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Abstract

We develop a mixed finite element method for single phase flow in porous media
that reduces to cell-centered finite differences on quadrilateral and simplicial grids and
performs well for discontinuous full tensor coefficients. Motivated by the multipoint
flux approximation method where sub-edge fluxes are introduced, we consider the
lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method. A special
quadrature rule is employed that allows for local velocity elimination and leads to a
symmetric and positive definite cell-centered system for the pressures. Theoretical and
numerical results indicate second-order convergence for pressures at the cell centers
and first-order convergence for sub-edge fluxes. Second-order convergence for edge
fluxes is also observed computationally if the grids are sufficiently regular.
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1 Introduction
Mixed finite element (MFE) methods have been widely used for modeling flow in porous
media due to their local mass conservation and accurate approximation of the velocity.
They also handle well discontinuous coefficients. A computational drawback of these
methods is the need to solve an algebraic system of saddle point type. Several methods
have been developed in the literature to address this issue. It was established in [27] that, in
the case of diagonal tensor coefficients and rectangular grids, MFE methods can be reduced
to cell-centered finite differences (CCFD) for the pressure through the use of a quadrature
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rule for the velocity mass matrix. This relationship was explored in [31] to obtain conver-
gence of CCFD on rectangular grids. This result was extended to full tensor coefficients
and logically rectangular grids in [6, 5], where the expanded mixed finite element (EMFE)
method was introduced. The EMFE method is very accurate for smooth grids and coeffi-
cients, but loses accuracy near discontinuities. This is due to the arithmetic averaging of
discontinuous coefficients. Higher order accuracy can be recovered if pressure Lagrange
multipliers are introduced along discontinuous interfaces [5], but then the cell-centered
structure is lost.

Several other methods have been introduced that handle well rough grids and coeffi-
cients. The control volume mixed finite element (CVMFE) method [15] is based on dis-
cretizing the Darcy’s law on specially constructed control volumes. Mimetic finite differ-
ence (MFD) methods [21] are designed to mimic on the discrete level critical properties of
the differential operators. The approximating spaces in both methods are closely related
to RT0, the lowest order Raviart-Thomas MFE spaces [25]. These relationships have been
explored in [16, 28] and [9, 11] to establish convergence of the CVMFE methods and the
MFD methods, respectively. However, as in the case of MFE methods, both methods lead
to an algebraic saddle point problem. The multipoint flux approximation (MPFA) method
[2, 1, 18] has been developed as a finite volume method and combines the advantages of the
above mentioned methods, i.e., it is accurate for rough grids and coefficients and reduces
to a cell-centered stencil for the pressures. However, due to the MPFA non-variational for-
mulation, there exist only limited theoretical results in the literature for the well-posedness
and convergence of this method [22].

In this paper we design a mixed finite element method that reduces to accurate cell-
centered finite differences for full tensors and irregular grids and performs well for discon-
tinuous coefficients. Motivated by the multipoint flux approximation method (MPFA) [2, 1]
where sub-edge fluxes are introduced, we consider the lowest order Brezzi-Douglas-Marini
(BDM) mixed finite element method [13, 14]. In two dimensions, for example, there are
two velocity degrees of freedom per edge. A special quadrature rule is employed that al-
lows for local velocity elimination and leads to a cell-centered stencil for the pressures.
The resulting algebraic system is symmetric and positive definite. We call our method a
multipoint flux mixed finite element (MFMFE) method, due to its close relationship with
the MPFA method.

We emphasize that the formulation of the MFMFE method involves K−1, see (2.43)–
(2.44) below. For diagonal discontinuousK, the resulting coefficient is a harmonic average.
This explains the superior performance of the MFMFE method for problems with rough
grids and coefficients, compared to the EMFE method.

The variational framework allows for mixed finite element analysis tools to be com-
bined with quadrature error analysis to establish well posedness and accuracy of the MFMFE
method. We formulate and analyze the method on simplicial grids in two and three dimen-
sions as well as on quadrilateral grids. We obtain first order convergence for the pressure
in the L2-norm and for the velocity in the H(div)-norm. A duality argument is employed
to establish second-order convergence for the pressure in a discrete L2-norm involving the
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centers of mass of the elements.
The analysis in the quadrilateral case is more involved, since it requires mapping to a

reference element. As a result a restriction needs to be imposed on the geometry of each
quadrilateral, namely, that it is anO(h2) - perturbation of a parallelogram, see (2.15) below.
We have verified numerically that this restriction is not just an artifact of the analysis, but
is needed in practice as well. We also note that second-order convergence is observed
numerically for the velocities at the midpoints of the edges on h2-parallelogram grids.

The techniques used in this paper can be employed to formulate and analyze extensions
of the MFMFE method to non-matching multiblock grids via mortar finite elements in the
spirit of [4], multiscale MFMFE methods in the spirit of [3], and adaptive mortar MFMFE
methods in the spirit of [32].

The rest of the paper is organized as follows. The method is developed in Section 2.
Sections 3 and 4 are devoted to the error analysis of the velocity and the pressure, respec-
tively. Numerical experiments are presented in Section 5. We end with some conclusions
in Section 6.

2 Definition of the method

2.1 Preliminaries
We consider the second order elliptic problem written as a system of two first order equa-
tions

u = −K∇p in Ω, (2.1)
∇ · u = f in Ω, (2.2)
p = g on ΓD, (2.3)
u · n = 0 on ΓN , (2.4)

where the domain Ω ⊂ Rd, d = 2 or 3, has a boundary ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN =
∅, measure(ΓD) > 0, n is the outward unit normal on ∂Ω, and and K is a symmetric,
uniformly positive definite tensor satisfying, for some 0 < k0 ≤ k1 <∞,

k0ξ
T ξ ≤ ξTK(x)ξ ≤ k1ξ

T ξ ∀x ∈ Ω, ∀ξ ∈ Rd. (2.5)

In flow in porous media modeling p is the pressure, u is the Darcy velocity, and K repre-
sents the permeability divided by the viscosity. The choice of boundary conditions is made
for the sake of simplicity. More general boundary conditions, including non-homogeneous
full Neumann problems can also be treated.

Throughout the paper C denotes a generic positive constant that is independent of the
discretization parameter h. We will also use the following standard notation. For a domain
G ⊂ Rd, the L2(G) inner product and norm for scalar and vector valued functions are
denoted (·, ·)G and ‖ · ‖G, respectively. The norms and seminorms of the Sobolev spaces
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W k
p (G), k ∈ R, p > 0 are denoted by ‖ · ‖k,p,G and | · |k,p,G, respectively. The norms and

seminorms of the Hilbert spaces Hk(G) are denoted by ‖ · ‖k,G and | · |k,G, respectively.
We omit G in the subscript if G = Ω. For a section of the domain or element boundary
S ⊂ Rd−1 we write 〈·, ·〉S and ‖ · ‖S for the L2(S) inner product (or duality pairing) and
norm, respectively. For a tensor-valued function M , let ‖M‖α = maxi,j ‖Mij‖α for any
norm ‖ · ‖α. We will also use the space

H(div; Ω) = {v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω)}

equipped with the norm
‖v‖div = (‖v‖2 + ‖∇ · v‖2)1/2.

The weak formulation of (2.1)–(2.4) is: find u ∈ V and p ∈ W such that

(K−1u,v) = (p,∇ · v) − 〈g,v · n〉ΓD
, v ∈ V, (2.6)

(∇ · u, w) = (f, w), w ∈ W, (2.7)

where
V = {v ∈ H(div; Ω) : v · n = 0 on ΓN}, W = L2(Ω).

It is well known [14, 26] that (2.6)–(2.7) has a unique solution.

