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Abstract

In this paper we formulate two numerical methods for modeling two-phase flow
problems arising in porous media. The unknowns are approximated by piecewise
discontinuous polynomials of arbitrary high degree. No postprocessing, such as slope
limiters, is needed. The Jacobian matrix for the Newton-Raphson scheme, is given.
Numerical examples of homogeneous and heterogeneous media are presented.
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1 Introduction

The understanding of multiphase flow is of crucial importance to agencies
concerned with energy, in particular oil production. This paper deals with the
modeling of two-phase flow, for example the flow of a wetting phase (such as
water) and a non-wetting phase (such as dense non-aqueous phase liquids),
in a porous medium with possibly heterogeneous characteristics. This type
of flow is mathematically modeled by a nonlinear system of coupled partial
differential equations (PDEs) that express the conservation laws of mass and
momentum and that in general can only be solved by the use of numerical
methods. A review on the issues arising in modeling multiphase flow is given
in [10].

Affordable computing power allows oil engineers to add complexity to their
reservoir models. Some of the features that may have been ignored previously
include for instance, complex geometry, faults, channels and deviated wells.
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It is therefore important to develop discretization methods that approximate
accurately physical quantities such as pressure, flow rates and mass balances on
highly unstructured and non-conforming grids. The current industrial reservoir
simulators support finite differences, which are quite popular and efficient on
regular structured grids [13]. But, these methods can lose their stability on
unstructured meshes and are not ideal for complex geometries.

The goal of this paper is to introduce a high order discontinuous Galerkin
(DG) method for solving incompressible two-phase problem. Over the last few
years, discontinuous finite element methods have been shown to be competi-
tive with respect to other standard techniques in flow and transport problems:
they have been successfully applied to single phase flow, miscible displacement
and linear transport [17,14,16,15,6]. The appeal of these methods lies in their
local behavior: the mesh can Obe locally refined, the degree of polynomial
approximation can vary from grid cell to grid cell, and the mass balance equa-
tions are satisfied elementwise. The method introduced here is based on the
Non-symmetric Interior Penalty Galerkin (NIPG) method introduced and an-
alyzed in [17] for diffusion problems. A variety of DG methods are described
in [4].

In this work we consider two different implicit pressure-saturation formula-
tions for two-phase flow. The primary variables are the pressure of the wetting
phase and the saturation of the non-wetting phase. They are approximated
by discontinuous polynomials of different degrees. The resulting finite dimen-
sional problem is an algebraic system of nonlinear equations to which the
Newton-Rapshon iterative scheme is applied. No slope-limiter techniques
are employed. A detailed description of several models of multiphase flow
can be found in [7,11,8]. In [12,1], DG methods are applied to a sequential
pressure-saturation formulation, in which the coefficients are evaluated at the
previous time step. In this case, overshoot and undershoot occur and they
are removed by the use of slope limiters [3,5]. Some of the difficulties of slope
limiters are the lack of theoretical convergence in two or three dimensions.

The outline of the paper is as follows. Section 2 contains the description of the
two formulations of the model problem. The fully implicit numerical scheme is
introduced in Section 3. In Section 4 the Newton-Rapshon algorithm applied to
the resulted system of the nonlinear equations is considered and construction
of the jacobian is given. Numerical results for homogeneous and heterogeneous
permeability fields are given in Section 5. Conclusions follow.



2 Model Problem.

Let Q2 be a polygonal porous medium in R?. The flow of the wetting phase (such
as water) and non-wetting phase (such as oil) in €2 is described by Darcy’s law
and the continuity equation for each phase. Let us denote by the subscript
a = w and a = n the wetting and non-wetting phase respectively. The Darcy
velocity for each phase is given by :

Uq = _)‘aKVpaa a=w,n, (1)

where p, is the phase pressure, and the continuity equation satisfied by the
phase saturation s, is given by

O(papsa)
ot

The coefficients in (1) and (2) are defined below:

+ V- (palia) = pala, o= w,n. (2)

e The permeability K is a symmetric positive definite tensor, obtained from a
macroscopic averaging of the microscopic features of the medium. Hence, it
can be discontinuous in the space variable and can vary over several orders
of magnitude.

e )\, and )\, are the mobilities of the wetting and non-wetting phase respec-
tively. Mobilities are the ratios of relative permeabilities by the viscosities

)\azkﬁ, a=w,n, (3)
Ma
and the relative permeabilities are functions that depend on the non-wetting
phase saturation s, in a non-linear fashion. In this work, the commonly used
Brooks-Corey model [2] is considered.
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brals) = (1= ), k(s) = (1 (1 - s5%)). (4)

This model introduces an additional parameter 6 € [0.2, 3.0], which charac-
terizes the inhomogeneity of the medium. We also denote \; = A\, + A, the
total mobility.

e In addition to Equations (1) and (2), the following closure relations must
also be satisfied:

Sw+ Sn =1, (5)
DPe = Pn — Pw, (6)

where p, is the capillary pressure given by:
pe(s) = pa(l —s)70. (7)

Here, p, is the capillary pressure needed to displace the fluid from the largest
pore.



