
QUASICONTINUUM MODELS OF DYNAMIC PHASE

TRANSITIONS

LEV TRUSKINOVSKY ∗ AND ANNA VAINCHTEIN †

Abstract. We propose a series of quasicontinuum approximations for the simplest lattice model
of dynamic phase transition in one dimension. The approximations are dispersive and include various
non-classical corrections to both kinetic and potential energies. We show that the well-posed quasi-
continuum theory can be chosen in such a way that the associated closed-form kinetic relation is in
excellent agreement with the predictions of the discrete theory.
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1. Introduction. A recent trend in replacing continuum mechanical phenomenol-
ogy with microscopic simulations raised an interest in developing lattice models for
propagating defects (see [2, 9, 13, 21, 27] and the literature cited therein). The large
nonlinear systems of ordinary differential equations used in such studies are rather
complex and are typically not amenable to a detailed parametric analysis. Contin-
uum theories, which assume that the lattice parameter is equal to zero, are much
more transparent than their discrete prototypes. However, in order to handle de-
fects they still require external phenomenological relations governing the dynamics of
singularities.

Since outside singularities continuum theories usually deliver reasonably accurate
reproduction of the behavior of the underlying discrete models, efforts have been made
to augment continuum models by including various internal length scales bringing in
terms that describe behavior at short wave lengths. The resulting models can be called
quasicontinuum since unlike the truly continuum theories they explicitly account for
the cutoff distance. Among the most well known examples of the quasicontinuum
models are strain-gradient elasticity, incorporating into the energy function higher
derivatives of displacements (e.g. [14, 23]), and fully nonlocal theory of elasticity
leading to formulation in terms of integral equations (e.g. [11, 16]). While in linear
regimes the relation between discrete, continuum and quasicontinuum theories can
be considered rather well understood (e.g. [5]), in nonlinear cases the situation is far
from being clear as indicated, for example, by the status of discrete approximations
for general hyperbolic equations (e.g. [12]). The problem is even more difficult when
the essential nonlinearity manifests itself through the loss of convexity of the energy
as in the situations involving formation and propagation of defects in solids.

In the discrete problems with nonconvex energy long-wave continuum approxi-
mations develop singularities whose dynamics remains largely arbitrary. This leads
to nonuniqueness and requires an additional input from the discrete theory. To over-
come this problem, one can try to develop a quasicontinuum theory that combines
the advantages of a homogenized description with an ability to capture all important
physics at small scales. To test the effectiveness of such quasicontinuum theories it
is natural to begin with the study of a motion of an isolated defect, which may be a
dislocation, a crack tip or a phase boundary.

Since the dynamics of all these defects exhibit considerable similarities (e.g. [10])
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we focus in this paper on a martensitic phase boundary as the simplest example of
a singularity that can be adequately described already in one dimension. Similar to
shocks, martensitic phase boundaries are modeled at the continuum level as propa-
gating strain discontinuities. However, unlike shocks, they require for their unique
determination an explicit specification of the rate of dissipation. This is usually ac-
complished by complementing the system of Rankine-Hugoniot jump conditions by a
kinetic relation between the driving force acting on a phase boundary and its velocity
[1, 25]. Lattice models generates such relations automatically due to the phenomenon
of radiative damping (e.g. [7]). In the present paper we choose for determinacy a pro-
totypical lattice model first introduced in [27] and try to reproduce the corresponding
discrete kinetic relation quantitatively in the framework of various quasicontinuum
approximations. The approximate kinetic relations can then provide examples of
particular admissibility conditions for the long-wave continuum models.

More specifically, we develop a set of quasicontinuum approximations for a rather
general class of one-dimensional fully inertial lattice models exhibiting essential non-
linearity (bi-stability) of the interatomic potential combined with long-range inter-
actions. An important feature of our quasicontinuum theories is that the associated
energy functionals contain higher-order spatial derivatives of both strain and velocity
fields, introducing dispersive corrections to both kinetic and potential energies. In
the context of lattice theories first models of this type were introduced by Rosenau
[17, 18, 19] (see [6] for a recent review). In the phenomenological theories of solids
velocity gradients were previously incorporated into kinetic energy as “microkinetic”
terms [22], following their earlier microscopic derivation in the theories of rods [15]
and models of bubbly fluids [3, 4]. One of our main conclusions is that the quasi-
continuum approximations of this type can be chosen to provide closed-form kinetic
relations which are in excellent agreement with the predictions of the discrete the-
ory for sufficiently fast moving phase boundaries. We show how this goal can be
accomplished without sacrificing the well-posedness of an initial value problem, which
has always been an an unpleasant signature of the straightforward quasicontinuum
approximations based on truncated Taylor series.

The structure of the paper is as follows. In Section 2 we briefly review the phe-
nomenological origin of kinetic relations in the continuum theory of dynamic phase
transitions. We then introduce in Section 3 a prototypical discrete model which leads
to a canonical advance-delay differential equation governing the dynamics of an iso-
lated phase boundary. In Section 4 we present a nonstandard reformulation of the
discrete problem as a continuous problem with strong spatial nonlocality of both ki-
netic and potential energies. Various quasicontinuum approximations based on either
Taylor or Padé approximations of the corresponding kernels are presented in Sec-
tion 5. In Section 6 we use Fourier transform to obtain a series of analytical solutions
for the traveling waves in the discrete and quasicontinuum problems. In Section 7 we
show how to extract from a fully conservative solution of the discrete/quasicontinuum
problem a kinetic relation governing the rate of dissipation at the continuum scale.
Examples of quasicontinuum approximations generating explicit kinetic relations are
discussed in Section 8, where we also provide a detailed comparison of the resulting
kinetics with the exact solution for the discrete theory. Finally, in Section 9 we discuss
the issue of well-posedness of the truncated quasicontinuum approximations and offer
a rather universal way of dealing with unboundedness of the approximate operators
at short wave lengths. Our conclusions are presented in Section 10.
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2. Continuum model. To present our ideas in the simplest setting, consider
longitudinal motions of a homogeneous elastic bar with the total energy