2.2 Finite element mappings
Consider a polygonal domain Ω ∈ Rd and let Th be a finite element partition of Ω consisting
of triangles and/or convex quadrilaterals in two dimensions and tetrahedra in three dimen-
sions, where h = maxE∈Th

diam(E). We assume that Th is shape regular and quasi-uniform
[17]. For any element E ∈ Th there exists a bijection mapping FE : Ê → E where Ê is the
reference element. Denote the Jacobian matrix by DFE and let JE = |det(DFE)|. Denote
the inverse mapping by F−1

E , its Jacobian matrix by DF−1

E , and let JF−1

E

= |det(DF−1

E )|.
We have that

DF−1

E (x) = (DFE)−1(x̂), JF−1

E

(x) =
1

JE(x̂)
.

In the case of convex quadrilaterals, Ê is the unit square with vertices r̂1 = (0, 0)T , r̂2 =
(1, 0)T , r̂3 = (1, 1)T and r̂4 = (0, 1)T . Denote by ri = (xi, yi)

T , i = 1, . . . , 4, the
four corresponding vertices of element E as shown in Figure 1. The outward unit normal
vectors to the edges of E and Ê are denoted by ni and n̂i, i = 1, . . . , 4, respectively. In
this case FE is the bilinear mapping given by

FE(r̂) = r1 (1 − x̂)(1 − ŷ) + r2 x̂(1 − ŷ) + r3 x̂ŷ + r4 (1 − x̂)ŷ

= r1 + r21x̂+ r41ŷ + (r34 − r21)x̂ŷ,
(2.8)

where rij = ri − rj. It is easy to see that DFE and JE are linear functions of x̂ and ŷ:

DFE = [(1 − ŷ) r21 + ŷ r34, (1 − x̂) r41 + x̂ r32]

= [r21, r41] + [(r34 − r21)ŷ, (r34 − r21)x̂],
(2.9)
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Figure 1: Mapping in the case of a quadrilateral.

JE = 2|T1| + 2(|T2| − |T1|)x̂+ 2(|T4| − |T1|)ŷ, (2.10)

where |Ti| is the area of the triangle formed by the two edges sharing ri. Since E is convex,
the Jacobian determinant JE is uniformly positive, i.e. JE(x̂, ŷ) > 0.

In the case of triangles, Ê is the reference right triangle with vertices r̂1 = (0, 0)T ,
r̂2 = (1, 0)T , and r̂3 = (0, 1)T . Let r1, r2, and r3 be the corresponding vertices of E,
oriented in a counter clockwise direction. The linear mapping for triangles has the form

FE(r̂) = r1(1 − x̂− ŷ) + r2x̂ + r3ŷ, (2.11)

with respective Jacobian matrix and Jacobian determinant

DFE = [r21, r31]
T and JE = 2|E|. (2.12)

The mapping in the case of tetrahedra is described similarly to the triangular case. Note
that in the case of simplicial elements the mapping is affine and the Jacobian matrix and its
determinant are constants.

Using the mapping definitions (2.8)–(2.12), it is easy to check that for any edge (face)
ei ⊂ ∂E

ni =
1

|ei|
JE(DF−1

E )T n̂i. (2.13)

It is also easy to see that, for all element types, the mapping definitions and the shape-
regularity and quasi-uniformity of the grids imply that

‖DFE‖0,∞,Ê ∼ h, ‖JE‖0,∞,Ê ∼ hd, and ‖JF−1

E

‖
0,∞,Ê ∼ h−d ∀E ∈ Th, (2.14)

where the notation a ∼ b means that there exist positive constants c0 and c1 independent of
h such that c0b ≤ a ≤ c1b.

For the remainder of the paper we will assume that the quadrilateral elements areO(h2)-
perturbations of parallelograms:

‖r34 − r21‖ ≤ Ch2. (2.15)
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Figure 2: Degrees of freedom and basis functions for the BDM1 spaces on quadrilaterals.

We call such elements h2-parallelograms, following the terminology from [19]. Elements
of this type are obtained by uniform refinements of a general quadrilateral grid. It is not
difficult to check that in this case ||T2| − |T1|| ≤ Ch3, ||T4| − |T1|| ≤ Ch3, and

|DFE|1,∞,Ê ≤ Ch2 and
∣∣∣∣

1

JE

DFE

∣∣∣∣
j,∞,Ê

≤ Chj−1, j = 1, 2. (2.16)

2.3 Mixed finite element spaces
Let Vh × Wh be the lowest order BDM1 mixed finite element spaces [13, 14]. On the
reference unit square these spaces are defined as

V̂(Ê) = P1(Ê)2 + r curl(x̂2ŷ) + s curl(x̂ŷ2)

=

(
α1x̂+ β1ŷ + γ1 + rx̂2 + 2sx̂ŷ
α2x̂+ β2ŷ + γ2 − 2rx̂ŷ − sŷ2

)
, Ŵ (Ê) = P0(Ê),

(2.17)

where α1, α2, β1, β2, γ1, γ2, s, r are real constants and Pk denotes the space of polynomials
of degree ≤ k. In the case when the reference element Ê is the unit triangle or tetrahedron,
the BDM1 spaces are defined as

V̂(Ê) = P1(Ê)d, Ŵ (Ê) = P0(Ê). (2.18)

Note that in all three cases ∇̂ · V̂(Ê) = Ŵ (Ê) and that for all v̂ ∈ V̂(Ê) and for any edge
(or face) ê of Ê

v̂ · n̂ê ∈ P1(ê).

It is well known [13, 14] that the degrees of freedom for V̂(Ê) can be chosen to be the
values of v̂ · n̂ê at any two points on each edge ê if Ê is the unit triangle or the unit square,
or any three points on each face ê if Ê is the unit tetrahedron. We choose these points to
be the vertices of ê, see Figure 2 for the quadrilateral case. This choice is motivated by the
requirement of accuracy and certain orthogonalities for the quadrature rule introduced in
the next section.
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The BDM1 spaces on any element E ∈ Th are defined via the transformations

v ↔ v̂ : v =
1

JE
DFEv̂ ◦ F−1

E , w ↔ ŵ : w = ŵ ◦ F−1

E .

The vector transformation is known as the Piola transformation. It is designed to preserve
the normal components of the velocity vectors on the edges (faces) and satisfies the impor-
tant properties [14]

(∇ · v, w)E = (∇̂ · v̂, ŵ)Ê and 〈v · ne, w〉e = 〈v̂ · n̂ê, ŵ〉ê. (2.19)

Moreover, (2.13) implies

v · ne =
1

JE
DFEv̂ · 1

|e|JE(DF−1

E )T n̂ê =
1

|e| v̂ · n̂ê. (2.20)

Also note that the first equation in (2.19) and (∇ · v, w)E = (∇̂ · v, ŵJE)Ê imply

∇ · v =

(
1

JE
∇̂ · v̂

)
◦ F−1

E (x). (2.21)

Therefore on quadrilaterals ∇ · v|E 6= constant.
The BDM1 spaces on Th are given by

Vh = {v ∈ V : v|E ↔ v̂, v̂ ∈ V̂(Ê) ∀E ∈ Th},
Wh = {w ∈ W : w|E ↔ ŵ, ŵ ∈ Ŵ (Ê) ∀E ∈ Th}.

