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Abstract

We consider the case of a homogeneous, isotropic, fully developed, turbulent flow.

We show analytically by using the − 5/3 Kolmogorov’s law that the time averaged

consistency error of the N thapproximate deconvolution LES model converges to zero

following a law as the cube root of the averaging radius, independently of the Reynolds

number. The consistancy error is measured by the residual stress. The filter under

consideration is a second order differential filter, but the 1/3 law is still valid in the

case of the Gaussian filter and a large class of filter used in LES. We also show how

the 1/3 error law can be derived by a dimensional analysis.

Key words : large eddy simulation, approximate deconvolution model, turbulence

1Author’s names are in alphabetical order

1



1 Introduction

Direct numerical simulation of turbulent flows of incompressible, viscous fluids is often not

computationally economical or even feasible. Thus, various turbulence models are used for

simulations seeking to predict flow statistics or averages. In LES (large eddy simulation) the

evolution of local, spatial averages is sought. Broadly, there are two types of LES models

of turbulence: descriptive or phenomenological models (e.g., eddy viscosity models) and

predictive models (considered herein). The accuracy of a model, meaning the relative error

||filteredNSEsolution-LESsolution||
||filteredNSEsolution||

(1)

can be assessed in several experimental and analytical ways2. In a posteriori testing, a DNS

is performed and the relative error calculated by the quotient (1) above. The other common

approach in LES is a’ priori testing, Sagaut25. We study here an analytic form of a’ priori

testing. To present this, let τ denote the subfilter scale stress tensor

τ (u,u) = u⊗ u− u⊗ u, (2)

where u denotes the velocity of the flow. The filter can be the classical Gaussian filter of

parameter δ or other. In this paper (as in early work, see Layton-Lewandowski14,16), we

2Here the “filteredNSEsolution” stands for the filtered solution to the Navier-Stokes equation deduced
from the LES filter under consideration and || · || denotes any norm, defining the sense given to the notion
of ”accuracy”.
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shall work with the approximated Gaussian filter, filtering wave numbers higher than δ−1,

called a differential filter and having for transfer function the function

Ĝ(k) =
1

δ2k2 + 1
. (3)

The parameter δ is the averaging radius (for instance the size of the numerical grid used to

simulate a isotropic turbulent flow). We denote by Au = u the filtered velocity field, and

for a tensor T, AT = T denotes the coresponding filtered tensor.

LES models are replace this tensor by one that depends only on u. For example, the simplest

model in the family of ADM models we study is given by

τmodel(u,u) = u⊗ u− u⊗ u.

The difference, evaluated at the true NSE solution, is the consistency error. Apriori testing

of accuracy proceeds by computing u by DNS, filtering u then computing

||τ 0|| = ||τmodel(u,u)− τ (u,u)|| = ||u⊗ u− u⊗ u||, (4)

where τ 0 = u⊗ u − u⊗ u is the residual stress. Engineers call this a’ priori testing. It is

like testing order of accuracy of a finite difference method. If w denotes the ”LESsolution”,

the error u−w satisfies an equation driven only by τ 0. Thus, ||u−w|| being small requires
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small consistency error, ||τ 0|| small, and stability of the LES model.

One important approach (for which there are currently few results) is to study analytically

the model’s consistency error (defined precisely below) as a function of the averaging radius

δ and the Reynolds number Re. The inherent difficulties are that

(i) consistency error bounds for regular functions hardy address essential features of turbulent

flows such as irregularity and richness of scales,

(ii) worst case bounds for solutions of the Navier Stokes equations are so pessimistic as to

yield little insight.

However, it is known that after time or ensemble averaging, turbulent velocity fields are

often observed to have intermediate regularity as predicted by the Kolmogorov theory (often

called the K41 theory), see for example in Frish10, Berselli et al.3, Pope23, Sagaut25 and

Lesieur18. This case is often referred to as homogeneous isotropic turbulence and various

norms of flow quantities can be estimated in this case using the K41 theory. We mention

Lilly’s famous paper21 as an early and important example.

