh‖
≤ ν‖∇uh‖ + ‖p′h‖ + ε1‖(∇uh)

′‖ = 0 ∀vh ∈ Xh

Thus by (12), ‖pH‖ = 0, and therefore we have that T exists uniquely. It is

also clear that T is bounded and thus continuous.

Define the maps N : (Xh, Qh) → X∗ and F : (Xh, Qh) → (Xh, Qh) by

N(u, p) = f −u ·∇u and F by the composition of T and N , and consider the

fixed point problem F (u, p) = (u, p). Note that a solution to this fixed point

problem is also a solution to (9)-(10). By Leray-Schauder, to show a fixed

point exists, we need only show that all solutions to the fixed point problems

(uλ, pλ) = λF ((uλ, pλ)) 0 ≤ λ ≤ 1 (26)

are uniformly bounded independent of λ. Since

λF ((uλ, pλ)) = λT (N((uλ, pλ))) = T (λN((uλ, pλ))) = T (λf − λuλ · ∇uλ),

solutions to (26) are solutions of: Find (uλ, pλ) ∈ (Xh, Qh) satisfying

λ(uλ · ∇uλ, vh) + ν(∇uλ,∇vh) − (pλ,∇ · vh)

+ ε1((∇uλ)
′, (∇vh)

′) = λ(f, vh) ∀vh ∈ Xh (27)

(∇ · uλ, qh) + ε−1
2 (p′λ, q

′

h) = 0 ∀qh ∈ Qh (28)

Choosing vh = uλ, qh = pλ and adding (27)-(28) gives

ν

2
‖∇uλ‖

2 + ε−1
2 ‖p′λ‖

2
+ ε1 ‖(∇uλ)

′‖
2
≤

1

2ν
‖f‖2

∗
(29)
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We have now bounded ‖p′λ‖ and ‖∇uλ‖ independent of λ, so to complete the

proof we must still bound ‖(pλ)H‖. We will proceed by using the discrete inf-

sup condition, so we write pλ = p′λ + (pλ)H in (27), isolate the ((pλ)H ,∇ · vh)

term on the left hand side, apply Cauchy Schwarz and (13) on the right hand

side, and divide both sides by ‖∇vh‖. Applying (12) gives

βh‖(pλ)H‖ ≤ ‖p′λ‖ + λ‖f‖∗ + ε1‖(∇uλ)
′‖ + ν‖∇uλ‖ + M‖∇uλ‖

2

This bound coupled with (29) and the fact that 0 ≤ λ ≤ 1 shows that

‖(pλ)H‖ ≤ C(βh, ν, M, ‖f‖∗, ε1). Hence all solutions to (26) are bounded

independent of λ, and thus a solution to (9)-(10) exists.

Now that a solution to (9)-(10) is known to exist, we proceed to prove

convergence of the method.

4.3 Error Analysis of the Linear Terms

This subsection defines a new projection P : (X, Q) → (Xh, Qh) by P (u, p) =

(ũ, p̃) to be the solution of the linear problem (30)-(31). Notice these equa-

tions are the full error equations without the nonlinear terms if (u, p) solves

(5)-(6). This projection will later make the analysis of the error equations

simpler and more compact. After we show the projection exists uniquely, we

show it is bounded in ‖(·, ·)‖ε and that

‖(u−ũ, p−p̃)‖ε ≤ inf
(vh,qh)∈(Xh,Qh)

C(βh, ν)‖(u−vh, p−qh)‖ε∀(vh, qh) ∈ (Xh, Qh)
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Definition 4.3. Given (u, p) ∈ (X, Q), 0 < ε1, ε2, ν ≤ 1, and suppose (Xh, QH)

satisfies (12). Define the projection P (u, p) = (ũ, p̃) ∈ (Xh, Qh) to be the so-

lution of the following linear system

ν(∇(u− ũ),∇vh)−(p− p̃,∇·vh)+ε1(∇(u− ũ)′, (∇vh)
′) = 0 ∀vh ∈ Xh (30)