® p,, ¢ are the phase densities and porosity respectively.

We have restricted our consideration to incompressible fluid flow, i.e. the den-
sities p, are constant. Furthermore, we assume that the porosity ¢ is constant
over the entire domain. Under these assumptions, the continuity equation (2)

is reduced to
05,

qﬁﬁ—l-v-(ua):qa, a = w,n. (8)
The continuity equation (8) and Darcy’s law (1) is the basis for the description
of incompressible multiphase flow processes. The pressure and saturation can
be coupled using the closure relations (5) and (6). In this paper, we consider
two formulations of the two-phase flow problem, described below.

The first formulation of the model for the coupled pressure-saturation equa-
tions for incompressible two-phase flow with unknowns p,, and s, can be de-
rived by summing continuity equations (8) for wetting and non-wetting phase
and using (1), (5), (6) and continuity equation (8) for wetting phase:

0sy, 9)
_(bﬁ -V- ()‘vaPw) = Qu-

The second formulation of the model for the coupled pressure-saturation equa-
tions for incompressible two-phase flow with unknowns p,, and s, can be ob-
tained by substituting (1), (5), (6) into (8) :
0sy,
_d)ﬁ -V- ()‘wKpr) = Qu,

0s,,
¢ﬁ =V - (MK (Vpe + Vpw)) = n.

(10)

Both formulations of the coupled pressure-saturation equations stated above
are subject to the following boundary and initial conditions. We assume that
boundary of the domain is divided into three disjoint open sets 02 = I'y U
'y UT_ and we denote by n the outward normal to the 0.
Pw = Dirs Sp = sz", on I'_ - the inflow boundary,
P = Diiry A KVpe-n=0, on T, - the outflow boundary, (11)
MK Vp,-n=0, MKVp,-n=0, on 'y - no-flow boundary ,

5,(€2;0) = s°(Q), saturation at time ¢ =0 . (12)

The systems of partial differential equations for formulations (9) and (10)
can be classified as mixed hyperbolic-parabolic type and these formulations
are numerically investigated in the rest of the paper.



3 Fully Implicit Scheme

The domain ) is subdivided into a non degenerate quasi-uniform partition
En = {E} g consisting of Nj, quadrilaterals of maximum diameter h. Let T,
be the union of the open sets that coincide with interior edges of elements of
Eh. Let e denote a segment of ', shared by two elements E¥ and E' of £,; we
associate with e a unit normal vector n, directed from E* to E', (k > 1), and
we define formally the jump and average of a function ¢ on e by :

9= @lew)le — Wlao)le (13)
(0} = 5 @)l + 5 Wl (14)

If e is adjacent to OS2, then the jump and the average of ¥ on e coincide
with the trace of ¥ on e and the normal vector n. coincides with the outward
normal 1. We also denote by |e| the length of e. For a given integer r > 0, the
discontinuous finite element space is

D, (&) = {v e L*(Q) :v|g €P(E) VE €&}, (15)

where P, (F) is the space of polynomials of total degree less than or equal to
r. We approximate the pressure of the wetting phase and saturation of the
non-wetting phase by discontinuous polynomials of total degrees r, and 7,
respectively.

The time interval is divided into N equal subintervals of length At. Let
t* = iAt and let p’, and s’ be the numerical solutions at time ¢*. We also
denote X!, = M\,(s) and p’ = p.(s). Application of the backward Euler
scheme for time stepping and NIPG for the space discretization to the system
of PDEs for the coupled equations (9) and (10) yields two systems of nonlinear

equations.