In this paper we consider this third way begun in Layton-Lewandowski15: error bounds are

developed for time averaged, fully developed, homogeneous, isotropic turbulence. We are

seeking for estimates of, on one hand

- of the time average of the L1 norm of the filtered residual second order stress τ 0 defined

by equation (4) and which appears in the approximate deconvolution model of order 0, that
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means the limit when the time T goes to infinity of the integral

1

T

∫ T

0

{
1

L3U2

∫
IR3

|τ 0(x, t)|dx
}

dt, (5)

a dimensionless quantity which will be also denoted by

1

L3U2
< ||τ 0||L1 >

in the remainder3 and which can be considered as an averaged relative error. We denote by

U a typical size of the velocity’s modulus and < · > is the time average. Finally, L denotes

a typical length scale of the flow (the size of an obstacle if there is one, the fundamental

wavelength of an L-periodic box...). Notice that this model is not the same than introduced

by Bardina et al.2 as we shall see in the remainder.

And on the other hand

- of the time average of the L1 norm of the residual stress τN appearing in the general

approximate deconvolution introduced by Stolz and Adams26, that means the limit when

the time T goes to infinity

lim
T→∞

1

T

∫ T

0

{
1

L3U2

∫
IR3

|τN(x, t)|dx
}

dt =
1

L3U2
< ||τN ||L1 >, (6)

3Recall that the residual stress is defined by τ 0 = (τ ij
0 )1≤ij≤3 = ui uj − uiuj , |τ 0(x, t)| =

(τ ij
0 (x, t).τ ij

0 (x, t))1/2, the velocity u is the vector field u = (u1, u2, u3).
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where (τN)ij = GNuiGNuj − uiuj, GN =
∑n=N

n=0 (I − A)n being the deconvolution operator.

Such bounds are inherently interesting and they also help answer two important related

questions of accuracy and feasibility of LES. Indeed, numerical simulations lead to these

two following theoretical questions:

• How small must δ be with respect to the Reynolds number Re to have the average

consistency relative error << O(1)? (accuracy)

• Can consistency relative error << O(1) be attained for the cutoff length-scale δ within

the inertial range? (feasibility)

These questions can be rephrased as: is the models solution close to the true flow averages?

And, does solution of the model require fewer degrees of freedom than a DNS? The rest of

this paper is an attempt to give partial answers to these two crucial questions. In particular,

we obtain by an analytical way the following bounds

<
1

L3U2
||τN ||L1 >≤ CN

(
δ

L

)1/3

, (7)

for N = 0, 1..... (the l.h.s is defined by the equality (6) above). Those bounds does not

depend on the Reynolds number Re and CN is a dimensionless constant which depends on

the total dissipation rate ε, and which is bounded with respect to N . The main observation

is that < ||τN ||L1 > is driven by the averaged value of the L2 norm of the filtered error

GNu − u, that is KN =< ||GNu − u||2L2
/L3 >. When N = 0, KN is the turbulent kinetic
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energy (TKE) and for general integer N , we shall call it the generalized TKE4. The next

obervation is that, in average, the Kolmogorov −5/3’s law can be used to evaluate the TKE

by the way of the transfer function of the filter A. As we shall see, these bounds still hold

when one replaces the differential, second order filter5 by the Gaussian filter. We show next

how to derive the 1/3 exponent which appears in (7) thanks to a dimensional analysis. We

finish by an interpretation of the bound in terms of accuracy and feasibility of the models

and bring also an attempt of a physical interpretation of it.

The paper is written to be the most self contained as possible and is organized as follows.

In the section 2 we recall the Navier-Stokes equations and the Kolmogorov − 5/3’s law also

named ”K41 phenomenology” in the remainder. This allows us to set our notations and to

write precisly the assumptions we make on the flow (see assumptions 2.1, 2.2 and 2.3 below).

The section 3 is devoted to the presentation of the ADM models. This is the occasion to

point out the analytical link in the motion equations between the modeling error and the

norms of the residual stress. In the section 4, we show in details how we obtain the δ1/3’s

bound analytically using the −5/3 Kolmogorov’s law. Next, the 1/3 law is also qualtitatively

derived thanks a dimensional analysis. We finish by conclusions and discussions in the section

5, by exploring a connection between the 1/3 law we found with other classical laws used in

the turbulence modeling.

In a final appendix, one shows how to derive a Re1/2δ bound when one does not use the K41

4recall that G0u = u and one has formally G∞u = u
5defined by its transfer function (3)
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in order to be able to compare it with the δ1/3’s bound.