E =

∫
[

ρu̇2

2
+ φ(ux)

]

dx, (2.1)

where u(x, t) is the displacement field, u̇ ≡ ∂u/∂t is the velocity, ux ≡ ∂u/∂x is the
strain, ρ is the constant mass density, and φ(ux) is the elastic energy density. When
motion is smooth, the function u(x, t) satisfies the nonlinear wave equation

ρü = (σ(ux))x, (2.2)

where σ(ux) = φ′(ux) is the stress-strain relation. The parameters on a discontinu-
ity moving with velocity V must satisfy both the classical Rankine-Hugoniot jump
conditions

[[u̇]] + V [[ux]] = 0, ρV [[u̇]] + [[σ(ux)]] = 0,

and the entropy inequality R = GV ≥ 0, where R is the rate of dissipation and

G = [[φ]] − {σ}[[ux]] (2.3)

is the configurational (driving) force. Here [[f ]] ≡ f+ − f− denotes the jump and
{f} ≡ (f+ + f−)/2 - the average of f across the discontinuity.

Unlike conventional shocks, subsonic discontinuities violate the Lax condition.
The resulting nonuniqueness can be remedied by supplementing the above jump con-
ditions by a kinetic relation specifying the dependence of the configurational force on
the velocity of the phase boundary G = G(V ) [1, 25]. Note that the continuum model
provides no information about this function. One way to recover the kinetic relation
is to consider a lattice model representing physically justified “dehomogenization” of
the continuum model (2.2).

3. Discrete model. As a micro-model for a bar undergoing phase transition,
consider an infinite chain of particles, each interacting with q nearest neighbors on
both sides. The total energy of the system may be written as

E = ε
∞
∑

n=−∞

[

ρu̇2
n

2
+

q
∑

p=1

pφp

(

un+p − un

pε

)]

, (3.1)

Here un(t) is the displacement of the nth particle, u̇n is the particle velocity, ε is the
reference interparticle distance, ρ is the mass density and φp(w) is the energy density
of the interaction between pth nearest neighbors.

To represent martensitic phase transitions in the simplest way we may assume
that the nearest-neighbor (NN) interactions are governed by a bi-parabolic potential
representing an example of the simplest essential nonlinearity:

φ1(w) =







1
2Ψ(1)w2, w ≤ wc

1
2Ψ(1)(w − a)2 + aΨ(1)

(

wc −
a

2

)

, w ≥ wc,
(3.2)

The potentials governing long-range interactions were assumed to be quadratic:

φp(w) =
1

2
pΨ(p)w2, p = 2, ..., q. (3.3)

3



In terms of dimensionless variables t̄ = t(Ψ(1)/ρ)1/2/ε, ūn = un/(aε), Ψ̄(p) =
Ψ(p)/Ψ(1), p = 1, . . . , q, but with bars dropped, the total energy can be rewritten as

E =

∞
∑

n=−∞

[

u̇2
n

2
− 1

2

∑

|k−n|≤q

unΨ(k − n)uk − (wn − wc)θ(wn − wc)

]

. (3.4)

Here wn = un − un−1 is the strain in NN springs, θ(w) is a unit step function, and
we define

Ψ(0) = −2

q
∑

p=1

Ψ(p), Ψ(−p) = Ψ(p) (3.5)

The dynamic equations can be formulated for the strain variables wn:

ẅn −
∑

|k−n|≤q

Ψ(k − n)wk = 2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc). (3.6)

Note that in the classical continuum limit the discrete model converges to the rescaled
equations (2.1), (2.2) with ρ = 1 and the bilinear macroscopic stress given by

σ(w) = c2w − θ(w − wc), (3.7)

where

c =

( q
∑

p=1

p2Ψ(p)

)1/2

(3.8)

is the dimensionless macroscopic sound speed.
To model the motion of an isolated phase boundary, we now consider solutions of

(3.6) in the form of the traveling waves wn(t) = w(ξ), ξ = n−V t, with all springs are
in phase I (w < wc) for ξ > 0 and in phase II (w > wc) otherwise. For these solutions
the system of equations (3.6) reduces to a single advance-delay differential equation
for w(x):

V 2w′′ −
∑

|p|≤q

Ψ(p)w(ξ + p) = 2θ(−ξ) − θ(−ξ − 1) − θ(1 − ξ). (3.9)

4. Reformulation of the problem. Observe that equation (3.9) may be writ-
ten in the form

ΛD(w − w+) = θ(−ξ), (4.1)

where the operator ΛD is defined by

ΛD ≡ −∆−1
d

(

V 2∆c −
∑

|p|≤q

Ψ(p) exp(pD)

)

(4.2)

Here D is the operator of differentiation, Dw = wξ . We further defined the continuum
Laplacian operator ∆c = D2 and the shift operator exp(pD) acting according to
exp(pD)w = w(ξ+p). Finally ∆d = exp(D)−2I +exp(−D) is the discrete Laplacian,
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defined by its action on w as ∆dw = w(ξ + 1)− 2w(ξ) + w(ξ − 1). The Fourier image
of (4.2) is given by