Fully implicit scheme for first formulation (9): given (pl,sh) € D, (Ep) X
D;,(€n), find (p ", sit') satisfying

Pressure Equation :

> / ANHEVP . V2 + 3 / NVt V2
E E

Ec&y, E€E&y,
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(16)
Saturation Equation :
B /Q Ait(a’ffl Do+ Y / NIRRT V- Y /{/\ZHKVPZH ne}[v]

Eec&y, eEFhUFD+UF

+ > /{)\Z“KVU ne Yot +
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(17)

where 3 is a positive constant and ¢ are the penalties parameters on interior
and boundary edges penalizing the jumps of the discontinuous polynomials.

Fully implicit scheme for second formulation (10): given (pfu, s’n) €D, (&p) %
D,,(&r), find (pﬁjl, :;“1) satisfying

Pressure Equation :

/Q%(SZH AT Z / NHE(Vpith + Vpith) . vz

Ecgy,
_ Z /{/\z—HKvpz—H ne}[z] Z /{)\Z+1Kvpz+1 ne}[z]
ecl', Ul' Ul — eel', Ul'
+ > /{)\"HKVZ n M+ > /{)\ZHKVZ ne}pit!
eel', Ul' 4 Ul — eel', Ul
+ e [ + > o % [
eerhurmur le] €T, Ul le]
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e€l 4 Ul €|
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(18)



Saturation Equation :
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0 .
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e€l' Ul e€l’ +ur

(19)

Because of the nonlinearity in equations (16),(17) and (18), (19), the approx-
imations at the next time step (pit!, si™') are obtained by applying Newton-
Raphson iterative scheme [9], described in the next section.

4 Newton-Raphson iterative scheme and construction of the Jaco-
bian

Assume that {¢%s: 1<, <m, Eec&}and{p2:1< l, <m,, FE€é&}
are two basis for the discrete spaces D,,(£,) and D, (&) respectively. It is
understood that the functions % are identically zero outside the element E.
Thus, we can write

52+1| Z SESDEa H—1|E = Z pE‘PEa VE € & (20)
li—1 =1

Thus, inserting (20) into (16)-(19), we obtain systems of algebraic nonlinear
equations in the general form of:

G, 5 =0, (21)

where pif! = (p) gy, and 5it! = (sl8) gy, are vectors of unknowns for pit! and

stt1. To solve (21) we apply Newton-Raphson algorithm :

Jo (P —=i+1, r —z—|—1 r)57'+1 G(Z—)Z}H r —zn—|—1 ", )
(pqurl r+1’ 8:1+1,r+1) (]—)LJA r’—:lﬂ r) + 5T+1

where the superscript r denotes the r** Newton-Raphson iterate and Jg is
the Jacobian of the system (21). In order to explicitely define Jg we denote

by G¥ (resp. G¥) the row of G corresponding to the test function ¢ (resp.



@), with F € £, and 1 < k, < m, (resp. 1 < ks < my). Then, we can write
Jg in a block form:

Gk aGhr

apy sl

Jo = .

¢ 50?; 0GE (1< ky,l, <m,
op  Osy

1 Sks’als < mg
E Feg,

In the derivation below, we separate the contributions to the Jacobian between
contributions from volume integrals, interior edges and boundary edges. For
the interior edge contribution associated to one edge e, we assume that e is
shared by the elements F; and F, and for the boundary edge contribution, we
assume that e belongs to E;. We also use the notation &' for the restriction of
any function & on the element E; for : = 1, 2. We now give the computation of
the nonzero entries for the block diagonal Jacobian for the scheme (16),(17).
A similar derivation can be done for the scheme (18), (19).

Contribution from the pressure equation (16):
Volume integrals:
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Boundary edges :
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Contribution from the saturation equation (17):
Volume integrals :

Interior edges :

ey

! 1 I
aplp = _5 /e'A’lluKlv(pEpi‘l : negp%l + 5 /e)\i)Klng%I ) ne(pEl |ﬂ /QDElngl
E;
OG"s )\ AL
% =3, o5t ol K'Vpl, el + ¢ 2 ). ot <PE‘1K Vi, - ne(Py, — Pay)-
Ey
6G’}_’51 .