(2.22)

It is known [13, 14, 30] that there exists a projection operator Π from V ∩ (H 1(Ω))d onto
Vh satisfying

(∇ · (Πq − q), w) = 0 ∀w ∈ Wh. (2.23)

The operator Π is defined locally on each element E by

Πq ↔ Π̂q, Π̂q = Π̂q̂, (2.24)

where Π̂ : (H1(Ê))d → V̂(Ê) is the reference element projection operator satisfying

∀ ê ⊂ ∂Ê, 〈(Π̂q̂ − q̂) · n̂, p̂1〉ê = 0 ∀ p̂1 ∈ P1(ê). (2.25)

To see that Πq · n = 0 on ΓN if q · n = 0 on ΓN , note that for any e ∈ ΓN and for all
p1 ↔ p̂1 ∈ P1(ê),

〈Πq · n, p1〉e = 〈Π̂q · n̂, p̂1〉ê = 〈Π̂q̂ · n̂, p̂1〉ê = 〈q̂ · n̂, p̂1〉ê = 0,

implying Πq · n = 0, where we have used (2.19), (2.24), and (2.25).
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In addition to the mixed projection operator Π onto Vh, we will use a similar projection
operator onto the lowest order Raviart-Thomas spaces [25, 14]. The RT0 spaces are defined
on the unit square as

V̂0(Ê) =

(
α1 + β1x̂
α2 + β2ŷ

)
, Ŵ 0(Ê) = P0(Ê), (2.26)

and on the unit triangle as

V̂0(Ê) =

(
α1 + βx̂
α2 + βŷ

)
, Ŵ 0(Ê) = P0(Ê). (2.27)

On the unit tetrahedron V̂0(Ê) has an additional component α3 + βẑ. In all cases ∇̂ ·
V̂0(Ê) = Ŵ 0(Ê) and v̂ · n̂ê ∈ P0(ê). The degrees of freedom of V̂0(Ê) are the values of
v̂ · n̂ê at the midpoints of all edges (faces) ê. The projection operator Π̂0 : (H1(Ê))d →
V̂0(Ê) satisfies

∀ ê ⊂ ∂Ê, 〈(Π̂0q̂ − q̂) · n̂, p̂0〉ê = 0 ∀ p̂0 ∈ P0(ê). (2.28)

The spaces V0

h and W 0

h on Th and the projection operator Π0 : (H1(Ω))d → V0

h are
defined similarly to the case of BDM1 spaces. Note that V0

h ⊂ Vh and W 0

h = Wh. It
follows immediately from the definition of Π0 that

∫

e

v · ne =

∫

e

Π0v · ne ∀ e, ∇ · v = ∇ · Π0v ∀v ∈ Vh (2.29)

and
‖Π0v‖ ≤ C‖v‖ ∀v ∈ Vh. (2.30)

2.4 The BDM1 method
The BDM1 mixed finite element method is based on approximating the variational formu-
lation (2.6)–(2.7) in the discrete spaces Vh ×Wh: find ubdm

h ∈ Vh and pbdm
h ∈ Wh such

that

(K−1ubdm
h ,v) = (pbdm

h ,∇ · v) − 〈g,v · n〉ΓD
, v ∈ Vh, (2.31)

(∇ · ubdm
h , w) = (f, w), w ∈ Wh. (2.32)

The method has a unique solution and it is second order accurate for the velocity and first
order accurate for the pressure [13, 30]. It handles well discontinuous coefficients due to
the presence of K−1 in the mass matrix. A drawback is that the resulting algebraic system
is a large coupled velocity-pressure system of a saddle point problem type. In the next
section we develop a quadrature rule that allows for local elimination of the velocities and
results in a positive definite cell-centered pressure matrix.
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2.5 A quadrature rule
For q, v ∈ Vh, define the global quadrature rule

(K−1q,v)Q ≡
∑

E∈Th

(K−1q,v)Q,E.

The integration on any elementE is performed by mapping to the reference element Ê. The
quadrature rule is defined on Ê. Using the definition (2.22) of the finite element spaces and
omitting the subscript E, we have

∫

E

K−1q · v dx =

∫

Ê

K̂−1
1

J
DF q̂ · 1

J
DF v̂ J dx̂

=

∫

Ê

1

J
DF T K̂−1DF q̂ · v̂ dx̂ ≡

∫

Ê

K−1q̂ · v̂ dx̂,

where
K = JDF−1K̂(DF−1)T . (2.33)

Clearly, due to (2.14),

‖K‖
0,∞,Ê ∼ hd−2‖K‖0,∞,E and ‖K−1‖

0,∞,Ê ∼ h2−d‖K−1‖0,∞,E. (2.34)

The quadrature rule on an element E is defined as

(K−1q,v)Q,E ≡ (K−1q̂, v̂)Q̂,Ê ≡ |Ê|
s

s∑

i=1

K−1(r̂i)q̂(r̂i) · v̂(r̂i), (2.35)

where s = 3 for the unit triangle and s = 4 for the unit square or the unit tetrahedron. Note
that on the unit square this is the trapezoidal quadrature rule.

The corner vector q̂(r̂i) is uniquely determined by its normal components to the two
edges (or three faces) that share that vertex. Recall that we chose the velocity degrees
of freedom on any edge (face) ê to be the the normal components at the vertices of ê.
Therefore, there are two (three) degrees of freedom associated with each corner r̂i and they
uniquely determine the corner vector q̂(r̂i). More precisely,

q̂(r̂i) =

d∑

j=1

q̂ · n̂ij(r̂i)n̂ij,

where n̂ij, j = 1, . . . , d, are the outward unit normal vectors to the two edges (three faces)
intersecting at r̂i, and q̂ · n̂ij(r̂i) are the velocity degrees of freedom associated with this
corner. Let us denote the basis functions associated with r̂i by v̂ij, j = 1, . . . , d, see
Figure 2, i.e.,

v̂ij · n̂ij(r̂i) = 1, v̂ij · n̂ik(r̂i) = 0, k 6= j, and
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v̂ij · n̂lk(r̂l) = 0, l 6= i, k = 1, . . . , d.

Clearly the quadrature rule (2.35) only couples the two (or three) basis functions associated
with a corner. On the unit square, for example,

(K−1v̂11, v̂11)Q̂,Ê =
K−1

11
(r̂1)

4
, (K−1v̂11, v̂12)Q̂,Ê =

K−1

12
(r̂1)

4
, (2.36)

and
(K−1v̂11, v̂ij)Q̂,Ê = 0 ∀ ij 6= 11, 12. (2.37)

Remark 2.1 The quadrature rule can be defined directly on an element E. It is easy to see
from (2.10) and (2.12) that on simplicial elements

(K−1q,v)Q,E =
|E|
s

s∑

i=1

K−1(ri)q(ri) · v(ri), (2.38)

and on quadrilaterals

(K−1q,v)Q,E =
1

2

4∑

i=1

|Ti|K−1(ri)q(ri) · v(ri). (2.39)

The above quadrature rules are closely related to some inner products used in the mimetic
finite difference methods [21]. We note that in the case of quadrilaterals, it is simpler to
evaluate the quadrature rule on the reference element Ê.

Denote the element quadrature error by

σE(K−1q,v) ≡ (K−1q,v)E − (K−1q,v)Q,E (2.40)

and define the global quadrature error by σ(K−1q,v)|E = σE(K−1q,v). Similarly, denote
the quadrature error on the reference element by

σ̂Ê(K−1q̂, v̂) ≡ (K−1q̂, v̂)Ê − (K−1q̂, v̂)Q̂,Ê (2.41)

The next two lemmas will be used later in the analysis.

Lemma 2.1 On simplicial elements, if q ∈ Vh(E), then

σE(q,v0) = 0 for all constant vectors v0.

Proof: It is enough to consider v0 = (1, 0)T or v0 = (1, 0, 0)T ; the arguments for the other
cases are similar. We have

(q,v0)Q,E =
|E|
s

s∑

i=1

q1(ri) =

∫

E

q · v0 dx,

using that the quadrature rule (ϕ)E = |E|
s

∑s
i=1

ϕ(ri) is exact for linear functions. 2
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Lemma 2.2 On the reference square, for any q̂ ∈ V̂0(Ê),

(q̂ − Π̂0q̂, v̂0)Q̂,Ê = 0 for all constant vectors v̂0. (2.42)

Proof: On any edge ê, if the degrees of freedom of q̂ are q̂ê,1 and q̂ê,2, then (2.29) and
an application of the trapezoidal quadrature rule imply that Π̂0q̂|ê = (q̂ê,1 + q̂ê,2)/2. The
assertion of the lemma follows from a simple calculation, using (2.35). 2

2.6 The multipoint flux mixed finite element method
We are now ready to define our method. We seek uh ∈ Vh and ph ∈ Wh such that

(K−1uh,v)Q = (ph,∇ · v) − 〈g,v · n〉ΓD
, v ∈ Vh, (2.43)

(∇ · uh, w) = (f, w), w ∈ Wh. (2.44)

Remark 2.2 We call the method (2.43)–(2.44) a multipoint flux mixed finite element method
(MFMFE), since it is related to the MPFA method.

