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Abstract

A network of excitatory neurons within the pre-Botzinger complex (pre-BoétC)
of the mammalian brain stem has been found experimentally to generate robust,
synchronized population bursts of activity. An experimentally calibrated model for
pre-BotC cells yields typical square-wave bursting behavior in the absence of cou-
pling, over a certain parameter range, with quiescence or tonic spiking outside of this
range. Previous simulations of this model showed that the introduction of synaptic
coupling extends the bursting parameter range siginificantly and induces complex
effects on burst characteristics. In this paper, we use geometric dynamical systems
techniques, predominantly a fast/slow decomposition and bifurcation analysis ap-
proach, to explain these effects in a two-cell model network. Our analysis yields the
novel finding that, over a broad range of synaptic coupling strengths, the network
can support two qualitatively distinct forms of synchronized bursting, which we call
symmetric and asymmetric bursting, as well as both symmetric and asymmetric
tonic spiking. By elucidating the dynamical mechanisms underlying the transitions
between these states, we also gain insight into how relevant parameters influence
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burst duration and interburst intervals. A key point in our results is that, in the
two-cell network with synaptic coupling, the stable family of periodic orbits for the
fast subsystem features spike asynchrony within otherwise synchronized bursts and
terminates in a saddle-node bifurcation, rather than in a homoclinic bifurcation, over
a wide parameter range. As a result, square-wave bursting is replaced by what we
call top hat bursting, at least for a broad range parameter values. Further, spike
asynchrony is a key ingredient in shaping the dynamic range of bursting, leading to
a significant enhancement in the parameter range over which bursting occurs and an
abrupt increase in burst duration as an appropriate parameter is varied.

1 Introduction

The inspiratory phase of the respiratory rhythm is believed to originate in a group of
neurons in a region of the brain stem referred to as the pre-Bétzinger complex (pre-B6tC)
[27]. Within the pre-B6tC, when coupling among cells is removed, there are silent cells,
cells that spike continuously, and intrinsically bursting cells that generate groups of spikes
separated by pauses [27, 12, 14]. Cells in all of these classes seem capable of regular
oscillatory bursting, if provided with appropriate inputs experimentally, and thus these
cells are sometimes called “pacemaker cells”. Experiments in brain slices have shown
that a synaptically coupled network of pre-BétC pacemaker cells can display synchronous
bursting oscillations [27, 18].

In two papers, Butera and collaborators presented experimentally constrained conductance-
based models for individual pacemaker cells in the pre-BotC as well as for a network of
these cells [1, 2]. In the network, both excitatory synaptic coupling between cells and a
depolarizing input current from a tonically firing population were included, whereas the
persistence of respiratory rhythms in pre-BotC under experimental blockage of synaptic
inhibition justified its omission [14]. For the most part, each cell was coupled to all other
cells, although similar results were found with less complete connectivities. Following
Butera et al., let the parameter g;,, . denote the maximal conductance of an excitatory
synaptic input from one cell to another, and let g;on;c_ denote the conductance of the
tonic depolarizing current, which is taken to be identical for all cells. A focal point of the

Butera network study was the characterization of the dynamic range of bursting in the



model network. The dynamic range here refers both to the range of gypnic_ over which
the network displays bursting behavior, for a fixed gyn—., and to the corresponding range
of burst frequencies produced.

Uncoupled model pre-BotC cells are square-wave bursters, over a range of gipnic . In
their simulations, Butera et al. found that introducing synaptic coupling among identical
model cells, by increasing gsy,—. from zero to a nonzero level, increased the range of gionic—e
over which synchronized bursting oscillations occurred, relative to the bursting range for a
single cell [2]. More precisely, the coupled network would burst synchronously for the same
Jtonic—e Values that led to single cell bursting, as well as for an interval of g;onic—. that would
cause continuous firing in a single cell. This effect was nonmonotonic, such that as gsy,
was increased, the bursting range of gionic— Would reach a maximum and then would begin
to shrink back toward that observed for gy, . = 0. Butera et al. also used simulations
to map out the changes in burst frequency and other burst characteristics with changes
in geyn—e and Gronic—e. In particular, they found that while the bursting range of gionic—e
increased as ggyn—. increased from zero, network bursts with at least some nonzero gsy,—_.
values achieved a more limited range of burst frequencies than achieved with gy, . = 0.