ΛD(k, V ) =
ω2(k) − V 2k2

4 sin2(k/2)
, (4.3)

where

ω2(k) = 4

q
∑

p=1

Ψ(p) sin2 pk

2
. (4.4)

is the dispersion relation of the discrete model.
Following some insights from [19], we introduce a sufficiently smooth continuum

displacement field u(x, t) such that

Du(n, t) = (I − exp(−D))un(t). (4.5)

This definition can be rewritten as un(t) = Mu(n, t), where the operator M is defined
by M = (I − exp(−D))−1D. In most derivations of quasicontinuum approximations
it is assumed that M = I . To see the effect of this alternative (or “indirect”, in the
language of [19]) definition of the continuum variable it is instructive to compute the
kinetic energy. Using (4.5) and replacing the sum by an integral, we obtain

1

2

∞
∑

n=−∞

u̇n(t) · u̇n(t) ⇒ 1

2

∫ ∞

−∞

Mut(x, t) · Mut(x, t)dx =
1

2

∫ ∞

−∞

ut(x, t)Kut(x, t)dx

(4.6)
Here the operator K is the continuum analog of the operator ∆−1

d ∆c, in the sense
that their Fourier images coincide:

K(k) = F [∆−1
d ∆c] =

k2

4 sin2(k/2)
.

One can see that contrary to the more traditional approach (e.g. [11]), in our contin-
uum variables the kinetic energy is nonlocal. By rewriting in the new variables the
whole discrete energy (3.4) we obtain

EQC =

∫ ∞

−∞

[

1

2
utKut +

1

2
uxLux − (ux − wc)θ(ux − wc)

]

dx, (4.7)

where the operator L is the continuum analog of ∆−1
d

∑

|p|≤q Ψ(p) exp(pD), in the
sense that

L(k) = F [∆−1
d

∑

|p|≤q

Ψ(p) exp(pD)] =

∑q
p=1 Ψ(p) sin2(pk/2)

sin2(k/2)
.

The equation of motion generated by (4.7) is

∂

∂t
[Kut] =

∂

∂x
[Lux − θ(ux − wc)].

Applying the traveling wave ansatz u(x, t) = ũ(ξ), ξ = x − V t and integrating the
resulting equation, we obtain

(L − V 2K)w − θ(w − wc) = const,
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where w(ξ) = ũ′(ξ) is the strain. Now, assuming as before that θ(w − wc) = θ(−ξ)
and applying the boundary condition w → w+ as ξ → ∞, we arrive at

(L − V 2K)(w − w+) = θ(−ξ), (4.8)

Note that (4.8) is the exact analog of (4.1) due to the identity

ΛD(k, V ) = L(k) − V 2K(k) (4.9)

The continuum model with the energy (4.7) is equivalent to the discrete model with
the energy (3.4). Notice that in contrast to the quasicontinuum models proposed
in [11], which preserve the structure of the kinetic energy while modifying only the
elastic energy, we propose to modify expressions for both kinetic and elastic energies.
This reflects the physical understanding that the microscopic lattice-scale vibrations
cannot be treated at the mesoscale exclusively as thermodynamic free energy. Here
we follow a tradition which dates back to Rayleigh who in his studies of vibrating
beams understood the necessity of incorporating the concept of transversal inertia
[15]. Similar ideas appeared in many areas, for instance in the homogenized theory of
bubbly fluids where the extra terms in the kinetic energy describe inertia of individual
bubbles [3, 4].

5. Quasicontinuum approximations. The quadratic part of the nonlocal func-
tional (4.7) can be approximated by local functionals in several ways. This gives rise
to significantly different quasicontinuum theories.

5.1. Strain-gradient approximation. The most common way of approximat-
ing discrete energy functional is based on retention of only the non-dispersive contin-
uum expression for the kinetic energy. This means that K = ∆−1

d ∆c is replaced by
I , which is equivalent to replacing the discrete Laplacian ∆d by ∆c. For consistency
the operator L should then be replaced by ∆−1

c

∑

|p|≤q Ψ(p) exp(pD). Expanding the
Fourier image of the resulting approximate operator in Taylor series around k = 0
and retaining the first few terms, we obtain

K(k) ≈ 1, L(k) ≈ c2 + α1k
2 + α2k

4, (5.1)

where

α1 = − 1

12

q
∑

p=1

p4Ψ(p), α2 =
1

360

q
∑

p=1

p6Ψ(p). (5.2)

Observe that in the physical space the associated quadratic part of potential
energy reduces to

1

2

∫ ∞

−∞

uxLuxdx ≈ 1

2

∫ ∞

−∞

[c2u2
x + α1u

2
xx + α2u

2
xxx]dx.

This approximation is often referred to as the strain-gradient (SG) model (e.g. [14,
24]). Its advantage is relative simplicity. However, the Fourier image of the approxi-
mate operator agrees with ΛD(k, V ) only up to O(k2). This order of approximation is
shared even by strongly nonlocal quasicontinuum models that are focused exclusively
on the approximation of the elastic energy (e.g. [11, 16]).
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5.2. Mixed gradient approximation. To obtain a higher order of approxima-
tion one must include the dispersive corrections in both kinetic and elastic energies.
For instance, by expanding the Fourier images of the two operators K and L to the
same order in Tailor series we obtain

K(k) ≈ 1 +
k2

12
+

k4

240
, L(k) ≈ c2 + a1k

2 + a2k
4, (5.3)

where

a1 =
1

12

q
∑

p=2

(p2 − p4)Ψ(p), a2 =
1

720

q
∑

p=2

p2(3 − 5p2 + 2p4)Ψ(p). (5.4)

In this approximation the kinetic energy and the quadratic part of the potential energy
take the form

1

2

∫ ∞

−∞

utKutdx ≈1

2

∫ ∞

−∞

[

u2
t +

1

12
u2

xt +
1

240
u2

xxt

]

dx,

1

2

∫ ∞

−∞

uxLuxdx ≈1

2

∫ ∞

−∞

[

c2u2
x + a1u

2
xx + a2u

2
xxx

]

dx.