I l
a o = _§/A12UK2V€0 nengl — —/Al Klvgp ne¢£‘2 - |,3 /QDEQQDE1
PE, €

oGk 1 rox
=—3 5, K>Vl - el .
0s's, 2 Je 0sly, g P * Te¥E,

oGk: 1
= _/A;KIVSOIJ:% el + _/)‘iszV@%Z '”e‘Pgl
8p§1 2 e 2 €

|/3 / QDEl (pEQ

OAL
=3 [ IR gk

10



oGh: 1 L
—_— A2l(2‘7¢ ne@%i S Ai}(2‘7¢§i .newﬂb (PngEb
2 2 Je |’B

8p§§2

oGk 1 1 0N 10X

885;2 = 5 e 88ls ¢E2K2pr nego%w + 5 . 8Sls ¢E2K2V90 (pqlu _p121))
Ey

Boundary edges :

8Gks 1 lp
fﬁ = A;}(1‘7@£i 'newgi'+' A;}(1‘7@§i .newﬁh (pElwﬁh
op, e e el

OAL Oy,
— _/a Klvpzlu 'ne§0%1w+/ I @%1K1V¢]E§l -ne( 1 _piﬂ‘),
SE e aSEl

The choice of the initial guess for the Newton-Raphson algorithm (22) plays
a crucial role for the convergence of the Newton iterates. For ¢ > 0, the initial
guess for the time step 7 + 1 is chosen as:

( —i+1, 0 z+1 0)

For the first time step, we construct a special initial guess. As was stated
above the model problem with formulations (9) and (10) is subject to an
initial condition on the saturation (12). Therefore at time i = 0 we define

sh0 = g0 (23)

n

and we choose for initial guess for the pressure p° the solution to the linear
system of equations:
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5 Numerical Simulations

We consider a square domain Q2 = (0,100)? divided into a uniform grid of
square cells. We refer to the mesh h; the mesh consisting of cells of side equal
to 25m, the mesh hy for cells of side equal to 12.5m and the mesh A3 for
cells of side equal to 6.25m. Water and oil are the wetting phase and non-
wetting phase respectively. The inflow and outflow boundaries and the fluid
characteristics are given below:

I = {0} x (0,100), T, = {100} x (0,100),
st =0.15, pg,. =34 pL =1
pw = pn = 1000kg/m®, p, = 0.01kg/ms, i, = 0.001kg/ms, ¢ =02, py;=1.e*Pa.

Finally, we assume that 8 = 1 and At = 1 day. We consider both homogeneous
and heterogeneous porous media. In the rest of the paper, we present pictures
of the approximations of the water pressure and water saturation. We recall
that s, =1 — s,,.

5.1 The homogeneous porous medium

We set the permeability K = kI with k¥ = 5.e~® over the entire domain. The
pressure is approximated by piecewise quadratics and saturation by piecewise
linears. The Brooks-Corey parameter 6 is chosen equal to 2.

First we consider the DG scheme for the first formulation (9). The penalty
parameter ¢ in (16), (17) is set to 1.0. The numerical convergence of the
approximations of pressure and saturation at 300 and 450 days is shown in
Fig. 1 and Fig. 2. It only takes 4 Newton iterations at each time step for
convergence of the Newton-Raphson scheme applied to (16), (17). This is true
for all the test cases unless specified otherwise. We also recall that no slope
limiting techniques are used.

Next, we vary the penalty parameter o € {0.1,1,10} and show the profiles of
pressure and saturation at time ¢ = 450 days in Fig. 3. There is no difference
in the solutions for the method (9) as it can be seen from the figures; all
profiles coincide. However, setting the penalty parameter 0¥ to zero in (16),
(17) results in overshoot in saturation, which becomes greater than 1 at time
step t = 80 days.

Second we compare the DG schemes for both formulations (9) and (10). The
method (18), (19) is very sensitive with respect to the size of the penalty
parameter. If ¢¥ is chosen to be greater than 0.01, numerical overshoot occurs
and saturation is greater than 1 at first time step. Fig. 4 and Fig. 5 contain
comparisons of pressure and saturation profiles at 450 days obtained on meshes

12
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Fig. 1. Pressure profile (r, = 2,7, = 1) at 300 days (left) and 450 days (right) on
meshes k1 (dotted line), ko (dashed line) and k3 (solid line) for penalty size 00 = 1.
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Fig. 2. Saturation profile (r, = 2,7, = 1) at 300 days (left) and 450 days (right)

on meshes hy (dotted line), hy (dashed line) and hg (solid line) for penalty size
0

o, = 1.0.

ho and hs for a penalty parameter equal to 0.01. In this case, formulation (9)
produces a sharper front than formulation (10).

Again, only 4 Newton iterations are needed at each time step for convergence of
the Newton-Raphson scheme applied to (16), (17) and (18),(19) with penalty
parameter equal to 0.01.
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Fig. 4. Comparison of the pressure profile (r, = 2,
at 450 days on meshes ho and hg for penalty size o = 0.01: solid line for formulation
(9) and dashed line for formulation (10).