The primary goal of this work is to provide a thorough mathematical analysis of the
mechanisms underlying most of these findings. We employ a fast-slow decomposition
[20, 22] to focus on how changes in gsn—e and gonic—. affect the bifurcation structure of
the Butera pacemaker cell model. This approach allows us to elucidate the nature of the
transitions from quiescence to bursting and from bursting to spiking in the network, as
Gsyn—e a0 Gionic—e are separately varied. We note that while both gy, and gionic—. are
conductances for inward, excitatory currents, increasing these parameters may have very
different effects on network dynamics. In particular, increasing gsy,—. may transform the
network from spiking to bursting and then back to spiking; however, increasing gionic_e
can never transform the network from spiking to bursting. Importantly, our analysis raises
the distinction that bursting and tonic spiking in a coupled pair of cells can be symmetric,
in that the trajectories converge to, and oscillate regularly about, an axis of symmetry, or

asymmetric, depending on features that we derive from the network dynamics. In addition



to explaining how these different activity patterns arise, our results include an analysis of
transitions between them as well. In the bursting regime, this leads to an understanding
of how synaptic coupling and excitatory inputs combine to influence the silent and active
phase durations, and hence the period, of bursting.

Because the Butera et al. pacemaker cell model is a square-wave burster under ap-
propriate parameter choices, the results presented here advance the current mathematical
understanding of transitions between activity modes in general networks of cells capable of
square-wave bursting [20, 29, 30, 11, 22]. The analysis also demonstrates how coupling cells
that exhibit one type of behavior, namely spiking, can lead to a different firing pattern,
namely bursting. Furthermore, our results, while mathematical in character, are relevant
to the study of the biology of respiration in that they elucidate dynamical mechanisms
that can lead to various activity patterns, which may be experimentally distinguishable in
the pre-BotC, along with the implications of these mechanisms for quantitative aspects of
network activity.

In Section 2 of the paper, we introduce the full Butera model and the details of
the fast/slow decomposition that we employ, including the key mathematical features
that combine to govern both the network dynamics in the model and the influence of
Gtonic—e,> Gsyn—e ON network behavior. This analysis, in the case ggyn—. = 0, explains the
transition from quiescence to bursting to tonic spiking in a single uncoupled cell. Next,
in Section 3, we start with a brief discussion of how the transition from quiescence to
bursting seen without synaptic coupling carries over directly to coupled cells. Following
this, we turn to the much more complex transition from bursting to spiking in the pres-
ence of synaptic coupling. We progress through several levels of analysis of the associated
phenomena. First, we consider the special case of a single self-coupled cell. Second, we
consider a pair of coupled cells, under a strong synchrony assumption. Finally, we consider
a pair of coupled cells, with no restrictions imposed on their evolution. This progression
demonstrates how each aspect of the dynamics of the freely evolving coupled cell pair con-
tributes to the overall transition landscape. In particular, our analysis illustrates how the

asynchrony of spikes during the active phases of bursts can extend the dynamic range of



bursting in a synaptically coupled pair of cells. Further, we find that qualitatively different
transition mechanisms underlie the switch between bursting and tonic spiking in different

parameter regimes, leading to different experimental implications.