(5.5)

We will refer to this class of models as mixed gradient (MG) models.
First approximation of this type with only quadratic term in k preserved in the

kinetic energy and only zero-order term retained in the elastic energy was suggested by
Rosenau [17]; more recent attempts along the same lines can be found in [6, 19, 20, 30].

The advantage of the Rosenau model is that it is uniformly well-posed in the sense
that it avoids unphysical short-wave instabilities that are characteristic for generic
truncated polynomial approximations. This issue will be addressed in more detail in
Section 9, while here we simply mention that by well-posedness we mean the discrete
analog of hyperbolicity of the linear operator of the model in the sense that ω2(k) =
k2L(k)/K(k) is positive for all nonzero k (see [8] for more detail).

To construct an improved Rosenau approximation with higher resolution we as-
sume that L(k) and K(k) are still approximated by polynomials. Then the MG model
leads to a well-posed problem if (i) the approximation of L(k) has no real zeroes and
(ii) k2L(k) and K(k) are approximated by polynomials of the same order. This leads
to the next simplest Rosenau-type well-posed model

K(k) ≈ 1 +
k2

12
+

k4

240
, L(k) ≈ c2 + a1k

2 (5.6)

with a1 as in (5.4). Both of the above requirements are satisfied provided that a1 > 0,
so that c2 + a1k

2 = 0 has no real roots. Note that unlike the general MG model
(5.3), where both kinetic and elastic operators are expanded up to O(k6), this model
approximates the discrete operator only up to O(k4) because of lower order accuracy
in approximating L(k). In what follows we refer to the model (5.6) as MG1/2 model
because of its intermediate character.

5.3. Mixed gradient-Padé approximation. Another possibility to preserve
the well-posedness of the linear problem is to approximate L(k) by a (2, 2) Padé (ratio-
nal) approximation accurate up to O(k6), while keeping for K(k) a quartic polynomial
expansion:

K(k) ≈ 1 +
k2

12
, L(k) ≈ c2 + b1k

2

1 + b2k2
, (5.7)
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with

b1 =
1

12

q
∑

p=2

(p2 − p4)Ψ(p) −
c2

∑q
p=2 p2(3 − 5p2 + 2p4)Ψ(p)

60
∑q

p=2(p
2 − p4)Ψ(p)

,

b2 = −
∑q

p=2 p2(3 − 5p2 + 2p4)Ψ(p)

60
∑q

p=2(p
2 − p4)Ψ(p)

.

(5.8)

We will refer to this approximation as MGP model. In this case the dispersion relation
(see (9.1)) remains to be the ratio of two polynomials of the same order, and if b1 > 0,
the MGP model leads to a well-posed problem. Note that like the well-posed version
of the MG model (5.6), this approximation is accurate only up to O(k4). In this case
it is due to the reduced accuracy in the expansion of K(k).

6. Traveling waves. The traveling wave equation for both discrete and quasi-
continuum models can be written as

Λ(w − w+) = θ(−ξ), (6.1)

where

Λ = ΛD(k, V ) (6.2)

for the discrete model,

Λ = (c2 − V 2)I − α1D
2 + α2D

4 (6.3)

for the SG model,

Λ = (c2 − V 2)I −
(

a1 −
V 2

12

)

D2 +

(

a2 −
V 2

240

)

D4 (6.4)

for the MG model and

Λ = (I − b2D
2)−1(c2I − b1D

2) − V 2

(

1 − 1

12
D2

)

(6.5)

for the MGP model. For consistency with the assumptions that led to (6.1), we must
also require that solution of equation (6.1) satisfies the following constraints:

w(0) = wc (6.6)

and

w(ξ) < wc for ξ > 0, w(ξ) > wc for ξ < 0 (6.7)

The average states at ξ = ±∞ must correspond to stable constant-strain equilibria

〈w(ξ)〉 ≡ lim
s→∞

1

s

∫ ξ+s

ξ

w(ζ) dζ → w±, as ξ → ±∞. (6.8)

We solve (6.1) by writing w(ξ) = h(ξ) + w+ and applying the complex Fourier
transform

ĥ(k) =

∫ ∞

−∞

h(ξ)ei(k−iα)ξdξ, h(ξ) =
1

2π

∫ ∞−iα

−∞−iα

ĥ(k)e−ikξdk,
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where α > 0 is a small parameter which guarantees convergence of the integrals.
After inverting the Fourier transform and letting α → 0, we obtain the integral
representation

w(ξ) = w+ − 1

2πi

∫

Γ

eikξ

kΛ(k, V )
dk, (6.9)

where the contour Γ coincides with the real axis everywhere except near the singular
points. Specifically, it goes above k = 0 and, in order to satisfy the radiation condition,
passes below the nonzero real roots of Λ(k, V ) = 0 if the group velocity exceeds V
and above otherwise (in this case the radiation condition reduces to requiring that
the contour goes below a nonzero real root if kΛk(k, V ) > 0 and above otherwise).