(∇ · (u − ũ), qh) + ε−1
2 ((p − p̃)′, q′h) = 0 ∀qh ∈ Qh (31)

To show that P exists uniquely, we show that the solution to the homo-

geneous problem has only the zero solution. Set (u, p) = (0, 0) and (vh, qh) =

(ũ, p̃) in (30)-(31) and add the equations. This gives ‖∇ũ‖ = ‖p̃′‖ = 0. Again

setting (u, p) = (0, 0), and applying (12) to (30) gives ‖p̃H‖ = 0. Hence if

(u, p) = (0, 0), ‖p̃‖ ≤ ‖p̃′‖+‖p̃H‖ = 0 implies p̃ = 0, and since ‖∇ũ‖ = 0 and

ũ ∈ H1
0 , we also have that ũ = 0. Thus the linear system (30)-(31) gives a

zero solution for zero data, so the solution to (30)-(31) exists and is unique,

and therefore the projection P exists and is well-defined.

The goal of Lemmas 4.4 and 4.5 is to bound all of the terms in ‖P (u, p)‖ε

by C‖(u, p)‖ε. Lemma 4.4 bounds the velocity and the fine scale pressure of

the projection, i.e. three of the four terms in ‖P (u, p)‖ε.

Lemma 4.4. If (Xh, QH) satisfies (12) and 0 < ε1, ε2, ν ≤ 1, then P (u, p) =

(ũ, p̃) satisfies the following inequality.

ν

2
‖∇ũ‖2 + ε1 ‖(∇ũ)′‖

2
+ ε−1

2 ‖p̃′‖
2
≤ ν ‖∇u‖2 + ε1 ‖(∇u)′‖

2

+ ε−1
2 ‖p′‖

2
+

2

ν
‖p‖2 + 2 ‖∇u‖ ‖p̃‖ (32)
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Proof. Separating terms and setting vh = ũ and qh = p̃ in (30)-(31) yields

ν(∇u,∇ũ)− (p,∇· ũ)+ ε1((∇u)′, (∇ũ)′) = ν ‖∇ũ‖2 + ε1 ‖(∇ũ)′‖
2
− (p̃,∇· ũ)

(33)

(∇ · u, p̃) + ε−1
2 (p′, p̃′) = (∇ · ũ, p̃) + ε−1

2 ‖p̃′‖
2

(34)

Adding the two equations and rearranging gives

ν ‖∇ũ‖2 + ε1 ‖(∇ũ)′‖
2
+ ε−1

2 ‖p̃′‖
2

= ν(∇u,∇ũ) − (p,∇ · ũ)

+ ε1((∇u)′, (∇ũ)′) + (∇ · u, p̃) + ε−1
2 (p′, p̃′) (35)

Apply Cauchy-Schwarz to all terms on the right hand side.

ν ‖∇ũ‖2 + ε1 ‖(∇ũ)′‖
2
+ ε−1

2 ‖p̃′‖
2

= ν ‖∇u‖ ‖∇ũ‖ + ‖p‖ ‖∇ũ‖

+ ε1 ‖(∇u)′‖ ‖(∇ũ)′‖ + ‖∇u‖ ‖p̃‖ + ε−1
2 ‖p′‖ ‖p̃′‖ (36)

Applying Young’s inequality and reducing gives

ν

2
‖∇ũ‖2 + ε1 ‖(∇ũ)′‖

2
+ ε−1

2 ‖p̃′‖
2
≤ ν ‖∇u‖2 + ε1 ‖(∇u)′‖

2
+ ε−1

2 ‖p′‖
2

+
2

ν
‖p‖2 + 2 ‖∇u‖ ‖p̃‖ (37)

thus completing the proof of the Lemma.

The last term we need to bound from ‖P (u, p)‖ε is the pressure of the

projection, which we do now.