2 Model and basic fast /slow decomposition
2.1 The Butera model

The results of Butera et al. show that single-cell bursting, matching experimentally ob-
served properties of pre-BotC cells, can be initiated by the fast activation of a persistent
sodium current, Iy,p, and terminated by the slow inactivation of this same current [1].
Thus, using the Hodgkin-Huxley formalism, the membrane potential dynamics of each

pre-BotC cell within a coupled network can be modeled by the equation
'UZ{ = (_INaP - INa —Ix — 11 — Itom'c—e - Isyn—e)/c (1)

where each term on the right hand side denotes an ionic current through the cell membrane
and the derivative is with respect to time ¢. Specifically, we have In,p = GnapM P, (Vi) i (Vi—
Ena)s Ing = Gnami,(vi)(1 — n3)(vi — Ena), Ik = gxni(vi — Ex), I = go(v; — Er), and
Lionic—e = Gtonic—e(Vi — Esyn—e). The functions and parameters in these currents are identi-
cal to those presented in [1] and are listed in the Appendix for completeness. Units for all
variables are also given in the Appendix, and we omit these in the rest of the paper. The

dynamic auxiliary variables h;, n; satisfy
hi = €(hoo(vi) = hi) [Th(vi), (2)

n; = (Moo (Vi) = i) /T (vi) (3)
for functions Ao (v;), T (v;), Noo (v;), Tn(v;) also specified in [1] and given in the Appendix.
We have introduced the parameter € in (2) to emphasize that the h; will be considered as
slow variables in the upcoming analysis.

The architecture of synaptic connections in the network contributes to the form of the

synaptic current I, .. We will consider a single self-coupled cell and a pair of coupled



cells. In both cases, let Iy, e = gsyn—eSi(Vi — Esyn—e) Where
s; = (1 = 8i)S00(vj) — 8i/Ts, (4)

with the function sy (v) and the constants «s, 75 specified in the Appendix. In the self-

coupled cell case, i = j = 1, while with a pair of coupled cells, i,j € {1,2} with j =3 —i.

2.2 Fast/slow decomposition and bifurcation structure for a sin-
gle cell

For a single cell, let us omit the subscripts ¢ = 7 = 1 on the dependent variables in the
model. In system (2)-(3), €/7,(v) < 1/7,(v) for all relevant v; further, the evolution of
h is much slower than that of v, as given by equation (1). Thus, it is natural to treat A
as a parameter and to consider the bifurcation structure of the fast subsystem (1),(3),(4)
as h varies, a standard approach described, for example, in [20, 22]. Of course, in the full
model, h does evolve, and the position of the h-nullcline determines the sign of the change
in h at each location in phase space. Thus, the position of the h-nullcline relative to the
bifurcation structures of the fast subsystem will contribute crucially to the dynamics of
the network.

An example of the relevant bifurcation structures, for (gionic—e, gsyn—e) = (0.2,0), ap-
pears in Figure 1. For each fixed h, the fast subsystem, which we now take as equations
(1),(3) since gsyn—e = 0, has 1, 2, or 3 critical points. The collection of all such points
forms a curve in (h,v,n)-space, which we call the fast nullcline and denote by S. The
solid/dashed, S-shaped curve in Figure 1 is the projection of S to (h,v)-space. Note that
this nullcline has 3 branches over an intermediate range of h values. At an h value near
0.8, the middle and lower branches come together in a saddle-node bifurcation; we refer
to the coalescence point as the lower knee of S. Similarly, at an h value near -1.5, the
middle and upper branches coalesce in a saddle-node bifurcation at the upper knee of S.
The lower branch consists of stable critical points for equations (1),(3), while points on
the middle branch are unstable saddles. Points on the upper branch are unstable for small

h. As h increases, a subcritical Hopf bifurcation occurs along the upper branch of critical
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Figure 1: The bifurcation diagram for the fast subsystem (1),(3) with (gonic—e, gsyn—e) =
(0.2,0), projected into (h,v)-space, along with the h-nullcline. The solid (dashed) black
curve is the curve S of stable (unstable) critical points of (1),(3) with A fixed at the levels
indicated on the abscissa. A family of unstable periodic orbits, with maxima and minima
labeled by open circles, emanates from S in a Hopf bifurcation at the point marked HB.
This family coalesces with the family of stable periodic orbits P, with maxima and minima
labeled by dark, thick curves, in a saddle-node bifurcation at h near 1.3. The thick grey
curve shows the h-nullcline, namely h = hy(v), where b’ = 0.

points, above which the critical points are stable. A family of unstable periodic orbits
emanates from this bifurcation. This family meets with a second, outer family of periodics
in a saddle-node bifurcation at a larger A value than the Hopf point. The outer periodics
are stable and terminate in a homoclinic bifurcation as h decreases from the saddle-node.
We will denote this outer family by P. Finally, the h-nullcline, or slow nullcline, intersects
S in three places, which are critical points of the full system (1)-(3) (with gsyn— = 0).
The only stable critical point occurs on the fast nullcline’s lower branch and is attracting.