To compute the integral (6.9) explicitly, we use the residue method closing the
contour in the upper half-plane when ξ > 0 and in the lower half-plane when ξ < 0.

w(ξ) =



















w− +
∑

k∈M−(V )

eikξ

kΛk(k, V )
for ξ < 0

w+ − ∑

k∈M+(V )

eikξ

kΛk(k, V )
for ξ > 0,

(6.10)

The summations in (6.10) are over the sets of roots of Λ(k, V ) = 0 defined as

M±(V ) = {k : Λ(k, V ) = 0, Imk ≷ 0}
⋃

N±(V ),

where

N±(V ) = {k : Λ(k, V ) = 0, Imk = 0, kΛk(k, V ) ≷ 0}

are the sets of real roots responsible for radiative modes whose amplitude does not
decrease at infinity. These waves are placed either behind or in front of the moving
phase boundary according to the radiation condition.

Observe that by construction all plane waves with real wave numbers k involved
in the traveling wave solution (6.1) have real frequency ω(k) = V k, so they lie inside
the region in Fourier space where the models are well-posed.

7. Kinetic relation. The parameters entering (6.10) are not all independent.
The average strains at ±∞ must satisfy a macroscopic Rankine-Hugoniot condition

w+ = w− − 1

c2 − V 2
, (7.1)

where we recall that c is the dimensionless macroscopic sound speed defined in (3.8).
Note that since we assumed that w− < w+, the solutions are necessarily subsonic

(V < c). The continuity of strain at ξ = 0 and (6.6) imply that

w± = wc ∓
1

2(c2 − V 2)
+

∑

k∈Npos(V )

1

|kΛk(k, V )| , (7.2)

where Npos(V ) = {k ∈ N+(V )
⋃

N−(V ) : k > 0} is the set of all positive real roots
of Λ(k, V ) = 0. Computing microscopic energy fluxes carried by radiative modes to
±∞ (see [9, 27] for more detail), we obtain the following expression for the driving
force:

G(V ) =
∑

k∈Npos(V )

1

|kΛk(k, V )| (7.3)
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Since the sets Npos depend on V , (7.3) furnishes, although not in an explicit form,
the desired kinetic relation between the driving force and the velocity of the mov-
ing boundary. Note that formula (7.3) can also be obtained from the macroscopic
assessment of dissipation (2.3) yielding in the bilinear case

G =
1

2
(w− + w+) − wc. (7.4)

Indeed, substituting (7.2) in (7.4), we recover (7.3).

8. Examples. To illustrate the general analysis presented in the previous sec-
tions, below we focus on a specific case of a lattice with q = 2 as the simplest nontrivial
example of a lattice model accounting for bilinear local (nearest neighbor, or NN) and
linear nonlocal (next to nearest neighbor, or NNN) interactions. In the nondimen-
sional variables the model is fully characterized by a single dimensionless parameter
β = 4Ψ(2)/Ψ(1) measuring the relative strength of NNN interactions. The total
energy of the system can be written as

E =
∞
∑

n=−∞

[

u̇2
n

2
+

1 + β

2
w2

n − θ(wn − wc)(wn − wc) −
β

4
(wn+1 − wn)2

]

. (8.1)

The macroscopic sound speed (3.8) reduces in this case to

c = (1 + β)1/2. (8.2)

For this discrete model one can obtain explicit traveling wave solutions describing the
motion of an isolated phase boundary and present the kinetic relation in the form of
a numerical procedure generating the function G = G(V, β) [27].

Our task in what follows is to choose a quasicontinuum approximation which
approximates this function best. Following [27], we limit our analysis to the interval

β1 < β ≤ 0, (8.3)

where β1 ≈ −0.9539. The lower bound ensures the existence of a fast subsonic trav-
eling wave solution with monotone leading edge and a single radiative mode behind
the phase boundary, which will be the prime target of our modeling, while the up-
per bound is suggested by the linearization of the potentials of the Lennard-Jones
type [26, 28]. It is known that the kinetic relations generated by fully inertial lattice
models are quite complex in the small velocity range due to a large number of lat-
tice resonances [9, 27]. Since the stability of a steadily moving isolated front in this
regime is questionable (e.g. [27]), we intentionally leave it outside our quasicontinuum
modeling.

8.1. Quadratic expansions. We begin by considering the simplest quadratic
expansions in both SG and MG models. This corresponds to setting α2 = 0 in (5.1)
and a2 = 0 in (5.3); the first model will be called SG1 and the second one MG1.
In both cases equation Λ(k, V ) = 0 has two symmetric roots which are either real,
k = ±r, or purely imaginary, k = ±is. When the roots are real the solution takes the
form

w(ξ) =







wc +
1 − cos(rξ)

c2 − V 2
for ξ < 0

wc for ξ > 0.
(8.4)
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and the kinetic relation then reduces to

G =
1

2(c2 − V 2)
. (8.5)

In the case of purely imaginary roots the (subsonic) solution takes the form

w(ξ) =















wc +
1 − esξ

2(c2 − V 2)
for ξ < 0

wc −
1 − e−sξ

2(c2 − V 2)
for ξ > 0.

(8.6)

The corresponding kinetic relation simply states that the dissipation is absent:

G = 0. (8.7)

To be more specific, consider first the quadratic strain-gradient approximation
(SG1 model). In this case we have

Λ(k, V ) = c2 − V 2 − 1 + 4β

12
k2. (8.8)

It is easy to see that at V < c the roots of Λ(k, V ) = 0 are real at −1/4 < β ≤ 0
and imaginary otherwise. This implies that SG1 model predicts zero dissipation for
β < −1/4 and is therefore unable to capture the phenomenon of radiative damping
predicted in this parameter range by the lattice model. We observe that it is exactly
the region where SG1 model is usually used (e.g. [24]) since it is uniformly well-posed
there.