Lemma 4.5. If (Xh, QH) satisfies (12), (ũ, p̃) := P (u, p)), and 0 < ε1, ε2, ν ≤

1, then ‖p̃‖2 satisfies the following inequality.

‖p̃‖2 ≤ ‖p̃H‖
2 + ‖p̃′‖

2
≤ C(βh)(ν ‖∇u‖2 +

1

ν
‖p‖2 + ε1 ‖(∇u)′‖

2

+ ε−1
2 ‖p′‖

2
+ ‖∇u‖ ‖p̃‖) (38)
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Proof. Using Lemma 4.4, and the fact that ε2 < 1, we immediately get an

upper bound on ‖p̃′‖2 :

‖p̃′‖
2

≤ ν ‖∇u‖2 + ε1 ‖(∇u)′‖
2

+ ‖p′‖
2

+
2

ν
‖p‖2 + 2 ‖∇u‖ ‖p̃‖ (39)

To determine an upper bound for ‖p̃H‖
2
, we use (12). Write p̃ = p̃H + p̃′,

and isolate the (p̃H ,∇ · vh) term in (30) to obtain

(p̃H ,∇·vh) = −ν(∇(u−ũ),∇vh)+(p,∇·vh)−ε1(∇(u−ũ)′, (∇vh)
′)−(p̃′,∇·vh)

(40)

If we now apply Cauchy-Schwarz to the right hand side, note that ‖(∇vh)
′‖ ≤

‖∇vh‖ and ‖∇ · vh‖ ≤ ‖∇vh‖ , and divide both sides by ‖∇vh‖, we get

(p̃H ,∇ · vh)

‖∇vh‖
≤ ν ‖∇u‖ + ν ‖∇ũ‖ + ‖p‖ + ε1 ‖(∇u)′‖ + ε1 ‖(∇ũ)′‖ + ‖p̃′‖

(41)

Take the infemum over all vh in Xh on both sides of the equation, and apply

(12) to obtain

βh ‖p̃H‖ ≤ ν ‖∇u‖ + ν ‖∇ũ‖ + ‖p‖ + ε1 ‖(∇u)′‖ + ε1 ‖(∇ũ)′‖ + ‖p̃′‖ (42)

Thus

‖p̃H‖
2 ≤ C(βh)(ν

2 ‖∇u‖2 + ν2 ‖∇ũ‖2 + ‖p‖2 + ε−2
1 ‖(∇u)′‖

2

+ ε−2
1 ‖(∇ũ)′‖

2
+ ‖p̃′‖

2
) (43)

Since 0 < ε1, ε2, ν ≤ 1, this reduces to

‖p̃H‖
2 ≤ C(βh)(ν ‖∇u‖2 + ‖p‖2 + ε1 ‖(∇u)′‖

2
+ (ν ‖∇ũ‖2

+ ε1 ‖(∇ũ)′‖
2
+ ε−1

2 ‖p̃′‖
2
)) (44)
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Apply Lemma 4.4 to the last 3 terms on the right hand side and reduce.

‖p̃H‖
2 ≤ C(βh)

{
ν ‖∇u‖2 +

2

ν
‖p‖2 + ε1 ‖(∇u)′‖

2
+ ε−1

2 ‖p′‖
2
+ 2 ‖∇u‖ ‖p̃‖

}

(45)

Adding the bounds (39) and (45) completes the proof.

Proposition 4.6 now ties together Lemmas 4.4 and 4.5 to bound the pro-

jection P by a constant times its data, uniformly in ε1 and ε2.

Proposition 4.6. If (Xh, QH) satisfies (12) and 0 < ε1, ε2, ν ≤ 1, then the

projection P satisfies ‖P (u, p)‖2
ε ≤ C(βh, ν) ‖(u, p)‖2

ε .