AS gionic—e increases, with gsy, . = 0, it has three effects on the bifurcation diagram

for the fast subsystem. Increasing gionic—e causes the lower part of S to move to smaller



h values, causes P to move to smaller h values, and causes the homoclinic point to move
toward the lower knee of S. These effects can be seen in the left column of Figure 2. These

changes will have significant implications for the dynamics of the model cell.

syn—e

0 1 2
gtonic—e 0 10 209

syn-e
Figure 2: Dependence of the bifurcation structure of (1),(3),(4) on gionic—e and gsyn—e. The
upper plots show curves of critical points and families of periodic orbits for varying values
of ionic—e and Gsyn—e- Left: gonic—e = 0,0.4,0.7, syn—e = 0. Right: gionice = 0.2, syn—e =
0,4, 8. Larger values correspond to more leftward structures. The bottom plots show how
the positions of the lower knee (LK) and Hopf bifurcation point (HB) vary with gionic_e
(with gsyn—e = 0) and gsyn—e (With gionic—e = 0.2), respectively. Note that the lower knee,
and indeed the entire curve of critical points, are approximately invariant under changes

m Gsyn—e-

Examples of voltage traces derived from the evolution of equations (1),(2),(3), with
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Figure 3: Voltage traces (top row) and bifurcation diagrams with superimposed trajectories
(bottom row). In all panels, gsyn_. = 0. The parameter gpni._. takes values 0.2 (A -
quiescence; stable critical point on the lower branch of § denoted by x), 0.3 (B - bursting),
0.4 (C - bursting), and 0.7 (D - tonic spiking). In the top row, the scale bar corresponds
to 2 sec. Note the different h-axis scales in each panel in the bottom row.

gsyn—e = 0, corresponding to a single uncoupled cell, are shown in Figure 3. Observe
that as gionic_e increases, the cell switches from quiescence to bursting to tonic spiking, as
also shown in [2, 24]. In the quiescent case in Figure 3A, the trajectory is attracted to a
stable critical point. In the bursting solution shown in Figure 3B, the trajectory spends
some time on the lower branch of S, where it is below the slow nullcline, such that A

slowly increases. This is referred to as the silent phase of the solution. Although the two



nullclines intersect very close to the lower knee, and it is difficult to discern in the figure,
the intersection now occurs on the middle branch of §. Thus, the trajectory can reach
the lower knee and jump up to P, and oscillations ensue, yielding the active phase of the
solution. P lies above the slow nullcline, so h decreases during the active phase. Finally,
the trajectory approaches the homoclinic bifurcation where P terminates, and it falls back
to the lower branch. This form of bursting is called square-wave bursting and has been
analyzed extensively in previous work [3, 20, 29, 30, 16].

Note that in the bottom panel of Figure 3B, there is an interval of h-values, extending
on both sides of h = 0.6, for which the dynamics of the fast subsystem are bistable.
Specifically, for each h in this range, there are a stable critical point on the lower branch
of § and a stable periodic orbit from P. The case in Figure 3C again represents square-
wave bursting, but the range of bistable h values is much smaller than in Figure 3B. In
this case, this leads to short bursts relative to Figure 3B. Finally, in Figure 3D, there is
no region of bistability, and the trajectory is pinned in the vicinity of P, such that tonic
spiking results. Note from the bottom part of Figure 3D that the trajectory extends both
above and below the slow nullcline (dashed). While it is above (below) the slow nullcline,
h decreases (increases). In the attracting state for the network, the net drift in A is zero,
leading to the pinning and continuous spiking seen here [30].