In the rest of the domain −1/4 < β ≤ 0 the SG1 model predicts a nontrivial
kinetic relation, although it can only be used if the real wavenumbers are in the
interval |k| ≤ k∗ = c

√

12/(1 + 4β). In this case there are two real roots of the
dispersion relation and the formulas (8.4), (8.5) provide the solution of the problem.
In the MG1 approximation the dispersion relation takes the form

Λ(k, V ) = c2 − V 2 −
(

β

4
+

V 2

12

)

k2. (8.9)

In the interval −1/4 < β ≤ 0 the MG1 model gives the same kinetics as SG1 model for
(−3β)1/2 < V ≤ c and predicts zero dissipation for V < (−3β)1/2. Like SG1 model,
it is unable to capture radiative damping for β < −1/4 and predicts zero dissipation.

8.2. Comparison with discrete theory. The results of the numerical evalu-
ation of the solutions of the quasicontinuum models are summarized in Figure 8.1,
where SG1 (dotted curves) and MG1 (dashed) approximations are compared to the
discrete model in the interval −1/4 < β ≤ 0. One can see that both SG1 and MG1
model overestimate the frequency and the amplitude of the radiation behind the front
in the near-sonic domain (Figure 8.1c). In addition, the approximations require the
strain in front (ξ > 0) to be constant and equal to the critical value wc, while in the
discrete model the strain exponentially decreases to a finite value w+ < wc. Although
at velocities sufficiently close to sonic limit the models capture the qualitative char-
acter of the discrete kinetic relation (see Figure 8.1d), they overestimate the driving
force.
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models at −1/4 < β ≤ 0: the structure of (a) real and (b) imaginary roots; (c) strain profiles at
V/c = 0.92, wc = 1; (d) the mobility curves. In all pictures β = −0.2.

Similar comparison in the interval β < −1/4 does not make much sense because
both quasicontinuum models predict zero dissipation while the discrete theory gen-
erate a nontrivial kinetic relation (see Fig 8.3). Overall, one can conclude that none
of the quadratic models capture the discrete kinetics adequately in the whole range
of parameters. To achieve a better approximation one needs to include higher order
terms in the long-wave expansion, which is done in the next subsection.

8.3. Quartic approximations. If we keep fourth-order terms in our Taylor
expansions, we obtain what we call SG2 model (5.1) and MG2 model (5.3). Assume
as before (8.3) and subsonic V . With the exception of the interval −1/16 < β ≤ 0,
where SG2 model leads to four real roots, in both models the characteristic equation,
Λ(k, V ) = 0 has two real roots, k1,2 = ±r, and two imaginary roots, k3,4 = ±ip. The
traveling wave solution (6.1) at subsonic velocities then reduces to

w(ξ) =















wc +
2p2(1 − cos(rξ)) + r2(1 − epξ)

2(c2 − V 2)(p2 + r2)
for ξ < 0

wc +
r2(e−pξ − 1)

2(c2 − V 2)(p2 + r2)
for ξ > 0

(8.10)

The kinetic relation (7.3) takes the form

G =
p2

2(c2 − V 2)(p2 + r2)
. (8.11)

To specialize these formulas to SG2 model, we observe that in our example

Λ(k, V ) = 1 + β − V 2 − 1 + 4β

12
k2 +

1 + 16β

360
k4 = 0, (8.12)
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If −1/16 < β ≤ 0 the characteristic equation has four real roots k = ±r1 and k = ±r2,
r1 < r2. The roots k = ±r1 approximate the discrete radiation, whereas the roots
k = ±r2 are an artifact of the polynomial expansion with a positive higher-order
coefficient and do not have a discrete analog. Thus, SG2 model cannot be used in
this interval. At β = −1/16 the model reduces to SG1 approximation.

Assume now that β1 < β < −1/16. By solving the dispersion relation we obtain
two imaginary roots k = ±ip and two real roots k = ±r with the magnitudes

p =

√

√

√

√− 180

1 + 16β

(

1 + 4β

12
+

√

(

1 + 4β

12

)2

− 1 + 16β

90
(1 + β − V 2)

)

,

r =

√

√

√

√− 180

1 + 16β

(

√

(

1 + 4β

12

)2

− 1 + 16β

90
(1 + β − V 2) − 1 + 4β

12

)

.

Observe that this approximation is valid (V is real) for real k satisfying |k| ≤ k∗,
where

k∗ =

√

15 + 60β − 3
√

15
√

−1− 32β − 16β2

1 + 16β
. (8.13)

The explicit kinetic relation in the SG2 approximation takes the form

G(V ) =
1

4(c2 − V 2)

{

1 −
(

1 − 8(1 + 16β)

5(1 + 4β)2
(c2 − V 2)

)−1/2}

(8.14)

To obtain the kinetic relation in the mixed gradient approximation we first adopt
it to our example and get

Λ = c2 − V 2 −
(

β

4
+

V 2

12

)

k2 +

(

β

48
− V 2

240

)

k4 (8.15)

In this case β ≤ 0 ensures that the characteristic equation always has two imaginary
and two real roots. Their magnitudes are given by the formulas

p =
√

2

√

−(15β + 5V 2) −
√

−75β(4 + β) + 30(2 + 17β)V 2 − 35V 4

5β − V 2
,

r =
√

2

√

15β + 5V 2 −
√

−75β(4 + β) + 30(2 + 17β)V 2 − 35V 4

5β − V 2

In this model the cutoff wavenumber is

k∗ =

√

6 +
2
√

3(4 + β)
√

−β(4 + β)
.