2 Navier-Stokes equations and K41 phenomenology

2.1 The Navier-Stokes equations

Let the velocity u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) , x = (x1, x2, x3) and pressure p(x, t) be

a solution to the underlying Navier Stokes equations (NSE for short)

∂ui

∂t
+

∂ujui

∂xi

+
∂p

∂xi

− ν
∂2ui

∂xk∂xk

= f i, (8)

with the continuity equation

∂ui

∂xi

= 0, (9)

where ν = µ/ρ is the kinematic viscosity, f = (f 1, f2, f3) is the body force and IR3 is the

flow domain. The Navier-Stokes equations are rewritten under the simplest vectorial form

∂u

∂t
+∇ · (u⊗ u) +∇p− ν4u = f and ∇ · u = 0, in IR3 × (0, T ). (10)

Generally speaking, any vector fields v = (v1, v2, v2) being given, v⊗ v is the second order

tensor vivj. The above Navier-Stokes equations are supplemented by the initial condition,
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the usual pressure normalization condition

u(x, 0) = u0(x) and

∫
IR3

p dx = 0, (11)

and appropriate integrabily conditions at infinity. The role of boundary conditions at infinity

is played by the assumption that all data are square integrable

∫
IR3

|u0(x)|2dx < ∞ and

∫ ∞

0

∫
IR3

|f(x, t)|2dxdt < ∞. (12)

Therefore, the solution under consideration is subjected to satisfy the classical energy balance

for all t > 0,

∫
IR3

|u(x, t)|2dx + ν

∫ t

0

∫
IR3

|∇u(x, τ)|2dxdτ ≤
∫ t

0

∫
IR3

f(x, τ).u(x, t)dxdτ. (13)

Note that while it is known that a solution exists satisfying the energy inequality (13), a

result proved by J. Leray17, it is unknown if all solutions satisfy the energy equality suggested

by the physics of fluids. There is currently no mathematical resolution of this question.

2.2 The K41 phenomenology

The most important components of the K41 theory are the time (or ensemble) averaged en-

ergy dissipation rate, ε, and the distribution of the flows kinetic energy across wave numbers,
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E(k). Recall that < · > denote long time averaging, that means for any tensor φ related to

the turbulence, the limit for large time T of the time average (1/T )

∫ T

0

φ(x, t)dt, denoted

by

< φ > (x) := lim
T→∞

1

T

∫ T

0

φ(x, t)dt. (14)

Time averaging is the original approach to turbulence of Reynolds24. It satisfies the following

Cauchy-Schwartz inequality where φ and ψ are any fields,

<

∫
IR3

|φ(x)| |ψ(x)|dx > ≤ <

∫
IR3

|φ(x)|2dx >
1
2 <

∫
IR3

|ψ(x)|2dx >
1
2 , (15)

an inequality that we will use in the remainder, and which can be founded in Zeidman29 or

in Layton13.

Given the velocity field of a particular flow, u(x, t) , the (time averaged) energy dissipation

rate of that flow is defined to be

ε := lim
T→∞

1

T

∫ T

0

{
ν

L3

∫
IR3

|∇u(x, t)|2dx
}

dt, (16)

where |∇u(x, t)|2 =
∂ui

∂xj

(x, t)· ∂ui

∂xj

(x, t). It is known for many turbulent flows that the energy

dissipation rate ε scales like
U3

L
. This estimate follows for homogeneous, isotropic turbulence

from the K41 phenomenology (see in Frisch10, Lesieur18 and Pope23) and has been proven

by Constantin and Doering7 and also Wang28 as an upper bound directly from the Navier
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Stokes equations for turbulent flows in bounded domains driven by persistent shearing of a

moving boundary (rather than a body force). The same estimate has been proven by Foias9

when the flow is driven by a persistent body force, the boundary conditions are periodic and

the forcing acts on the largest modes.

If û(k, t) denotes the Fourier transform of u(x, t) where k is the wave-number vector and

k = |k| is its magnitude, then the kinetic energy of the flow can be evaluated in physical

space or in wave number space using the Fourier transform û of u at time t

1

2
||u||2L2

=
1

2

∫
IR3

|u(x, t)|2dx =
1

2

∫
R3

|û(k, t)|2dk. (17)

Time averaging and rewriting the last integral in spherical coordinates gives

<
1

2L3
||u||2L2

> =

∫ ∞

0

E(k)dk, (18)

where E(k) is the energy density which has for dimension the square of a velocity times a

length. This is the amount in time average of kinetic energy for wave vectors k such that

k ≤ |k| ≤ k + dk. It can also be defined by the formula

E(k) :=
1

2L3

∫
|k|=k

< |û(k, t)|2 > dσ. (19)

The case of homogeneous, isotropic turbulence includes the assumption that (after time or
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ensemble averaging) R(û(k, t)) for any correlation tensor R depend only on k and thus not

the angles θ or ϕ. Thus for the simplicity, one may write E under the form

E(k) = 2πk2 < |û(k)|2 > . (20)