Rather than varying gionic_e, We can keep gionic_e fixed and consider the effect of varying
Jsyn—e ON the bifurcation structure of the fast subsystem, now including equation (4), with
1 = 7 = 1, corresponding to a single self-coupled cell. Because of the influence of equation
(4), changes in gy, are not equivalent to changes in gsonic—.. In particular, s = 0 along
the lower branch of the fast nullcline, while (v — Eyy,_.) is near zero along the upper
branch of the fast nullcline. Thus, increasing gsyn—. leaves the projection of S to (h,v)-
space largely unchanged, as seen in the right column of Figure 2. Increasing gy, from 0
does cause P to move to smaller h values, however, which widens the range of h values for
which bistability occurs in the fast subsystem. Further, with its leftward motion, a greater
part of this family lies below the slow nullcline, resulting in a decrease in the leftward drift

during the active phase of a burst. Eventually, this effect can cause pinning, corresponding
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to a transition from bursting to tonic spiking.
We explore the transitions between activity modes more systematically in the subse-

quent sections of the paper.

3 Analysis of transitions between modes of activity
3.1 The transition from quiescence to bursting

As noted in Section 2, a cell or network of identical cells is quiescent when the fast and
slow nullclines have an intersection on the lower branch of §. Given a network in the
quiescent state, bursting can be induced by increasing gsonic—e- Indeed, as also observed in
[2] (see Figure 2 of [2], also reproduced in Figure 18 below), the value of gionic—e at which
the switch from quiescence to bursting occurs, namely gonic_e ~ 0.26, depends only very
weakly on the value of gy, .

The mechanism underlying the switch from quiescence to bursting is that as gionic—e
increases, S, and in particular its lower knee, moves leftward in the (h, v)-plane, to smaller
h-values, as mentioned in Section 2 (Figure 2). Since the slow nullcline is independent of
Jtonic—e, this trend causes the lowest-v intersection of the nullclines, call it p, to transition
from lying on the lowest branch of & to lying on the middle branch of &, by passing
through the lower knee of §. Once on the middle branch, the intersection point p is an
unstable critical point of equations (1)-(4), since the critical points on the middle branch
are unstable with respect to the fast dynamics. Since there are no stable critical points in
this regime, the only possible attractors for the full dynamics involve oscillations. Bursting,
rather than tonic spiking, results from the transition for the parameter values of interest
due to a combination of two factors, seen in Figure 3B: there is always bistability between
the lower branch and P when this transition occurs, and there is a net leftward drift in A
during the active phase. Finally, the transition is relatively independent of g,,,_. because,

as noted in Section 2 (e.g. Figure 2A), gsyn—. has little impact on the position of S.
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3.2 The transition from bursting to tonic spiking in a self-coupled
cell

The transition from bursting to tonic spiking is much more complex than that from quies-
cence to bursting. In fact, there are several different mechanisms underlying the transition
from bursting to tonic spiking, depending on parameter values. Here we will briefly return
to the simplest case of a single self-coupled cell, or equivalently a pair of coupled cells that
are completely synchronized, as considered in subsection 2.2. As we shall discuss in the
subsequent subsections, the completely synchronized solution is generally unstable with
respect to the full system, and coupled cells fire spikes that are out-of-phase in the stable
bursting and tonic spiking solutions. However, the progression in analysis presented in this
and the subsequent subsections will illustrate the precise way in which asynchrony between
cells within the spiking phase can fundamentally alter the fast/slow bifurcation structure
and be a significant ingredient in determining the model’s dynamic range of bursting.