To prove that (2.43)–(2.44) is well posed, we first show that the quadrature rule (2.35)
produces a coercive bilinear form. We will need the following auxiliary result.

Lemma 2.3 If E ∈ Th and q ∈ (L2(E))d, then

‖q‖E ∼ h
2−d

2 ‖q̂‖Ê. (2.45)

Proof: The assertion of the lemma follows from the relations
∫

E

q · q dx =

∫

Ê

1

J
DF q̂ · 1

J
DF q̂J dx̂,

∫

Ê

q̂ · q̂ dx̂ =

∫

E

1

JF−1

DF−1q · 1

JF−1

DF−1qJF−1 dx,

and bounds (2.14). 2

Lemma 2.4 The bilinear form (K−1q,v)Q is an inner product in Vh.

Proof: The linearity and symmetry are obvious. It remains to show positivity. Let q =∑s
i=1

∑d
j=1

qijvij on an element E. Using (2.38)–(2.39) and (2.5) we obtain

(K−1q,q)Q,E ≥ C
|E|
k1

s∑

i=1

q(ri) · q(ri) ≥ C
|E|
k1

s∑

i=1

d∑

j=1

q2

ij.

On the other hand,

‖q‖2

E =

(
s∑

i=1

d∑

j=1

qijvij,
s∑

k=1

d∑

l=1

qklvkl

)
≤ C|E|

s∑

i=1

d∑

j=1

q2

ij.

The above two estimates imply

(K−1q,q)Q ≥ C‖q‖2. 2 (2.46)
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Corollary 2.1 (K−1·, ·)1/2

Q is a norm in Vh equivalent to ‖ · ‖.

Proof: Lemma 2.4 implies that (K−1·, ·)1/2

Q is a norm in Vh. Let us denote this norm by
‖ · ‖Q,K−1. It remains to show that it is bounded above by ‖ · ‖. Using (2.34), (2.5), the
equivalence of norms on reference element Ê, and (2.45), we have that for all q ∈ Vh

(K−1q,q)Q,E = (K−1q̂, q̂)Q̂,Ê ≤ C
h2−d

k0

‖q̂‖2

Ê
≤ C‖q‖2

E,

which, combined with (2.46), implies that

c0‖q‖ ≤ ‖q‖Q,K−1 ≤ c1‖q‖ (2.47)

for some positive constants c0 and c1. 2

Remark 2.3 The results of Lemma 2.4 and Corollary 2.1 hold if K−1 is replaced by any
symmetric and positive definite matrix M .

We are now ready to establish the solvability of (2.43)–(2.44).

Lemma 2.5 The multipoint flux mixed finite element method (2.43)–(2.44) has a unique
solution.

Proof: Since (2.43)–(2.44) is a square system, it is enough to show uniqueness. Let f = 0,
g = 0, and take v = uh and w = ph. This implies that (K−1uh,uh)Q = 0, and therefore
uh = 0, due to (2.46). We now consider the auxiliary problem

−∇ ·K∇φ = −ph in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

The choice v = ΠK∇φ ∈ Vh in (2.43) gives

0 = (ph,∇ · ΠK∇φ) = (ph,∇ ·K∇φ) = ‖ph‖2,

therefore ph = 0. 2

2.7 Reduction to a cell-centered stencil
We next describe how the multipoint flux mixed finite element method reduces to a system
for the pressures at the cell centers. Let us consider any interior vertex r and suppose
that it is shared by k elements E1, . . . , Ek; see Figure 3 for a specific example with 5
elements. We denote the edges (faces) that share the vertex by e1, . . . , ek, the velocity basis
functions on these edges (faces) that are associated with the vertex by v1, . . . ,vk, and the

12



p2
E2

E5

e1

E4

p1

E1

e3

u1

u5

u4

p3
u2

u3

p4p5

e4

E3

e5

e2

Figure 3: Five elements sharing a vertex.

corresponding values of the normal components of uh by u1, . . . , uk. Note that for clarity
the normal velocities on Figure 3 are drawn at a distance from the vertex.

Since the quadrature rule (K−1·, ·)Q localizes the basis functions interaction (see (2.36)–
(2.37)), taking v = v1 in (2.43), for example, will only lead to coupling u1 with u5 and u2.
Similarly, u2 will only be coupled with u1 and u3, etc. Therefore, the k equations obtained
from taking v = v1, . . . ,vk form a linear system for u1, . . . , uk.

Proposition 2.1 The k × k local linear system described above is symmetric and positive
definite.

Proof: The system is obtained by taking v = v1, . . . ,vk in (2.43). On the right hand side
we have

(K−1uh,vi)Q =
k∑

j=1

uj(K
−1vj,vi)Q ≡

k∑

j=1

aijuj, i = 1, . . . , k.

Using Lemma 2.4 we conclude that the matrix Ā = {aij} is symmetric and positive defi-
nite. 2

Solving the small k × k linear system allows to express the velocities ui in terms of
the cell-centered pressures pi, i = 1, . . . , k. Substituting these expressions into the mass
conservation equation (2.44) leads to a cell-centered stencil. The pressure in each element
E is coupled with the pressures in the elements that share a vertex with E, see Figure 4.

For any vertex on the boundary∂Ω , the size of the local linear system equals the number
of non-Neumann (interior or Dirichlet) edges/faces that share that vertex. Inverting the
local system allows to express the velocities in terms of the element pressures and the
boundary data.

We use the example in Figure 3 to describe the CCFD equations obtained from the
above procedure. Taking v = v1 in (2.43), on the left hand side we have

(K−1uh,v1)Q = (K−1uh,v1)Q,E1
+ (K−1uh,v1)Q,E2

. (2.48)
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Figure 4: Stencil in MFMFE: the pressure in element E is coupled with the pressures in
the elements that share a vertex with E.

The first term on the right above gives

(K−1uh,v1)Q,E1
= (K−1ûh, v̂1)Q̂,Ê

=
1

4
(K−1

11,E1
û1v̂1,1 + K−1

12,E1
û5v̂1,1)

=
1

4
(K−1

11,E1
|e1|u1 + K−1

12,E1
|e5|u5)|e1|,

(2.49)

where we have used (2.20) for the last equality. Here K−1

ij,E1
denotes a component of K−1

in E1 and all functions are evaluated at the vertex of Ê corresponding to vertex r in the
mapping FE1

. Similarly,

(K−1uh,v1)Q,E2
=

1

6
(K−1

11,E2
|e1|u1 + K−1

12,E2
|e2|u2)|e1|. (2.50)

For the right hand side of (2.43) we write

(ph,∇ · v1) = (ph,∇ · v1)E1
+ (ph,∇ · v1)E2

= 〈ph,v1 · nE1
〉e1

+ 〈ph,v1 · nE2
〉e1

= 〈p̂h, v̂1 · n̂E1
〉ê1

+ 〈p̂h, v̂1 · n̂E2
〉ê1

=
1

2
(p1 − p2)|e1|,

(2.51)

where we have used the trapezoidal rule for the integrals on ê1, which is exact since p̂h is
constant and v̂1 · n̂ is linear. A combination of (2.48)–(2.51) gives the equation

(
1

2
K−1

11,E1
+

1

3
K−1

11,E2

)
|e1|u1 +

1

2
K−1

12,E1
|e5|u5 +

1

3
K−1

12,E2
|e2|u2 = p1 − p2.

The other four equations of the local system for u1, . . . , u5 are obtained similarly.
We end the section with a statement about an important property of the CCFD algebraic

system.
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Proposition 2.2 The CCFD system for the pressure obtained from (2.43)–(2.44) using the
procedure described above is symmetric and positive definite.