Proof. From Lemma 4.4 and Lemma 4.5, we have that

ν ‖∇ũ‖2 + ε1 ‖(∇ũ)′‖
2
+ ε−1

2 ‖p̃′‖
2
+ ‖p̃‖2 ≤ C(βh){ν ‖∇u‖2

+ ε1 ‖(∇u)′‖
2
+ ε−1

2 ‖p′‖
2
+ ν−1 ‖p‖2 + ‖∇u‖ ‖p̃‖} (46)

Applying Young’s inequality to the ‖∇u‖ ‖p̃‖ term gives

ν ‖∇ũ‖2 + ε1 ‖(∇ũ)′‖
2
+ ε−1

2 ‖p̃′‖
2
+ ‖p̃‖2 ≤

C(βh)
{
ν ‖∇u‖2 + ν−1 ‖p‖2 + ε1 ‖(∇u)′‖

2
+ ε−1

2 ‖p′‖
2
}

(47)

Sufficiently increasing the constant C to account for the constant ν−1 on the

right hand side completes the proof.

Proposition 4.6 allows us to easily bound ‖(u− ũ, p− p̃)‖ε, which will be

used in the analysis of the full error equations.
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Proposition 4.7. If (Xh, QH) satisfies (12) and 0 < ε1, ε2, ν ≤ 1, then the

projection P satisfies

‖(u, p)−P (u, p)‖2
ε = ‖(u−ũ, p−p̃)‖2

ε ≤ C(βh, ν) inf
(vh,qh)∈(Xh ,Qh)

‖(u−vh, p−qh)‖
2
ε

(48)

Proof. By the triangle inequality, for (vh, qh) ∈ (Xh, Qh) we have

‖(u − ũ, p − p̃)‖2
ε ≤ ‖(u − vh, p − qh)‖

2
ε + ‖(ũ − vh, p̃ − qh)‖

2
ε (49)

Now by the definition of P and Proposition 4.6,

‖(ũ− vh, p̃− qh)‖
2
ε = ‖P (u− vh, p− qh)‖

2
ε ≤ C(βh, ν)‖(u− vh, p− qh)‖

2
ε (50)

Inserting (50) into (49) gives the result.

This new projection and associated bounds will greatly help to reduce

the analysis needed to complete the proof of Theorem 1.1.

4.4 Completion of Proof for Theorem 1.1

We now complete the proof of the theorem by bounding the nonlinear terms

in the error equations. With the previous analysis of the linear terms, we

will be able to immediately reduce our original error equations, and with the

aid of the new projection, and previous lemmas and propositions, we will be

able to perform this analysis with a minimum of excessively long equations.

Write (u− uh) = (u− ũ)− (uh − ũ) and (p− ph) = (p − p̃)− (ph − p̃) in the
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error equations (18)-(19), where (ũ, p̃) = P (u, p).

(uh · ∇(u − ũ), vh) + ((u − ũ) · ∇u, vh) + ν(∇(u − ũ),∇vh)

− ((p − p̃),∇ · vh) + ε1(∇(u − ũ)′, (∇vh)
′) = ε1((∇u)′, (∇vh)

′)

+ (uh · ∇(uh − ũ), vh) + ((uh − ũ) · ∇u, vh) + ν(∇(uh − ũ),∇vh)

− ((ph − p̃),∇ · vh) + ε1(∇(uh − ũ)′, (∇vh)
′) ∀vhεXh (51)

(∇ · (u − ũ), qh) + ε−1
2 ((p − p̃)′, q′h) = ε−1

2 (p′, q′h)

+ (∇ · (uh − ũ), qh) + ε−1
2 ((ph − p̃)′, q′h)∀qh ∈ Qh (52)

From the definition of the projection P, (51)-(52) reduces to

(uh · ∇(u − ũ), vh) + ((u − ũ) · ∇u, vh) = ε1((∇u)′, (∇vh)
′)

+ (uh · ∇(uh − ũ), vh) + ((uh − ũ) · ∇u, vh) + ν(∇(uh − ũ),∇vh)−

((ph − p̃),∇ · vh) + ε1(∇(uh − ũ)′, (∇vh)
′) ∀vh ∈ Xh (53)

0 = ε−1
2 (p′, q′h) + (∇ · (uh − ũ), qh) + ε−1

2 ((ph − p̃)′, q′h) ∀qh ∈ Qh (54)

Define φh = uh − ũ, and η = u − ũ.