Note that it is greater than k∗ for SG2 model given in (8.13) for all β where the latter
is real, so that the domain of applicability of the mixed gradient approximation is
wider than that of the strain gradient approximation. The kinetic relation (7.3) is
given in the mixed gradient approximation by the following explicit formula

G(V ) =
1

4(c2 − V 2)

(

1 +

√
5(3β + V 2)

√

−15β(4 + β) + 6(2 + 17β)V 2 − 7V 4

)

. (8.16)
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Next consider the well-posed MG1/2 and MGP models defined in (5.6) and (5.7),
respectively. For the MG1/2 model the characteristic equation is given by

Λ(k, V ) = c2 − V 2 −
(

β

4
+

V 2

12

)

k2 − V 2

240
k4 (8.17)

In MGP approximation we obtain

Λ(k, V ) =
1 + β +

1

12
(1 − 2β)k2

1 +
k2

12

− V 2

(

1 +
k2

12

)

. (8.18)

The characteristic equation in both models has two real and two imaginary roots with

p =
√

2

√

5 +
15β

V 2
+

√
5
√

45β2 + 12V 2 + 42βV 2 − 7V 4

V 2
,

r =
√

2

√

−5 − 15β

V 2
+

√
5
√

45β2 + 12V 2 + 42βV 2 − 7V 4

V 2

for MG1/2 model and

p =
√

6

√

2 − 1 − 2β

V 2
+

√

1 − 4β + 4β2 + 12βV 2

V 2
,

r =
√

6

√

−2 +
1 − 2β

V 2
+

√

1 − 4β + 4β2 + 12βV 2

V 2

for MGP model. The kinetic equations are again explicit taking the form

G(V ) =
3V 2

√

9β2 +
6

5
(2 + 7β)V 2 − 7V 4

5
(
√

5
√

45β2 + 6(2 + 7β)V 2 − 7V 4 − 15β − 5V 2)

for MG1/2 model and

G(V ) = − 3β

1 + 4β(3V 2 + β − 1) − (1 + 4β)
√

1 + 4β(3V 2 + β − 1)

for MGP model.

8.4. Comparison with discrete theory. We can now compute the solutions
in quartic models explicitly and compare the approximate kinetic relations with the
exact one for the discrete model (see [27]). The first series of results is summarized
in Figure 8.2a,b which compares in the interval −1/4 < β < −1/16 the following
three models: discrete (solid curves), MG2 (dashed) and SG2 (dotted). One can see
that MG2 model gives a much better approximation of the both real and imaginary
roots. Near-sonic strain profiles for all three models are juxtaposed in Figure 8.2c.
The profiles for discrete (solid curve) and MG2 (dashed) models nearly coincide,
while the SG2 approximation (dotted) gives a noticeably larger amplitude and smaller
frequency of radiation behind the front. The kinetic relations for both approximations
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are compared to each other and the discrete kinetics in Figure 8.2d. As expected, the
kinetic curve for MG2 model (dashed curve) is much closer to the discrete kinetic
relation (solid) than the SG2 approximation (dotted curve).

Next consider the interval β1 < β < −1/4. In this parameter range the positive
real root corresponding to radiation behind the front is not close to k = 0, so that both
SG2 and MG2 approximations cannot be expected to capture the discrete kinetics
quantitatively. Nevertheless, as Figure 8.3 illustrates, MG2 model (dashed curves)
provides a substantially better approximation of the discrete model (solid curves)
than the SG2 model (dotted curves) in terms of both the kinetic relations G(V )
and the near-sonic traveling wave profiles. Note in particular that the MG2 kinetic
curve stays close to the discrete fast branch over the whole velocity range, while the
SG2 curve deviates away from it significantly as V approaches c. Although MG2
approximation naturally becomes worse for higher |β| (the roots corresponding to
radiation move further away from zero), it remains significantly closer to the discrete
curve than the SG2 approximation.

The better performance of MG2 model is due to the fact that it directly approx-
imates ΛD(k, V ) near k = 0 together with its first two derivatives, while SG2 model
effectively replaces 4 sin2(k/2) in (4.3) by k2 before expanding it in Taylor series. Even
though the Taylor expansion is no longer valid at larger k, the optimal “tuning” of
the function and its derivatives near k = 0 apparently results in a better agreement
with the discrete theory in a broad range of wave lengths.

Next consider the well-posed version of the MG model which we referred to as
MG1/2 and MGP approximations. The corresponding roots of the dispersion relations
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are presented in Figures 8.4a,b and 8.5a,b for β = −0.2 and β = −0.5, respectively,
which also compares them with the roots for the discrete problem. One can see that
at smaller |β| the MG1/2 model gives a slightly better prediction of the real roots than
the MGP model, while at larger |β| the opposite is true. The reason for this becomes
clear when one observes that the error of MG1/2 approximation is −βk4/48 + O(k6)
and therefore the quality of approximation is getting better at β gets closer to zero.
Meanwhile, the error for MGP model is independent of β (to the lowest order) but
depends instead on the velocity V 2k4/240 + O(k6), so this approximation improves
at smaller velocities for |k| close to zero. Figures 8.4c and 8.5c compare the strain
profiles in both models to the discrete case. One can see again that MG1/2 model
works better at smaller β, while MGP model gives a better prediction of the discrete
strain profile for larger β. Both models overestimate the frequency of radiation.

The kinetic relations generated by both models are compared with the discrete
kinetics from [27] in Figures 8.4d and 8.5d. As expected, kinetic relation for MG1/2
model is closer to the discrete one at smaller β (notice, however, that unlike the
discrete model [27] it predicts G(0) = 0), and the MGP model gives a better prediction
at higher |β|. Quite expectedly, both models gives a worse approximation than MG2
model which is of higher order, but their advantage is that they are linearly stable at
all wavelengths. In the next section we show how the best so far MG2 approximation
can be adjusted to enjoy the same level of well-posedness.