Proof: Let {vi} and {wj} be the bases of Vh and Wh, respectively. The algebraic system
that arises from (2.43)–(2.44) is of the form

(
A BT

B 0

)(
U
P

)
=

(
G
F

)
, (2.52)

where Aij = (K−1vi,vj)Q and Bij = −(∇ · vi, wj). The matrix A is block-diagonal with
symmetric and positive definite blocks, as noted in Proposition 2.1 above. The elimination
of U leads to a system for P with a matrix

BA−1BT ,

which is symmetric and positive semidefinite. In the proof of Lemma 2.5 we showed that
BTP = 0 implies P = 0. Therefore BA−1BT is positive definite. 2

3 Velocity error analysis
In this section we establish first-order convergence for the velocity. We start with several
auxiliary results that will be used in the analysis.

In addition the mixed projection operators defined earlier, we will also make use of the
L2-orthogonal projection onto Wh: for any φ ∈ L2(Ω), let Qhφ ∈ Wh satisfy

(φ−Qhφ, w) = 0 ∀w ∈ Wh.

We state several well-known approximation properties of the projection operators. On
simplices and quadrilaterals,

‖φ−Qhφ‖ ≤ C‖φ‖rh
r, 0 ≤ r ≤ 1, (3.1)

‖q − Πq‖ ≤ C‖q‖rh
r, 1 ≤ r ≤ 2, (3.2)

‖q − Π0q‖ ≤ C‖q‖1h. (3.3)

On simplices and h2-parallelograms,

‖∇·(q−Πq)‖ ≤ C‖∇·q‖rh
r, ‖∇·(q−Π0q)‖ ≤ C‖∇·q‖rh

r, 0 ≤ r ≤ 1. (3.4)

Bound (3.1) is a standard L2-projection approximation results [17]; bounds (3.2), (3.3), and
(3.4) can be found in [14, 26] for affine elements and [30, 8] for quadrilaterals.

It was shown in [19, Lemma 5.5] that on h2-parallelograms, for u ∈ H j(E),

|û|j,Ê ≤ Chj‖u‖j,E, j ≥ 0. (3.5)

We will make use of the following continuity bounds for Π and Π0.
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Lemma 3.1 For all elements E there exists a constant C independent of h such that

‖Πq‖j,E ≤ C‖q‖j,E ∀q ∈ (Hj(E))d, j = 1, 2, (3.6)

‖Π0q‖1,E ≤ C‖q‖1,E ∀q ∈ (H1(E))d. (3.7)

Proof: The proof uses the inverse inequality

‖v‖j,E ≤ Ch−1‖v‖j−1,E, j = 1, 2, ∀E ∈ Th, v ∈ Vh(E), (3.8)

which is well known for affine elements [17] and can be shown for quadrilaterals via map-
ping to the reference element Ê and using the standard inverse inequality on Ê; see [10]
for details.

Let q̄ be the L2(E)-projection of q onto the space of constant vectors on E. Using
(3.8), we have

|Πq|1,E = |Πq − q̄|1,E ≤ Ch−1‖Πq − q̄‖E

≤ Ch−1(‖Πq − q‖E + ‖q − q̄‖E) ≤ C‖q‖1,E,

where we have used the approximation properties (3.1) and (3.2) for the last inequality.
Similarly, taking q1 to be the L2(E)-projection of q onto the space of linear vectors on

E, we obtain

|Πq|2,E = |Πq − q1|2,E ≤ Ch−2‖Πq − q1‖E

≤ Ch−2(‖Πq − q‖E + ‖q − q1‖E) ≤ C‖q‖2,E.

The bound ‖Πq‖E ≤ C‖q‖1,E follows from the approximation property (3.2). This com-
pletes the proof of (3.6). The proof of (3.7) is similar. 2

The following two lemmas will also be used in the analysis.

Lemma 3.2 If E is an h2-parallelogram, then there exists a constant C independent of h
such that

|K−1|j,∞,Ê ≤ Chj‖K−1‖j,∞,E, j = 1, 2. (3.9)

Proof: Using (2.16), we have

|K−1|
1,∞,Ê ≤ C(|K̂−1|

1,∞,Ê + h‖K̂−1‖
0,∞,Ê) ≤ Ch‖K−1‖1,∞,E,

where the last inequality follows from the use of the chain rule and (2.14). Similarly,

|K−1|
2,∞,Ê ≤ C(|K̂−1|

2,∞,Ê + h|K̂−1|
1,∞,Ê + h2‖K̂−1‖

0,∞,Ê) ≤ Ch2‖K−1‖2,∞,E,

where we also used that |DFE|2,∞,Ê = 0. 2
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Lemma 3.3 On h2-parallelograms, if K−1 ∈ W 1,∞(E) for all elements E, then there
exists a constant C independent of h such that for all v ∈ Vh

|(K−1Πu,v − Π0v)Q| ≤ Ch‖u‖1‖v‖. (3.10)

Proof: On any element E we have

(K−1Πu,v − Π0v)Q,E = (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê

= ((K−1 −K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê + (K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê,
(3.11)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion and (2.47), we have
for the first term on the right above

|((K−1 − K−1)Π̂û, v̂ − Π̂0v̂)Q̂,Ê| ≤ C|K−1|
1,∞,Ê‖Π̂û‖Ê‖v̂‖Ê

≤ Ch‖K−1‖1,∞,E‖u‖1,E‖v‖E,
(3.12)

where we have used (3.9), (2.45), and (3.6) for the last inequality. Using (2.42) and letting
Π̂û be the L2-projection of Π̂û onto the space of constant vectors on Ê, we bound the last
term in (3.11) as follows:

|(K−1Π̂û, v̂ − Π̂0v̂)Q̂,Ê| = |(K−1(Π̂û − Π̂û), v̂ − Π̂0v̂)Q̂,Ê|
≤ C|Π̂û|

1,Ê‖v̂‖Ê ≤ Ch‖u‖1,E‖v‖E,
(3.13)

where we have also used (2.34), (3.5), and (3.6). The proof is completed by combining
(3.11)–(3.13). 2

3.1 First-order convergence for the velocity
Subtracting the numerical scheme (2.43)–(2.44) from the variational formulation (2.6)–
(2.7), we obtain the error equations

(K−1(Πu − uh),v)Q = (Qhp− ph,∇ · v)

− (K−1u,v) + (K−1Πu,v)Q, v ∈ Vh, (3.14)
(∇ · (Πu − uh), w) = 0, w ∈ Wh. (3.15)

The last two terms in (3.14) can be manipulated as follows:

− (K−1u,v) + (K−1Πu,v)Q = −(K−1u,v − Π0v) − (K−1(u − Πu),Π0v)

− (K−1Πu,Π0v) + (K−1Πu,Π0v)Q + (K−1Πu,v − Π0v)Q

(3.16)

For the first term on the right above we have

(K−1u,v − Π0v) = 0, (3.17)
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which follows by taking v−Π0v as a test function in the variational formulation (2.6) and
using (2.29). Using (3.2) and (2.30), the second term on the right in (3.16) can be bounded
as

|(K−1(u − Πu),Π0v)| ≤ Ch‖u‖1‖v‖. (3.18)

The third and forth term on the right in (3.16) represent the quadrature error, which can be
bounded by Lemma 3.4 as

|σ(K−1Πu,Π0v)| ≤ Ch‖u‖1‖v‖, (3.19)

using also (3.6) and (2.30). The last term on the right in (3.16) is bounded in Lemma 3.3.
We take v = Πu − uh in the error equation (3.14) above. Note that

∇ · (Πu − uh) = 0, (3.20)

since, due to (2.21), we can choose w = JE∇ · (Πu − uh) ∈ Wh on any element E in
(3.15) and JE is uniformly positive. Combining (3.16)–(3.19) with (2.46) and (3.10), we
obtain

‖Πu − uh‖ ≤ Ch‖u‖1. (3.21)

The theorem below now follows from (3.21), (3.20), (3.2), and (3.4).