Further, the K41 theory states that at high enough Reynolds numbers there is a range of

wave numbers

0 < kmin := Uν−1 ≤ k ≤ ε
1
4 ν−

3
4 =: kmax < ∞, (21)

known as the inertial range, beyond which the kinetic energy in u is negligible, and in this

range

E(k)
.
= αε

2
3 k−

5
3 , (22)

where α (in the range 1.4 to 1.7) is the universal Kolmogorov constant, k is the wave number

and ε is the particular flow’s energy dissipation rate. The energy dissipation rate ε is the

only parameter which differs from one flow to another. Outside the inertial range the kinetic

energy in the small scales decays exponentially. Thus, we still have E(k) ≤ αε
2
3 k−

5
3 since,

after time averaging the energy in those scales is negligable, E(k) ' 0 for k ≥ kmax and

E(k) ≤ E(kmin) for k ≤ kmin. The fundamental assumption underlying our consistency error

estimates is Assumption 2.3 below that over all wave numbers E(k) ≤ αε
2
3 k−

5
3 . Indeed, in

figure 6.14 page 235 of Pope’s book23 the power spectrums of 17 different turbulent flows are
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plotted and the above bound is obvious in the plot. To summerize, we will use the following

elements of the K41 theory.

Assumption 2.1 The equations are non-dimensionalized by a selection of U and L consis-

tent with

<
1

L3

∫
IR3

|u(x, t)|2dx >
1
2≤ U.

Assumption 2.2 The time averaged energy dissipation rate ε satisfies

ε ≤ C1
U3

L
.

Assumption 2.3 The energy spectrum of the flow satisfies

E(k) ≤ αε
2
3 k−

5
3 .

3 Description of the ADM models

3.1 About the filter

We study a model for spacial averages of the fluid velocity with the following differential

filter. Let δ denote the averaging radius; given any field related to the turbulence φ its
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average, denoted φ, is the solution of the following problem

A−1φ := −δ24φ+ φ = φ, φ = A(φ), (23)

which reads component by component if φ = (φ
j1....jq

i1,...,ip
)

−δ2
∂2(φ

j1....jq

i1,...,ip
)

∂xi∂xi

+ φ
j1....jq

i1,...,ip
= φ

j1....jq

i1,...,ip
.

This filter is a special case of a differential filter sometimes called ”variational filter”, a

terminology issued from the mathematical folklore. Differential filters are well-established

in LES, starting with work of Germano12 and continuing in Galdi and Layton11, Sagaut25,

and have many connections to regularization processes such as the Yoshida regularization of

semigroups and the very interesting work of Holm et al.6 (and others) on Lagrange averaging

of the Navier-Stokes equations. As mentioned in the introduction, the transfer function of

the filter A is the function Ĝ(k) = 1/(δ2k2 + 1).

3.2 Filtered motion equations

Averaging the NSE shows that the true flow averages satisfy the (non-closed) equations

∂u

∂t
+∇ · (u⊗ u)− ν4u +∇p = f and ∇ · u = 0. (24)
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Figure 3.1: Transfer function of the variational filter together with Gaussian filter

The zeroth order model arises from the first order Taylor expansion u ' u + O(δ2), giving

u⊗ u ' u⊗ u + O(δ2). Calling w, q the resulting approximations to u, p, we obtain the

model studied in Layton-Lewandowski14,16:

∂w

∂t
+∇ · (w⊗w)− ν4w +∇q = f and ∇ ·w = 0. (25)

3.3 Consistancy error in the zeroth-order case

This zeroth order model’s consistency error order two tensor τ 0 is given by, as mentionned

in the introduction already:

τ 0 := u⊗ u− u⊗ u, (26)
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where one recallls that τ 0 = (τ ij
0 )1≤ij≤3, (τ ij

0 ) = ui uj − uiuj. It is worth pointing out

that τ 0 is a function of δ/L. The subsequent analysis will reveal its explicit dependence.

Notice that our model differs from the one introduced by Bardina et al2 where the following

approximation is used: u⊗ u ' u⊗ u− u⊗ u + u⊗ u.