9. Well-posed approximations. In constructing our quasicontinuum approx-
imations we were guided so far exclusively by the desire to provide an optimal fit for
the discrete dispersion relation at long waves. In order to be able to use the model
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outside the narrow framework of the traveling wave solutions, one needs to impose
an additional condition that the model produces well-posed initial value problem. At
least necessary conditions can be formulated quite easily. Indeed, we recall that the
governing equations for all the approximate models considered so far are linear in each
phase. Therefore to test the well-posedness of an initial value problem in the pure
phases it is sufficient to consider the plane waves of the form exp[i(ωt + kx)]. The
dispersion relation for a generic quasicontinuum approximation can be written as

ω2(k) =
k2LA(k)

KA(k)
, (9.1)

where LA(k) and KA(k) are the corresponding approximations of L(k) and K(k).
The wavenumbers k at which ω2(k) < 0 correspond to modes of instability for the
homogeneous states away from the front. In view of (9.1) and the fact that KA(k) > 0
in all approximations considered above, these are the wavenumbers at which LA(k) <
0. For instance, if the coefficients in front of the highest-order term in LA(k) are
negative, homogeneous deformation is unstable with respect to perturbations with
sufficiently short wave length, |k| > k∗, where LA(k∗) = 0. As one can readily see,
this is indeed what happens with our “best” polynomial approximation (MG2 model)
in at least one of the relevant parameter ranges.

Although this formally implies that this model is ill-posed, one has to keep in
mind that the polynomial expansions are expected to be valid only for sufficiently
long waves. The apparent short-wave instability is the result of the rigid, low para-
metric nature of the approximation and is unphysical given that the homogeneous
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deformation is stable in the original discrete problem. To eliminate this unphysical
instability, the approximate models must be restricted to functions whose Fourier
image is confined in the interval |k| < k∗ and the corresponding projection of the
operator leads to a well-posed problem. In statics this restriction can be achieved by
setting ω(k) = 0 for real wave numbers that satisfy |k| > π and thus correspond to
length scales less than the lattice size [11, 29].

In dynamics we can similarly replace L(k) by

Lε(k) = LA(k)ηε(k/k∗), (9.2)

where ε > 0 is a small parameter, k∗ satisfies LA(k) = 0 and

ηε(y) =
1

2

(

1 − tanh
y2 − 1

ε

)

(9.3)

is a smooth and analytic cut-off function, which is positive for all real y. Notice that
for sufficiently small ε this function is close to one for |y| < 1 and decays exponentially
fast to zero outside this interval. Thus for |k| > k∗ the function ω2

ε(k) = k2Lε(k)/K(k)
is negative but approaches zero exponentially fast at large k. It tends to zero together
with ε, so that the growth rate for short-wave instabilities also disappears in the limit.
For real k one can show that ηε(k/k∗) → θ(1 − k2/k2

∗) as ε tends to zero, effectively
cutting off the unwanted wave-numbers. For instance, applying this procedure to the
MG2 model we obtain in the limit ε → 0 a nonlocal energy operator:

L(k) ≈ (c2 + a1k
2 + a2k

4)θ(1 − k2/k2
∗) (9.4)
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In this case the quadratic part of the elastic energy takes the form

1

2

∫ ∞

−∞

uxLuxdx ≈ 1

2

∫ ∞

−∞

∫ ∞

−∞

Φ(x − y)ux(x, t)ux(y, t)dxdy,

where

Φ(x) =
1

πx5

{

2k∗x((a1 + 2a2k
2
∗)x

2 − 12a2) cos(k∗x)

+ (24a2 − 2(a1 + 6a2k
2
∗)x

2) sin(k∗x)

}

is the oscillatory kernel that decays as 1/x2 at infinity. We remark that at sufficiently
long waves the nonlocal approximation (9.4) of the potential energy operator is equiv-
alent to the local gradient approximation (5.3)2. The two models are expected to be
close in at least some nonlinear regimes as well; in particular, they generate identical
kinetic relations for all nonzero V .

10. Conclusions. In this paper we proposed a series of quasicontinuum approx-
imations for the simplest one-dimensional lattice model describing dynamic phase
transitions. The approximations are dispersive and include various non-classical cor-
rections to both kinetic and potential energies. We showed that the quasicontinuum
theory can be chosen in such a way that the associated closed-form kinetic relation is
in excellent agreement with the predictions of the discrete theory for a broad range
of phase boundary velocities. The essential ingredient making our approximations
adequate in a wide range of parameters is the dispersive modification of the kinetic
energy which introduces in the constitutive model the effects of micro-inertia. The
presence of somewhat unusual kinetic energy terms at the mesoscale, where quasicon-
tinuum models actually operate, reflects the oscillatory nature of the typical solutions
in the discrete phase transition problem. To deal with the ill-posedness of the straight-
forward high-gradient quasicontinuum expansions we proposed to use a cutoff in the
spectrum of the linearized operator. This operation, detailed in the paper, furnishes a
canonical replacement of an ill-posed high-gradient model with a well-posed strongly
nonlocal model with an explicit kernel. An unusual feature of this kernel is that the
strong nonlocality of the model remains invisible in the case of long wave initial data
until the nonlinearity is able to generate sufficiently short waves. The fact that this
does not happen in the solutions describing isolated phase boundaries gives a hope
that in most cases of interest one should be able to safely replace integral equations
by partial differential equations.
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