Theorem 3.1 If K−1 ∈ W 1,∞(E) for all elements E, then, for the velocity uh of the multi-
point flux mixed finite element method (2.43)–(2.44), there exists a constant C independent
of h such that

‖u − uh‖ ≤ Ch‖u‖1, (3.22)
‖∇ · (u − uh)‖ ≤ Ch‖∇ · u‖1, . (3.23)

We now proceed with the analysis of the quadrature error.

Lemma 3.4 If K−1 ∈ W 1,∞(E) for all elements E, then there exists a constant C inde-
pendent of h such that for all q ∈ Vh and for all v ∈ V0

h

|σ(K−1q,v)| ≤ C
∑

E∈Th

h‖q‖1,E‖v‖E. (3.24)

Proof: We first consider the case of simplicial elements. We have on any element E

|σE(K−1q,v)| ≤ |σE((K−1 −K−1)q,v)| + |σE(K−1q,v)|, (3.25)

where K−1 is the mean value of K−1 on E. For the first term on the right we have

|σE((K−1 −K−1)q,v)| ≤ Ch|K−1|1,∞,E‖q‖E‖v‖E, (3.26)
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where we have used Taylor expansion and (2.47). Let q be the L2-projection of q onto
the space of constant vectors on E. For the second term on the right in (3.25), using
Lemma 2.1, we have that

|σE(K−1q,v)| = |σE(K−1(q − q),v)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E, (3.27)

using (3.1). Combining (3.25)–(3.27), we obtain

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E, (3.28)

completing the proof of (3.24) for simplicial elements.
Next, consider the quadrature error on h2-parallelograms. We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1 −K−1)q̂, v̂) + σ̂Ê(K−1q̂, v̂), (3.29)

where K−1 is the mean value of K−1 on Ê. Using Taylor expansion, the first term on the
right above can be bounded as

|σ̂Ê((K−1 −K−1)q̂, v̂)| ≤ C|K−1|
1,∞,Ê‖q̂‖Ê‖v̂‖Ê ≤ Ch‖K−1‖1,∞,E‖q‖E‖v‖E, (3.30)

where we used (3.9) and (2.45) for the last inequality. For the last term in (3.29) we write

σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1q̂)1, v̂1) + σ̂Ê((K−1q̂)2, v̂2)

and concentrate on the first term on the right. Since the trapezoidal quadrature rule (·, ·)Q̂,Ê

is exact for linear functions, the Peano Kernel Theorem [29, Theorem 5.2-3] can be applied
to show that

σ̂Ê((K−1q̂)1, v̂1) =

∫
1

0

∫
1

0

ϕ(x̂)
∂2

∂x̂2
((K−1q̂)1v̂1)(x̂, 0)dx̂ dŷ

+

∫
1

0

∫
1

0

ϕ(ŷ)
∂2

∂ŷ2
((K−1q̂)1v̂1)(0, ŷ) dx̂dŷ

+

∫
1

0

∫
1

0

ψ(x̂, ŷ)
∂2

∂x̂∂ŷ
((K−1q̂)1v̂1)(x̂, ŷ)dx̂ dŷ

≡ (I) + (II) + (III),

(3.31)

where ϕ(s) = s(s− 1)/2 and ψ(s, t) = (1 − s)(1 − t) − 1/4. First note that, since

q̂1(x̂, 0) = q̂1(x̂, ŷ) −
∫ ŷ

0

∂

∂ŷ
q̂1(x̂, t̂) dt̂,

we have that

(I) =

∫
1

0

∫
1

0

ϕ(x̂)
∂2

∂x̂2
((K−1q̂)1(x̂, ŷ)v̂1(x̂, 0))dx̂ dŷ +R, (3.32)
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where
|R| ≤ C‖K−1‖

0,∞,Ê|q̂|1,Ê‖v̂‖Ê. (3.33)

Here we have used that the term involving ∂3

∂x̂2∂ŷ
(K−1q̂)1 vanishes and the terms with two

derivatives on (K−1q̂)1 have been handled by integration by parts and using that ϕ(0) =
ϕ(1) = 0. A similar observation is valid for term (II). Next we observe that, if at least
one of the derivatives in terms (I), (II), or (III) is applied to (K−1q̂)1, then the resulting
terms (T )i are bounded as

|(T )i| ≤ C‖K−1‖
0,∞,Ê|q̂|1,Ê‖v̂‖Ê, (3.34)

where again the terms with both derivatives on (K−1q̂)1 have been handled by integration
by parts. Finally, all terms with both derivatives on v vanish, since the components of v

are linear functions. Combining (3.31)–(3.34), we obtain

|σ̂Ê((K−1q̂)1, v̂1)| ≤ C‖K−1‖
0,∞,Ê|q̂|1,Ê‖v̂‖Ê.

The term σ̂Ê((K−1q̂)2, v̂2) can be bounded in a similar way. Using (3.5) and (2.34), we
obtain

|σ̂Ê(K−1q̂, v̂)| ≤ Ch‖K−1‖0,∞,E‖q‖1,E‖v‖E. (3.35)

The above bound, together with (3.29)–(3.30), implies

|σE(K−1q,v)| ≤ Ch‖K−1‖1,∞,E‖q‖1,E‖v‖E.

The proof is completed by summing over all elements E. 2

4 Error estimates for the pressure
In this section we use a standard inf-sup argument to prove optimal convergence for the
pressure. We also employ a duality argument to establish superconvergence for the pressure
at the element centers of mass.

4.1 First-order convergence for the pressure
Theorem 4.1 If K−1 ∈ W 1,∞(E) for all elements E, then, for the pressure ph of the multi-
point flux mixed finite element method (2.43)–(2.44), there exists a constant C independent
of h such that

‖p− ph‖ ≤ Ch(‖u‖1 + ‖p‖1).

Proof: It is well known [25, 14, 30] that the RT0 spaces V0

h × W 0

h satisfy the inf-sup
condition

inf
06=w∈W 0

h

sup
06=v∈V0

h

(∇ · v, w)

‖v‖div‖w‖
≥ β, (4.1)
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where β is a positive constant independent of h. Using (4.1) and (3.14), we obtain

‖Qhp− ph‖

≤ 1

β
sup

06=v∈V0

h

(∇ · v,Qhp− ph)

‖v‖div

=
1

β
sup

06=v∈V0

h

(K−1(Πu − uh),v)Q − (K−1(Πu − u),v) + σ(K−1Πu,v)

‖v‖div

≤ C

β
h‖u‖1,

where we have used the Cauchy-Schwarz inequality, (3.21), and (3.24) in the last inequality.
The proof is completed by an application of the triangle inequality and (3.1). 2

4.2 Second-order convergence for the pressure
We continue with the superconvergence estimate. We first present a bound on the quadra-
ture error that will be used in the analysis.

Lemma 4.1 Let K−1 ∈ W 2,∞(E) for all elements E. On simplicial elements, for all
v,q ∈ Vh, there exists a positive constant C independent of h such that

|σ(K−1q,v)| ≤ C
∑

E∈Th

h2‖q‖1,E‖v‖1,E. (4.2)

On h2-parallelograms, for all q ∈ Vh, v ∈ V0

h, there exists a positive constant C indepen-
dent of h such that

|σ(K−1q,v)| ≤ C
∑

E∈Th

h2‖q‖2,E‖v‖1,E. (4.3)

Proof: We present first the proof for simplicial elements. For any element E, using
Lemma 2.1, we have

σE(K−1q,v) = σE((K−1 −K−1)(q − q̄),v) + σE((K−1 −K−1)q̄,v − v̄)

+ σE(K−1q̄, v̄) + σE(K−1(q − q̄),v − v̄)
(4.4)

where q̄ and v̄ are the L2(E)-orthogonal projections of q and v, respectively, onto the
space of constant vectors, and K−1 is the mean value of K−1 on E. Using (2.47), the first,
second, and forth term on the right above are bounded by

Ch2‖K−1‖1,∞,E‖q‖1,E‖v‖1,E. (4.5)

For the third term on the right in (4.4) it is easy to check that the quadrature rule is exact
for linear tensors. An application of the Bramble-Hilbert lemma [12] gives

|σE(K−1q̄, v̄)| ≤ Ch2|K−1q̄|2,E‖v̄‖E ≤ Ch2|K−1|2,∞,E‖q‖E‖v‖E. (4.6)
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A combination of (4.4)–(4.6) completes the proof for simplicial elements.
We proceed with the bound on the quadrature error in the case of h2-parallelograms.