Consider a single, self-coupled cell, which satisfies the equations (1)-(4) with (v;, h;, 14, s;)
replaced by (v, h,n,s). As in subsection 3.1, we analyze this system using fast/slow anal-
ysis with h as the slow variable, and representative bifurcation diagrams are shown in
Figure 2. Define the h-nullsurface G = {(v,h,n,s) : h = ho(v)}. Note that (1)-(4) ex-
hibits square-wave bursting if there is an interval of h-values where the fast subsystem
exhibits bistability and G intersects the middle branch of & between the lower knee of &
and the homoclinic point P N'S. As in subsection 3.1, let p denote the point G NS and
note that, if p lies above the homoclinic point on the middle branch of S, then, in the
limit € — 0, (1)-(4) will exhibit tonic spiking. As demonstrated in [30], the transition from
square-wave bursting to tonic spiking, in the limit ¢ — 0, occurs when the homoclinic
point on the middle branch of fixed points crosses G.

As illustrated in the examples in Figure 2 and particularly in Figure 4, the homoclinic
point for the self-coupled cell lies at smaller A than that for the uncoupled cell. Thus,
Jtonic—e Must be increased more for G to cross the curve of homoclinic points in the self-
coupled case, and the transition to tonic spiking occurs at a higher value of gyynic—e than

for the uncoupled cell; that is, a self-coupled cell has a larger dynamic range of bursting
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Figure 4: The curve of fixed points p of (1)-(4), together with the curves of homoclinic
points PNS of the fast subsystem (1),(3),(4) for gsyn—e = 0 and g5y, = 2, as a function of
Jionic—e- The intersections of these curves yield the values of g;onic—. at which the transition
from bursting to tonic spiking is predicted to occur, based on a fast/slow decomposition
of the single self-coupled cell. Note that although p switches from the lower branch of S
to the middle branch at gipnic—e ~ 0.26, the h-value of p is a monotonically decreasing
function of gionic—e, because all of S moves toward smaller A values as gyonic_e increases.

oscillations than has an uncoupled cell.

To finish this analysis, we use XPPAUT [9] to follow the curve in (gionic—e, gsyn—e)
parameter space where G intersects the homoclinic point PNS. This generates a transition
curve, shown in Figure 5, with a shape that qualitatively matches that in Figure 2 of [2]
(see Figure 18 below). There is a significant quantitative difference between the two
results, however, with the curve in Figure 5 substantially underestimating the extent of
the bursting region. Thus, we conclude that the dynamics of a single self-coupled cell,
while interesting in their own right, do not capture the complexity of the bursting and

spiking behaviors in the pre-BotC model with multiple, synaptically coupled cells.
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Figure 5: The transition curve (GNP NS) between bursting (to the left) and tonic spiking
(to the right) predicted by analysis of a single self-coupled cell. This curve significantly
underestimates the extent of the bursting region.

3.3 The transition from bursting to spiking in coupled cells with
hl = h2
In the previous section, we assumed that the cells were completely synchronized and con-
cluded that this does not accurately predict the full increase in dynamic range for the
coupled system. Figure 6 illustrates why this should not be surprising. Here we show
the voltage traces of the two cells for (gonic—e, Gsyn—e) = (0.5, 8). Note that while the cells
appear to burst together, their spikes fire out-of-phase. We must, therefore, extend the
fast/slow analysis to the case in which we consider asynchronous spiking. This will be
done in two steps. In this section, we assume that the slow variables h; and hy are equal;
we can then perform the fast/slow analysis with a single slow variable, h = h; = hy. As we
shall see, this assumption leads to an accurate prediction for the transition to tonic spiking
for large values of ggyn—. (see Figure 7). Moreover, the resulting bifurcation structure has

some rather novel features not seen in the analysis of the self-coupled cell. For moderate
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and low values of gy, ., We can no longer assume that h; = hy; these must be considered
as separate slow variables (Figure 7). The two slow variable analysis will be carried out

in the next subsection.
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Figure 6: Bursting solutions of the full model (1)-(4). Here, (gtonic—e, gsyn—e) = (0.5,8).
The left panel shows that the bursts appear to be synchronized. The right panel shows
that the spikes actually occur in antiphase.