(uh ·∇η, vh)+(η ·∇u, vh) = ε1((∇u)′, (∇vh)
′)+(uh ·∇φh, vh)+(φh ·∇u, vh)

+ ν(∇φh,∇vh) − (ph − p̃,∇ · vh) + ε1((∇φh)
′, (∇vh)

′) ∀vh ∈ Xh (55)

ε−1
2 (p′, q′h) + (∇ · φh, qh) + ε−1

2 ((ph − p̃)′, q′h) = 0 ∀qh ∈ Qh (56)
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Set qh = ph − p̃ and vh = φh and add these equations.

ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2

= (uh · ∇η, φh) + (η · ∇u, φh)

− ε−1
2 (p′, (ph − p̃)′) − ε1((∇u)′, (∇φh)

′) − (φh · ∇u, φh) (57)

Apply Lemma 2.2 to the trilinear forms and Cauchy Schwarz to the bilinear

forms on the right hand side.

ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
≤

M ‖∇uh‖ ‖∇η‖ ‖∇φh‖ + M ‖∇u‖ ‖∇η‖ ‖∇φh‖ + ε−1
2 ‖p′‖ ‖(ph − p̃)′‖

+ ε1 ‖(∇u)′‖ ‖(∇φh)
′‖ + M ‖∇u‖ ‖∇φh‖

2 (58)

Use Lemma 4.1 to bound ‖∇u‖ and ‖∇uh‖ .

ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
≤ 2Mν−1 ‖f‖

∗
‖∇η‖ ‖∇φh‖

+ ε−1
2 ‖p′‖ ‖(ph − p̃)′‖ + ε1 ‖(∇u)′‖ ‖(∇φh)

′‖ + Mν−1 ‖f‖
∗
‖∇φh‖

2 (59)

Apply Young’s inequality on the right hand side and reduce to get

ν ‖∇φh‖
2 +

ε1

2
‖(∇φh)

′‖
2
+

ε−1
2

2
‖(ph − p̃)′‖

2
≤ 2Mν−1 ‖f‖

∗
‖∇η‖ ‖∇φh‖

+
ε−1
2

2
‖p′‖

2
+

ε1

2
‖(∇u)′‖

2
+ Mν−1 ‖f‖

∗
‖∇φh‖

2 (60)

Recalling α = Mν−2 ‖f‖
∗
, (60) reduces to

2ν(1 − α) ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
≤ 4να ‖∇η‖ ‖∇φh‖

+ ε−1
2 ‖p′‖

2
+ ε1 ‖(∇u)′‖

2
(61)
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We next bound ‖∇η‖ ‖∇φh‖ by ‖∇η‖ ‖∇φh‖ ≤ (1−α)
4να

‖∇φh‖
2 + να

(1−α)
‖∇η‖2

and apply it to (61).

ν(1 − α) ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
≤ 4

ν2α2

(1 − α)
‖∇η‖2

+ ε−1
2 ‖p′‖

2
+ ε1 ‖(∇u)′‖

2
(62)

Thus,

ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
≤ 4

να2

(1 − α)2
‖∇η‖2

+
ε−1
2

(1 − α)
‖p′‖

2
+

ε1

(1 − α)
‖(∇u)′‖

2
(63)

We now seek a bound for ‖(ph − p̃)H‖
2, and as before, we proceed by using

the discrete inf-sup condition. Rearrange (55) to get

((ph−p̃)H ,∇·vh) = −(uh·∇η, vh)−(η·∇u, vh)+ε1((∇u)′, (∇vh)
′)+(uh·∇φh, vh)