We have

σE(K−1q,v) = σ̂Ê(K−1q̂, v̂) = σ̂Ê((K−1q̂)1, v̂1) + σ̂Ê((K−1q̂)2, v̂2). (4.7)

Let us consider the first term on the right. As in Lemma 3.4, the Peano Kernel Theorem
[29] implies

|σ̂Ê((K−1q̂)1, v̂1)| ≤ C((|K−1|
2,∞,Ê‖q̂‖Ê + |K−1|

1,∞,Ê|q̂|1,Ê + ‖K−1‖
0,∞,Ê|q̂|2,Ê)‖v̂‖Ê

+ (|K−1|
1,∞,Ê‖q̂‖Ê + ‖K−1‖

0,∞,Ê|q̂|1,Ê)|v̂|
1,Ê).

The term σ̂Ê((K−1q̂)2, v̂2) in (4.7) can be bounded similarly. Using (4.7), (2.34), (3.9), and
(3.5), we obtain

|σE(K−1q,v)| ≤ Ch2‖K−1‖2,∞,E‖q‖2,E‖v‖1,E.

Summing over all elements completes the proof. 2

We are now ready to establish superconvergence of the pressure at the cell centers.

Theorem 4.2 IfK ∈ W 1,∞(E) andK−1 ∈ W 2,∞(E) for all elementsE, and if the elliptic
regularity (4.10) below holds, then, for the pressure ph of the multipoint flux mixed finite
element method (2.43)–(2.44), there exists a constant C independent of h such that

‖Qhp− ph‖ ≤ Ch2(‖u‖1 + ‖∇ · u‖1) on simplices (4.8)

and
‖Qhp− ph‖ ≤ Ch2‖u‖2 on h2 − parallelograms. (4.9)

Proof: The proof is based on a duality argument. Let φ be the solution of

−∇ ·K∇φ = −(Qhp− ph) in Ω,

φ = 0 on ΓD,

−K∇φ · n = 0 on ΓN .

We assume that this problem has H2-elliptic regularity:

‖φ‖2 ≤ C‖Qhp− ph‖0. (4.10)

Sufficient conditions for (4.10) can be found in [20, 24]. For example, (4.10) holds if the
components of K ∈ C0,1(Ω), ∂Ω is smooth enough, and either ΓD or ΓN is empty.

Let us consider first the case of simplicial elements. Here it is more convenient to
rewrite the error equation (3.14) as

(K−1(u − uh),v) = (Qhp− ph,∇ · v) − σ(K−1uh,v). (4.11)
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Take v = ΠK∇φ ∈ Vh in (4.11) to get

‖Qhp− ph‖2

0
= (Qhp− ph,∇ · ΠK∇φ)

= (K−1(u − uh),ΠK∇φ) + σ(K−1uh,ΠK∇φ). (4.12)

In the following we will use the notation ||| · |||α = maxE∈Th
‖ · ‖α,E For the first term on the

right above we have

(K−1(u − uh),ΠK∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) + (u − uh,∇φ)

= (K−1(u − uh),ΠK∇φ−K∇φ) − (∇ · (u − uh), φ−Qhφ)

≤ C(h‖u − uh‖|||K|||1,∞‖φ‖2 + h‖∇ · (u − uh)‖‖φ‖1)

≤ Ch2|||K|||1,∞(‖u‖1 + ‖∇ · u‖1)‖φ‖2,

(4.13)

where we have used (3.2) and (3.1) for the first inequality, and (3.22) and (3.23) for the
second inequality.

Using (4.2), we bound the second term on the right in (4.12) as

|σ(K−1uh,ΠK∇φ)|
≤ C|||K−1|||2,∞

∑

E∈Th

h2‖uh‖1,E‖ΠK∇φ‖1,E

≤ C|||K−1|||2,∞

∑

E∈Th

h2(‖uh − Πu‖1,E + ‖Πu‖1,E)‖K∇φ‖1,E

≤ C|||K−1|||2,∞

∑

E∈Th

h2(h−1‖uh − Πu‖E + ‖u‖1,E)‖K‖1,∞,E‖φ‖2,E

≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖1‖φ‖2,

(4.14)

where we have used (3.6), the inverse inequality (3.8), and (3.21). Now (4.8) follows from
(4.12)–(4.14) and (4.10).

For the analysis on quadrilaterals we rewrite the error equation (3.14) in the form

(K−1(Πu− uh),v)Q = (Qhp− ph,∇ · v) + (K−1(Πu− u),v)− σ(K−1Πu,v). (4.15)

Take v = Π0K∇φ ∈ Vh in (4.15) to get

‖Qhp− ph‖2

0
= (Qhp− ph,∇ · Π0K∇φ)

= (K−1(Πu − uh),Π0K∇φ)Q − (K−1(Πu − u),Π0K∇φ)

+ σ(K−1Πu,Π0K∇φ). (4.16)

Using (3.2) and (3.7), the second term on the right above can be bounded as

|(K−1(Πu − u),Π0K∇φ)| ≤ Ch2|||K|||1,∞‖u‖2‖φ‖2. (4.17)
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For the last term on the right in (4.16), bounds (4.3), (3.6), and (3.7) imply that

σ(K−1Πu,Π0K∇φ) ≤ Ch2|||K−1|||2,∞|||K|||1,∞‖u‖2‖φ‖2. (4.18)

The first term on the right in (4.16) can be manipulated as follows:

(K−1(Πu − uh),Π0K∇φ)Q,E

= ((K−1 −K−1

0
)(Πu − uh),Π0K∇φ)Q,E + (K−1

0
(Πu − uh),Π0(K −K0)∇φ)Q,E

+ (K−1

0
(Πu − uh),Π0K0(∇φ−∇φ1))Q,E + (K−1

0
(Πu − uh),Π0K0∇φ1)Q,E,

(4.19)

where K0 is the value of K at the center of E and φ1 is a linear approximation to φ such
that (see [12])

‖φ− φ1‖E ≤ Ch2‖φ‖2,E, ‖φ− φ1‖1,E ≤ Ch‖φ‖2,E. (4.20)

Using (3.7), the first term on the right in (4.19) can be bounded as

|((K−1 −K−1

0
)(Πu−uh),Π0K∇φ)Q,E| ≤ Ch‖K−1‖1,∞,E‖K‖1,∞,E‖Πu−uh‖E‖φ‖2,E.

(4.21)
For the second and third terms on the right in (4.19) we use that for any ψ ∈ (H 1(E))2

‖Π0ψ‖E ≤ ‖Π0ψ − ψ‖E + ‖ψ‖E ≤ C(h‖ψ‖1,E + ‖ψ‖E)

to obtain

|(K−1

0
(Πu − uh),Π0(K −K0)∇φ)Q,E| ≤ Ch|||K|||1,∞,E‖Πu − uh‖E‖φ‖2,E (4.22)

and

|(K−1

0
(Πu − uh),Π0K0(∇φ−∇φ1))Q,E| ≤ Ch‖Πu − uh‖E‖φ‖2,E, (4.23)

having also used (4.20) in the last inequality. For the last term in (4.19) we have

(K−1

0
(Πu − uh),Π0K0∇φ1)Q,E = (Πu − uh,∇φ1)Q,E = (Π̂û − ûh, ∇̂φ̂1)Q̂,Ê, (4.24)

using that ∇φ1 = (DF−1)T ∇̂φ̂1 in the second equality. Note that φ̂(x̂, ŷ) is a bilinear
function. Let φ̃1 be the linear part of φ̂1. We have

(Π̂û − ûh, ∇̂φ̂1)Q̂,Ê = (Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê + (Π̂û − ûh, ∇̂φ̃1)Q̂,Ê. (4.25)

Since (see (2.8))

∇̂(φ̂1 − φ̃1) = [(r34 − r21) · ∇φ1]

(
ŷ
x̂

)
,
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(2.15) implies

|(Π̂û − ûh, ∇̂(φ̂1 − φ̃1))Q̂,Ê| ≤ Ch2‖Π̂û − ûh‖Ê‖∇φ1‖Ê

≤ Ch‖Πu − uh‖E‖∇φ1‖E ≤ Ch‖Πu − uh‖E‖φ‖2,E.