Subtracting the model (25) from the averaged NSE (24), on obtains the model’s error equa-

tion satisfied by e = u−w, satisfies e(x, 0) = 0,∇ · e = 0 and

∂e

∂t
+∇ · (u⊗ e + e⊗w)− ν4e +∇(p− q) = ∇ · τ 0. (27)

This equation is driven by the model’s consistency error τ 0 through the term ∇ · τ 0. If the

term ∇ · τ 0 is considered as a force and e as a displacement, the virtual work in the motion

is the integral ∫
IR3

e · (∇ · τ 0) = −
∫

IR3

τ 0 : ∇e,

where the equality follows from the Stokes formula. As example, we note that this obser-

vation allows us to prove in the case of a periodic flow in box Q = [0, L]3 (see in Layton-

Lewandowski14,16) the technical mathematical inequality for all t > 0,

∂

dt

(∫
Q

{
|e(x, t)|2 + δ2|∇e(x, t)|2

}
dx

)
+ ν

∫
Q

{
|∇e(x, t)|2 + δ2|∆e(x, t)|2

}
dx ≤

C

(
ν−1

∫
Q

τ ij
0 (x, s).τ ij

0 (x, s)dx + ν−3

(∫
Q

|∇u(x, t)|2dx
)4 ∫

Q

|e(x, t)|2dx

) (28)

and C is a constant depending only on ν. For such reasons, we consider that the modeling
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error is actually driven by τ 0 rather than ∇·τ 0. Since the model is stable to perturbations16,

the accuracy of the model is governed by the size of various norms of its consistency error

tensor τ 0. We choose in the remainder to seek for estimates of the non-dimensionalized L1

norm of the residual stress for convenience, considered as a relative error. Notice that our

approach works for any other norms.

3.4 Generalized ADM models

The example above is the simplest (hence zeroth order) model in many families of LES

models. We consider herein a family of Approximate Deconvolution Models (or ADM’s)

whose use in LES was pioneered by Stolz and Adams1,26. The size of the N th models

consistency error tensor directly determines the model’s accuracy for these higher order

model’s as well as shown in Dunca and Epshteyn8. Let GN (N = 0, 1, 2, ...) denote the van

Cittert approximate deconvolution operator (see in Bertero and Boccacci4) given by

GNφ =
N∑

n=0

(I − A)nφ (29)

where φ denotes any tensor related to the turbulence and the operator A is defined in (23).

By a Taylor expension, it satisfies at first order u = GNu + O(δ2N+2). The models studied
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by Adams and Stolz1,26 (see also Stolz et al.27) are given by

∂w

∂t
+∇ · (GNw⊗ GNw)− ν4w +∇q + w′ = f and ∇ ·w = 0. (30)

The w′ term is included to damp strongly the temporal growth of the fluctuating compo-

nent of w driven by noise, numerical errors, inexact boundary conditions and so on. The

consistency error induced by adding the w′ term is larger than that of the nonlinear term

in smooth flow regions but is smaller than it in region of fully developed turbulence. While

it does affect the model’s dynamics, it does not affect the overall consistency error estimate.

Thus, herein we drop the w′ term.

For example, the induced closure model’s corresponding to N = 0 and 1 are

G0u = u, so u⊗ u ' u⊗ u + O(δ2), (31)

G1u = 2u− u, so u⊗ u ' (2u− u)⊗ (2u− u) + O(δ4). (32)

The transfer function of the operator GN is the function

ĜN = (1 + δ2k2)

[
1−

(
δ2k2

1 + δ2k2

)N+1
]

. (33)

The corresponding residual stress is defined by τN = GNu⊗GNu−u⊗u. Notice that Stolz

and Adams recommend N = 5.

18



Figure 3.2: Plots of the transfer functions Ĝ4, Ĝ5, Ĝ6, Ĝ7 with δ = 0.01

4 Proof of the main result

4.1 Error estimate in terms of the TKE

In this section, we prove the consistency error is O(δ1/3) uniformly in Re as claimed in the

introduction. For clarity, we first consider the case of the zeroth order model which yields

the system of equations (25).

We begin by showing that the error estimate we are looking for when N = 0, that is

< ||τ 0||L1/U
2L3 >, is driven by the turbulent kinetic energy (TKE) < ||u − u||2L2

/L3 >.

The same method yields that the N th-error < ||τN ||L1/U
2L3 > is driven by the generalized

TKE, < ||GNu− u||2L2
/L3 >.

Recall that − δ2∆u + u = u which also reads − δ2 ∂2uj

∂xi∂xi

+ uj = uj. Thus, taking u as a

virtual field in the equation above to estimate the virtual work, and using the Stokes formula

(we assume that no boundary effects occur at infinity) yields the following energy balance
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at time t,

δ2

∫
IR3

|∇u(x, t)|2dx +

∫
IR3

|u(x, t)|2dx =

∫
IR3

u(x, t).u(x, t)dx (34)

The Cauchy-Schwarz inequality reads

∫
IR3

u(x, t).u(x, t)dx ≤
(∫

IR3

|u(x, t)|2dx
)1/2(∫

IR3

|u(x, t)|2dx
)1/2

.