5.2 The heterogeneous porous medium

9 = 1.0 (solid

e

.
100

rs = 1) for the two formulations

We consider the heterogeneous permeability K = kI with £ = 5.e — 8 in most
of the domain except in an inclusion where £ = 5.e — 12 (see Fig. 6). The
inclusion is located at (37.5,75) x (25,75). The Brooks-Corey parameter 6 is
chosen equal to 3. We fix the mesh h = hy and we vary the polynomial degrees

for pressure and saturation approximations.

First, we show the evolution of pressure and saturation contours obtained

14
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SAT
SAT

Fig. 5. Comparison of the saturation profile (r, = 2, 7, = 1) for the two formu-
lations at 450 days on meshes ho and hs for penalty size o = 0.01: solid line for
formulation (9) and dashed line for formulation (10).

with (16), (17) from 150 days to 450 days in Fig. 7 and Fig. 8. In this case,
the pressure is approximated by quartic polynomials and the saturation by
quadratic polynomials. The penalty parameter is equal to 1. Both pressure and
saturation contours take into account the heterogeneity of the permeability
field; the low permeability region acts as an impermeable zone where the
wetting phase saturation does not penetrate.

Second, we show numerical convergence of (16), (17) by increasing the poly-
nomial orders:

e Case 1: Piecewise cubics for pressure and piecewise linears for saturation:
rp, =3, Ts=1

e Case 2: Piecewise quartics for pressure and piecewise quadratics for satura-
tion: r, =4, r,=2.

e Case 3: Piecewise polynomials of fifth degree for pressure and piecewise
cubics for saturation: 7, =5, 7, =3.

The pressure and saturation contours at 300 and 550 days for the p-version
are shown in Fig. (9), (10), (11) and Fig. (12), (13), (14). For the first case,
the water floods the domain as if it was homogeneous. The accuracy of the
solutions is greatly improved in cases 2 and 3.

Finally, we demonstrate that different penalties yield the same approximate
solution. The profiles of saturation and pressure along the line (0,100) x {50}
are shown in Fig. 15. Here, the discrete orders are r, = 4 and r, = 2, but this

result is also true for other choices of polynomial degrees.

As for the homogeneous case, it takes 4 newton iterations at each time step
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Fig. 6. Heterogeneous permeability field.

Fig. 7. Evolution of the pressure contour for k, = 4,
and 450 days for penalty o0 = 1.0.

Fig. 8. Evolution of the saturation contour for k, = 4, k, = 2, on mesh hy at 150,
300 and 450 days for penalty o0 = 1.0.

to converge and no slope limiter techniques are applied.

The DG scheme applied to the second formulation (10) is again very sen-
sitive to the choice of the penalty parameter. We observe numerically that
approximations of pressure and saturation with polynomials degrees higher
than 1 produce an increasing number of Newton-Rapshon iterations at each
time step; eventually the iterations fail to converge. If one uses linears for both
saturation and pressure spaces, one needs to use a very fine mesh in order to
capture the heterogeneity and thus, computations become expensive.
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Fig. 9. Saturation and pressure contours on mesh hy for k, = 3 and ks = 1 at 300
days for penalty of = 1.0.
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Fig. 10. Saturation and pressure contours on mesh hy for k, = 4 and ks = 2 at 300
days for penalty of = 1.0.
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Fig. 11. Saturation and pressure contours on mesh hy for k, = 5 and ks = 3 at 300
days for penalty of = 1.0.

6 Conclusions

In this paper, we present two high-order numerical methods based on two dif-
ferent formulations of two-phase flow. Due to their local features, the schemes
are well-suited for heterogeneities such as discontinuous permeability fields
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Fig. 12. Saturation and pressure contours on mesh hy for k, = 3 and ks = 1 at 550
days for penalty of = 1.0.
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Fig. 13. Saturation and pressure contours on mesh ho for k, = 4 and ks = 2 at 550
days for penalty of = 1.0.
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Fig. 14. Saturation and pressure contours on mesh hy for k, = 5 and ks = 3 at 550
days for penalty of = 1.0.

and complex geometries. We show convergence of the numerical solutions by
either refining the mesh successively or by increasing the polynomial degrees.
We also demonstrate that for the first method, the size of the penalty param-
eter does not influence the solutions.
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Fig. 15. Pressure and saturation profiles at 550 days on mesh hy for k, = 4, k; = 2
with penalties of = 0.1 (dotted line), o§ = 1.0 (solid line), o§ = 10.0 (dashed line).
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