(4.26)

It remains to bound the last term in (4.25). Using (2.42) and the fact that the trapezoidal
rule is exact for linear functions, we have

(Π̂û − ûh, ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Q̂,Ê = (Π̂0(Π̂û − ûh), ∇̂φ̃1)Ê

= (Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1)Ê + (Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê.
(4.27)

The first term on the right in (4.27) is bounded similarly to (4.26):

|(Π̂0(Π̂û − ûh), ∇̂(φ̃1 − φ̂1)Ê| ≤ Ch‖Πu − uh‖E‖φ‖2,E. (4.28)

For the last term in (4.27) we write

(Π̂0(Π̂û − ûh), ∇̂φ̂1)Ê = (Π0(Πu − uh),∇φ1)E = 〈Π0(Πu − uh) · nE, φ1〉∂E, (4.29)

using (3.20) and (2.29) for the last equality. Combining (4.19)–(4.29) and summing over
all elements, we obtain

(K−1(Πu − uh),Π0K∇φ)Q = R +
∑

E∈Th

〈Π0(Πu − uh) · nE, φ1〉∂E, (4.30)

where
|R| ≤ Ch2‖u‖1‖φ‖2, (4.31)

having also used (3.21). For the last term in (4.30), using the regularity of φ and that
(Πu − uh) · n = 0 on ΓN and φ = 0 on ΓD, we obtain

∣∣∣∣∣
∑

E∈Th

〈Π0(Πu − uh) · nE, φ1〉∂E

∣∣∣∣∣ =

∣∣∣∣∣
∑

E∈Th

〈Π0(Πu − uh) · nE, φ1 − φ〉∂E

∣∣∣∣∣

≤ C
∑

E∈Th

‖(Πu − uh) · nE‖∂E‖φ1 − φ‖∂E

≤ Ch−1/2‖Πu − uh‖E(h−1/2‖φ1 − φ‖E + h1/2‖φ1 − φ‖1,E)

≤ Ch2‖u‖1‖φ‖2,

(4.32)

where we have used the well known inequalities [7]

‖v · nE‖∂E ≤ Ch−1/2‖v‖E ∀v ∈ Vh

and
‖ϕ‖∂E ≤ C(h−1/2‖ϕ‖E + h1/2‖ϕ‖1,E) ∀ϕ ∈ H1(E),

as well as bounds (4.20). The proof of (4.9) is completed by combining (4.16)–(4.18) and
(4.30)–(4.32), and using (4.10). 2

25



Figure 5: Computed solution on the second level of refinement in Example 1

Remark 4.1 Since Qhp isO(h2)-close to p at the center of mass of each element, the above
theorem implies that

|||p− ph||| ≤ Ch2,

where ||| · ||| = (
∑

E |E|(p(mE) − ph)
2)

1/2 and mE is the center of mass of E.

5 Numerical experiments
In this section we present several numerical results on quadrilateral grids that confirm the
theoretical results from the previous sections.

In the first example we test the method on a sequence of meshes obtained by a uniform
refinement of an initial rough quadrilateral mesh. The boundary conditions are of Dirichlet
type. The tensor coefficient and the true solution are

K =

(
5 1
1 2

)
, p(x, y) = (1 − x)4 + (1 − y)3(1 − x) + sin(1 − y) cos(1 − x).

The initial 8×8 mesh is generated from a square mesh by randomly perturbing the location
of each vertex within a disk centered at the vertex with a radius h

√
2/3. Due to (2.33), the

non-smoothness of the grid translates into a discontinuous computational permeability K.
The computed solution on the second level of refinement is shown in Figure 5. The colors
represents the pressure values and the arrows represent the velocity vectors. The numerical
errors and asymptotic convergence rates are obtained on a sequence of six mesh refinements
and are reported in Table 1. Here for scalar functions |||w||| is the discrete L2-norm defined
in Remark 4.1 and for vectors |||v||| denotes a discrete vector L2-norm that involves only
the normal vector components at the midpoints of the edges. We note that the obtained
convergence rates of O(h2) for |||p − ph||| and O(h) for ‖u − uh‖ confirm the theoretical
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1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.123E-1 0.882E-1 0.281E-1 0.112E-1

16 0.372E-2 0.542E-1 0.129E-1 0.287E-2
32 0.103E-2 0.292E-1 0.411E-2 0.722E-3
64 0.270E-3 0.151E-1 0.114E-2 0.181E-3

128 0.692E-4 0.772E-2 0.307E-3 0.455E-4
256 0.175E-4 0.390E-2 0.817E-4 0.127E-4
Rate 1.98 0.99 1.91 1.84

Table 1: Discretization errors and convergence rates for Example 1

Figure 6: Computed solution on the second level of refinement in Example 2

results. TheO(h2) accuracy for |||u−uh||| and |||∇·(u−uh)||| indicates superconvergence for
the normal velocities at the midpoints of the edges and for the divergence at the cell-centers.

In the second example we consider an irregularly shaped domain consisting of two
subdomains, see Figure 6. The grid is non-smooth across the interface leading to a discon-
tinuous computational permeability K. The permeability tensor and true solution are

K =

(
4 + (x + 2)2 + y2 1 + sin(xy)

1 + sin(xy) 2

)
, p(x, y) = (sin(3πx))2(sin(3πy))2.

The boundary conditions are of Neumann type. The computed solution on the second
refinement level is shown in Figure 6. The numerical errors and asymptotic convergence
rates are presented in Table 2. As in the previous example, the numerical convergence rates
confirm the theory.
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1/h |||p− ph||| ‖u − uh‖ |||u − uh||| |||∇ · (u − uh)|||
8 0.177E+2 0.492E0 0.512E0 0.764E-2

16 0.151E0 0.179E0 0.138E0 0.647E-4
32 0.653E-1 0.919E-1 0.513E-1 0.279E-4
64 0.185E-1 0.453E-1 0.132E-1 0.790E-5

128 0.460E-2 0.226E-1 0.334E-2 0.196E-5
256 0.116E-4 0.113E-1 0.838E-3 0.494E-6
Rate 1.99 0.99 1.99 1.99

Table 2: Discretization errors and convergence rates for Example 2

6 Conclusions
We have presented a BDM1-based mixed finite element method with quadrature that re-
duces to CCFD for the pressure on simplicial and quadrilateral grids. The resulting alge-
braic system is symmetric and positive definite. The method is closely related to the MPFA
method and it performs well on irregular grids and rough coefficients. The analysis is based
on combining MFE techniques with quadrature error estimates. First-order convergence is
obtained for the pressure and the velocity in their natural norms. Second-order convergence
is obtained for the pressure and the element centers of mass. Computational results also in-
dicate superconvergence for the velocity at the midpoints of the edges on h2-parallelogram
grids. We have also developed and analyzed the method on hexahedral elements that are
O(h2)-perturbations of parallelepipeds. These results will be presented in a forthcoming
paper.

Remark 6.1 We recently learned of the concurrent and related work of Klausen and Winther
[23]. They formulate the MPFA method from [1] as a mixed finite element method using an
enhanced Raviart-Thomas space and obtain convergence results on quadrilateral grids.
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