Therefore, the balance equation (34) shows that filtering the field u by u yields a reduction

of the total kinetic energy at each time, introducing an artificial dissipation measured by the

integral δ2

∫
IR3

|∇u(x, t)|2dx. In particular

||u||L2 ≤ ||u||L2 . (35)

The fundamental consequence is the following. Note first that the following identity holds:

τ 0 = u⊗ (u− u) + (u− u)⊗ u. (36)

one deduces from the identity (36) and the inequality (35) above combined with the inequality

(15), the inequality

<

∫
IR3

(τ ij
0 (x, t).τ ij

0 (x, t))1/2dx > = < ||τ 0||L1 >≤ 2 < ||u||2L2
>1/2< ||u− u||2L2

>1/2 (37)
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Therefore, Assumption 2.1 yields the inequality

< ||τ 0||L1 >≤ 2UL3/2 < ||u− u||2L2
>1/2 (38)

Now the game consists in the evaluation the TKE, K =< ||u− u||2L2
/L3 >.

4.2 The δ1/3 bound for the zeroth order model

Thanks to the definition of the energy’s density E and using the transfer function of the

filter, one may write

< ||u− u||2L2
>≤

∫ kmax

kmin

(
1− 1

1 + δ2k2

)2

E(k)dk. (39)

By using the − 5/3 K41 law, one obtains

< ||u− u||2L2
>≤ αε2/3L3

∫ kmax

kmin

(
δ2k2

1 + δ2k2

)2

k−5/3dk := I. (40)

We have to evaluate the integral I which appears in r.h.s of the previous inequality. It

requires different treatments for small and large wave numbers. The transition point is the

cutoff wave number δ. Thus we break the integral I into to integrals

I = Ilow + Ihigh, Ilow =

∫ 1/δ

kmin

...dk, Ihigh =

∫ kmax

1/δ

...dk.
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For the low frequency components we have δ2k2/(1 + δ2k2) ≤ δ2k2. Therefore

Ilow ≤ αL3ε
2
3 δ4

∫ 1/δ

kmin

k
7
3 dk ≤ αL3ε

2
3 δ4

∫ 1/δ

0

k
7
3 dk =

3

10
αL3ε

2
3 δ

2
3 . (41)

For the high frequency components we have δ2k2/(1 + δ2k2) ≤ 1. We deduce the inequalities

Ihigh ≤ αL3ε
2
3

∫ kmax

1/δ

k−5/3dk ≤ αL3ε
2
3

∫ ∞

1/δ

k−5/3dk =
3

2
αL3ε

2
3 δ

2
3 , (42)

where α is the Komogorov constant whose value is in the range [1.4, 1.7]. Using Assumption

2.2 combined with the above inequalities gives

<
1

L3U2
||τ 0||L1 >≤ 3.6 C

1
3
1

(
δ

L

) 1
3

(43)

In the inequality above, the upper estimate α ≤ 1.7 was used and C1 is the O(1) constant

in Assumption 2.2.

4.3 General ADM model

Recall that τN = GNu ⊗ GNu − u ⊗ u is the residual stress corresponding to the general

ADM model. One derives here a bound for the quantity < ||τN ||L1/U
2L3 >. One may
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write τN under the form τN = (GNu− u)⊗GNu + u⊗ (GNu− u) which can be rewitten

τN = (GNu− u)⊗ (GNu− u) + (GNu− u)⊗ u + u⊗ (GNu− u).

Therefore

< ||τN || >≤< ||GNu− u||2L2
> +2 < ||u||2L2

>
1
2 < ||GNu− u||2L2

>
1
2 . (44)

The game now consists in evaluating L3KN =< ||GNu− u||2L2
>. As before and due to the

knowledge of the ĜN transfer function (see the formula (33)) multiplied by the inverse of

transfer function of the operator A, < ||GNu− u||2L2
> is computed thanks to the integral

< ||GNu− u||2L2
>= I = L3

∫ kmax

kmin

(
δ2k2

1 + δ2k2

)2N+2

E(k)dk.

the integral I is as before broken into to parts, Ilow for the frequency component less than