+(φh·∇u, vh)+ν(∇φh,∇vh)−((ph−p̃)′,∇·vh)+ε1((∇φh)
′, (∇vh)

′) ∀vh ∈ Xh

(64)

Using Cauchy-Schwarz, dividing both sides by ‖∇vh‖, and applying (12)

gives

((ph − p̃)H ,∇ · vh)

‖∇vh‖
≤ M ‖∇uh‖ ‖∇η‖ + M ‖∇η‖ ‖∇u‖ + ε1 ‖(∇u)′‖

+ M ‖∇uh‖ ‖∇φh‖+ M ‖∇φh‖ ‖∇u‖+ ν ‖∇φh‖+ ‖(ph − p̃)′‖+ ε1 ‖(∇φh)
′‖

∀vhεXh (65)
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Use the assumed global uniqueness condition, Lemma 4.1, substitute in α,

and as before, take infemum over all vh in Xh on both sides and apply (12).

βh ‖(ph − p̃)H‖ ≤ 2να ‖∇η‖ + ε1 ‖(∇u)′‖ + 2να ‖∇φh‖ + ν ‖∇φh‖

+ ‖(ph − p̃)′‖ + ε1 ‖(∇φh)
′‖ (66)

Squaring both sides and using the assumption that ε1, ν ≤ 1, we have

‖(ph − p̃)H‖
2 ≤ C(βh){να2 ‖∇η‖2 + ε1 ‖(∇u)′‖

2
+ να2 ‖∇φh‖

2 + ν ‖∇φh‖
2

+ ‖(ph − p̃)′‖
2
+ ε1 ‖(∇φh)

′‖
2
} (67)

Thus we obtain a bound on ‖(ph − p̃)‖2. By the triangle inequality,

‖(ph − p̃)‖2 ≤ ‖(ph − p̃)H‖
2 + ‖(ph − p̃)′‖

2
(68)

Insert the bound (67) for (ph − p̃)H .

‖(ph − p̃)‖2 ≤ C(βh){να2 ‖∇η‖2 + ε1 ‖(∇u)′‖
2
+ να2 ‖∇φh‖

2 + ν ‖∇φh‖
2

+ ‖(ph − p̃)′‖
2
+ ε1 ‖(∇φh)

′‖
2
} + ‖(ph − p̃)′‖

2
(69)

Reducing gives

‖(ph − p̃)‖2 ≤ C(βh){να2 ‖∇η‖2 + ε1 ‖(∇u)′‖
2
+ να2 ‖∇φh‖

2 + ν ‖∇φh‖
2

+ ‖(ph − p̃)′‖
2
+ ε1 ‖(∇φh)

′‖
2
} (70)

Recall 0 < ε2 ≤ 1 and rearrange.

‖(ph − p̃)‖2 ≤ C(βh){να2 ‖∇η‖2 + ε1 ‖(∇u)′‖
2
+ ν(α2 + 1) ‖∇φh‖

2

+ ε1 ‖(∇φh)
′‖

2
+ ε−1

2 ‖(ph − p̃)′‖
2
} (71)
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The last three terms are nearly identical to the left side of (63), so we multiply

the last two terms by (α2 + 1) and then factor it out of the last three terms:

‖(ph − p̃)‖2 ≤ C(βh){να2 ‖∇η‖2+ε1 ‖(∇u)′‖
2
+(α2+1){ν ‖∇φh‖

2+ε1 ‖(∇φh)
′‖

2

+ ε−1
2 ‖(ph − p̃)′‖

2
}} (72)

We now insert the bound (63) for those last three terms.