δ−1 and Ihigh for the frequency component greater than δ−1. We use the same inequalities as

we did before combined with the K41. We skip the technical details, but just mention that

we find

Ilow ≤
(

1

4N + 10
3

)
C

2
3
1 α U2L3

(
δ

L

) 2
3

, Ihigh ≤
3

2
C

2
3
1 α U2L3

(
δ

L

) 2
3

, (45)
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which yields the inequality

< ||GNu− u||2L2
>≤

(
3

2
+

1

4N + 10
3

)
C

2
3
1 α U2L3

(
δ

L

) 2
3

(46)

One deduces from this the bound

<
1

U2L3
||τN ||L1 >≤ 2ΨN

(
δ

L

) 1
3

(
1 + ΨN

(
δ

L

) 1
3

)
(47)

where Ψ2
N =

(
3

2
+

1

4N + 10
3

)
C

2
3
1 α. Notice that Ψ∞ ≈ 1.5 C

1/3
1 ≤ ΨN ≤ Ψ0 ≈ 1.8 C

1/3
1 for

α ∈ [1.4, 1.7].

Remark 4.1 The main analytical fact in the bound above is the fact that the transfer func-

tion Ĝ satisfies |1 − Ĝ(k)| ≤ δ2k2 for the low frequencies and |1 − Ĝ(k)| ≤ 1 for the high

frequencies. We remark that the Gaussian filter (e−δ2k2
) satisfies the same formal properties.

Therefore the same bound holds and this is the case for any second order filter having the

same characteristics.

4.4 Dimensional analysis

The bound above are obtained thanks to the − 5/3 Komogov’s law. We show now that one

can give a physical sense to the δ1/3 law to make it consistant as a feature of turbulence. The

computation above shows that under this law, the bound for < ||τN ||L1 > is of order ε1/3δ1/3
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and is driven by
√

L3KN . This lead us to postulate a law of the form F(
√

KN , ε, δ) = 0. By

the Π-Theorem, we see that there exists a nondimensional number χN be such that

√
KN = χN ε1/3δ1/3. (48)

The basic inequality (44) can be rewritten under the form

< ||τN ||L1 >≤ L3
√

KN(U + 2
√

KN) (49)

We obtain then the inequality

<
||τN ||L1

L3U2
>≤ χN

U
ε1/3δ1/3

(
1 +

χN

U
ε1/3δ1/3

)
.

This is exactly the form of the bound (47). The analytical considerations above show

that χN is bounded with respect to N . The particular form of this law when N = 0 is

< ||τ 0||L1/L
3U2 >≤ χ0

U
ε1/3δ1/3. It must be stressed that this law, when it is derived by

dimensional considerations, is obtained without the − 5/3 law and is valid for every kind

of filter, as for instance a statistical filter. The link to the K41 and the particular form of

the LES filter allows for direct computations. However, this dimensional analysis argument

suggests existence of a deeper physical principle.
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5 Conclusions and discussion

5.1 From the initial questions : first observations

As suggested in the introduction, this work has been generated following the mathematical

analysis of the ADM zeroth order model in Layton-Lewandowski14,16. In those work, we were

able to prove that the zeroth order ADM model converges in some abstract mathematical

sense to the Navier-Stokes equations when δ goes to zero (this has been generalized for

every fixed N by Dunca and Epshteyn8). Therefore, the problem was to evaluate the rate

of convergence to know wether the model is ”consistant” and simulation with the model

”feasible”. Consistant asks ”how does δ be small such that the relative error is small with

respect to 1”. Feasibility asks ”are fewer degrees of freedom required to simulate the model

than required by a DNS” and to know if this number is compatible with the actual computer’s

power.

We have choosen to study this question analytically with the variational filter we have studied

in 14 and 16 together with the − 5/3 Kolmogorov’s law. This yields a δ1/3 law satisfied by

the consistancy error bound. This law seems to be also satisfied in the case of the Gaussian

filter and probably for a large class of second order filters.

We note first that the constant involved in this law does not depend on the Reynolds number.

This constant also remains bounded with respect to N , a bound which depends on the

26



features of the flow. Unfortunatly, this bound does not goes to zero when N goes to infinity6.

Analytical study of consistancy error leads to splitting the contribution of the TKE into two

parts. The first one concerns the low frequencies component, Ilow. The second one concerns

the high frequency component, Ihigh. The inequalities (45) show that the component Ilow

goes to zero when N goes to infinity. The component Ihigh remains bounded but there is no

reason to tell that it goes to zero when N goes to infinty7.

5.2 About consistency and feasibility

Recall first that the Reynolds number is not involved in the bound above. The model is

consistant when δ1/3 = o(1) ≈ 10−1 (when L = 1), that is δ = O(10−3). Let us see what is

the practical consequence in terms of pratical simulations.

Computers todays are 8-bytes words. Assume that the code used is based on a finite elements

method. The main computational concern is the central memory loading of the corresponding

stiffness matrix. Assume that δ ≈ 2∆x ≈ 10p, where ∆x is the mesh size. Then the matrix

is about 103p lines and each line has about 200 non zero coefficients. Therefore, the required

bytes numbers is of order 8× 200× 103p, that is about 103p+1. Consistency requires p = 3.

The consideration above yield that such a calculation will require a computer having a central

6One must say here that we have try to prove the mathematical convergence of the ADM models to
the Navier-Stokes equations when N goes to infinity for a fixed δ. We failed with the classical tools of the
fonctional analysis that the mathematicians usually use. This is mainly due to the lack of informations on
the fields in the high frequency components.

7The obstruction is of the same type when trying to use the functional analysis to solve this question of
convergence: we are not able to keep a control on the high frequency components, a difficulty well illustrated
by the shapes of the transfer functions ĜN given in figure 3.2.
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memory of about 10 Go. If such a computer is not a classical PC, there exists today clusters

with such a power, yielding practical feasibility.

5.3 A physical interpretation : the link to usual laws

When trying to seek for a law under the form F(
√

KN , ε, δ) = 0, we are lead to the law (48),

that is
√

KN = χN ε1/3δ1/3. Now the question arises what can δ physically be, independly

of any computational considerations. This suggests a connection with the natural Prandtl

mixing lenght usually denoted by `. Therefore, taking δ = ` this law (48) can be rewritten

under the form

ε = χ−3
N

KN

√
KN

`
. (50)

Here we recognize the classical law used when one try to close the k− ε system to avoid the

doubtful ε-equation (see in Lewandowski19,20, in Brossier-Lewandowski5 or in Mohammadi-

Pironneau22). Indeed, this law supposes that ε, ` and K are linked and this law follows from

the classical Π-Theorem. One may object that the considered ε in the k − ε model is the

average of the dissipation due to the fluctuations and here ε is the total dissipation. But

the difference between these two objects is also controled by the residual stress, yielding the

same laws.

The dimensional analysis is a useful way to predict the 1/3 law that we have derived analyt-

ically. This leads to more questions about the nature of the − 5/3 Kolmogorov’s law, eddy

viscosity and how the small scales (smaller than O(δ)) act on the large scales (the ”large
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eddies”).
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6 Appendix : bound without the K41 Phenomenology

6.1 Analytical δ Re1/2 bound

In this appendix, we give an analytical bound without using the − 5/3 K41 law. The result

is a bound in δRe1/2. In the next subsection, we compare this bound to the δ1/3 bound.

As before, we need to estimate the TKE < ||u− u||2L2
/L3 >. By a direct computation one

has

û(k)− û(k) = δH(k)kû(k), (51)

where k = |k|, H(k) = δk/(1+δ2k2), and satisfies |H(k)| ≤ 0.5. By noticing that ||∇u||L2 =
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Figure 6.1: Curves comparing the bound in δ
1
3 together with the bound in Re

1
2 δ when Re = 106.

kû(k) .kû(k), one deduces that

||u− u||L2 ≤
δ

2
||∇u||L2 .

Therefore, thanks to the basic inequality (38) the following holds,

< ||τ 0||L1 >≤ δL3Uν−1/2 <
1

L3
ν||∇u||2L2

>1/2≤ δν−
1
2 L3Uε

1
2 . (52)

which yields by using assumption 2.2,

<
1

L3U2
||τ 0||L1 >≤ C

1
2
1

δ

L
Re

1
2 (53)
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Figure 6.2: Plotting of the function H(k) with δ = 0.01

6.2 Comparison with the δ1/3 bound

We have plotted in figure 6.1 both curves comparing the δ1/3 law with the δRe1/2 bound.

The δ1/3 law gives a better bound until a critical δc where the curves intersect each other.

When δ < δc, one observes that the δRe1/2 gives a better result. A simple computation yields

δc = O(Re−3/4), which fits perfectly with the kmax ≈ ε1/4ν−3/4 predicted by the Kolmogorov’s

law. That means that the bound obtained without the − 5/3 law begins to be better when

the flow is fully resolved. We do not have any real explanation for this, but it has been so

striking to us that it must be mentioned.
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