‖(ph − p̃)‖2 ≤ C(βh){να2 ‖∇η‖2 + ε1 ‖(∇u)′‖
2
+(α2 +1){4

να2

(1 − α)2
‖∇η‖2

+
ε−1
2

(1 − α)
‖p′‖

2
+

ε1

(1 − α)
‖(∇u)′‖

2
}} (73)

or,

‖(ph − p̃)‖2 ≤ C(βh){να2(1+4
(α2 + 1)

(1 − α)2
) ‖∇η‖2+ε1(1+

(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2

+
ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2
} (74)

Adding (63) and (74) gives

ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
+ ‖(ph − p̃)‖2

≤ C(βh){να2(1 + 4
(α2 + 1)

(1 − α)2
) ‖∇η‖2 + ε1(1 +

(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2

+
ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2
} (75)

From the triangle inequality and the definition of ‖(·, ·)‖2
ε , we have

‖(u − uh, p − ph)‖
2
ε ≤ ν ‖∇φh‖

2 + ν ‖∇η‖2 + ε1 ‖(∇φh)
′‖

2
+ ε1 ‖(∇η)′‖

2

+ ε−1
2 ‖(ph − p̃)′‖

2
+ ε−1

2 ‖(p − p̃)′‖
2
+ ‖(ph − p̃)‖2 + ‖(p − p̃)‖2 (76)
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or,

‖(u − uh, p − ph)‖
2
ε ≤ {ν ‖∇η‖2+ε1 ‖(∇η)′‖

2
+ε−1

2 ‖(p − p̃)′‖
2
+‖(p − p̃)‖2}

+ {ν ‖∇φh‖
2 + ε1 ‖(∇φh)

′‖
2
+ ε−1

2 ‖(ph − p̃)′‖
2
+ ‖(ph − p̃)‖2} (77)

Applying the bound (75), we get

‖(u − uh, p − ph)‖
2
ε ≤ {ν ‖∇η‖2+ε1 ‖(∇η)′‖

2
+ε−1

2 ‖(p − p̃)′‖
2
+‖(p − p̃)‖2}

+ C(βh){να2(1 + 4
(α2 + 1)

(1 − α)2
) ‖∇η‖2 + ε1(1 +

(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2

+
ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2
} (78)

and reducing gives

‖(u − uh, p − ph)‖
2
ε ≤ C(βh){να2(1 + 4

(α2 + 1)

(1 − α)2
) ‖∇η‖2

+ ε1(1 +
(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2
+

ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2
+ ε1 ‖(∇η)′‖

2

+ ε−1
2 ‖(p − p̃)′‖

2
+ ‖(p − p̃)‖2} (79)

We rearrange terms to make the use of Proposition 4.7 more clear.

‖(u − uh, p − ph)‖
2
ε ≤ C(βh){ε1(1+

(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2
+

ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2

+{να2(1+4
(α2 + 1)

(1 − α)2
) ‖∇η‖2 +ε1 ‖(∇η)′‖

2
+ε−1

2 ‖(p − p̃)′‖
2
+‖(p − p̃)‖2}}

(80)
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Apply Proposition 4.7.

≤ C(βh){ε1(1 +
(α2 + 1)

(1 − α)
) ‖(∇u)′‖

2
+

ε−1
2 (α2 + 1)

(1 − α)
‖p′‖

2

+ α2(1 + 4
(α2 + 1)

(1 − α)2
) inf

vh∈Xh

inf
χh∈Qh

{ε−1
2 ‖(p − χh)

′‖
2
+ ν ‖∇(u − vh)‖

2

+ ν−1 ‖(p − χh)‖
2 + ε1 ‖∇(u − vh)

′‖
2
}} (81)

Adjust the constant to account for a factoring out of ν−1, and the proof is

complete.

5 Conclusions

In this paper we explored a multiscale discretization of the equilibrium Navier-

Stokes equations arising from imposing finite dimensionality as a constraint.

The discretization recovers both finest scale pressure regularization and sub-

grid eddy viscosity models, and we showed the method is optimal for the

linear-linear and linear-constant pairs of velocity-pressure elements. This re-

port extended the framework of a model reduction via constraints idea from

the linear Stokes problem [4] to the (nonlinear) equilibrium NSE.
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