Denote the system of eight equations, consisting of (1)-(4) taken with both ¢ = 1 and
i = 2, by (1);-(4);. Figure 8 shows an example of the bifurcation diagram generated by
the fast subsystem consisting of the six equations (1);,(3);,(4); with h; = hy = h as the
single bifurcation parameter. This diagram is projected onto the (h,v;)-plane. Note that
two families of periodic orbits emanate from the single curve of equilibria S in distinct
subcritical Hopf bifurcations. As we move from right to left along the h-axis, starting
above both Hopf points, the critical points on S are stable. They lose stability in the
first Hopf bifurcation, which gives rise to an unstable family of periodic orbits, labeled as
TP in Figure 8 and consisting of in-phase oscillations, as h is decreased. Both branches of

periodics in ZP, which merge at a saddle-node bifurcation, are unstable with respect to the
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Figure 7: Plots of hy (red) and hy (blue) as functions of time during a single burst cycle.
If gsyn— is large (top), then hy ~ ho, while for moderate or low values of gsyn—. (bottom),
we cannot assume that h; &~ hs.

fast subsystem, except possibly for the outer branch in some relatively small neighborhood
of the saddle-node bifurcation. The second family of periodics, call it AP, occurs at lower
h and corresponds to anti-phase oscillations. This family consists of three branches. The
branch that emanates from the subcritical Hopf consists of unstable limit cycles. This
branch terminates at a saddle-node of periodic orbits, at h = hg in Figure 8, where it
coalesces with a second branch of periodic orbits. This second branch is stable, at least
away from a relatively small neighborhood of the saddle-node bifurcation. It will be very
important in the analysis and we label it as APs. This branch terminates in another
saddle-node bifurcation of periodic orbits, at h = hy, in Figure 8, where it coalesces with
a third branch of unstable periodics. The third branch terminates in an orbit homoclinic
to the middle branch of S. (Note that the upper branch corresponding to this family lies
very close to that of APgs, and hence cannot be distinguished at the scale shown in Figure

8.) A similar emergence of anti-phase and in-phase periodic orbit families is also seen
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when diffusive coupling is introduced between square-wave bursters derived from a model

for bursting in pancreatic S-cells [25].

20
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Figure 8: Bifurcation structure of the fast subsystem for (gonic—e, gsyn—e) = (0.5,8). Here
we assume that h = hy; = hy is the bifurcation parameter. The branch of fixed points
S is shown in blue. There are two branches of periodic orbits; in-phase solutions (ZP)
are shown in red, while antiphase solutions are shown in green. The stable portion of the
antiphase branch is denoted as APgs and exists on the interval [hy, hg|. The projection of a
bursting solution (purple) onto this bifurcation diagram is shown in the right panel. Note
that the active phase ends at a saddle-node of periodic solutions of the fast subsystem.

Remark 3.1 For h values below both Hopf bifurcations, linearization of the 6-dimensional
fast subsystem around each critical point on the upper branch of § yields four eigenvalues
with positive real parts. As S is followed around the upper knee, although all four unstable
eigenvalues become real, two of these cross through the origin, by symmetry. Similarly,
the other two unstable eigenvalues stabilize at the lower knee, such that the critical points

on the lower branch of § are indeed stable.

Remark 3.2 Numerical evidence suggests that when the fast subsystem is linearized
about the homoclinic point at which the third branch of AP terminates, which lies on
the middle branch of &, the unstable pair of eigenvalues has larger magnitude than that
of the leading stable eigenvalues. Because the multiplicity of these eigenvalues comes from
symmetry and not degeneracy, the saddle quantity [15] is relevant, and based on this, the
periodic orbits on this third branch are unstable, as we observe numerically. This differs

from the standard square-wave bursting scenario, in which the leading stable eigenvalue
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has larger magnitude than the unstable eigenvalue and stable periodic orbits emerge from

the homoclinic point as A is increased.

Figure 8 also shows the projection of the bursting solution shown in Figure 6 onto the
fast subsystem bifurcation diagram. As usual, the silent phase lies along the lower branch
of § and the active spiking phase begins when the trajectory reaches the lower knee of S.
During the active phase, the trajectory lies close to APs and the active phase ends when
the trajectory reaches the saddle-node of periodics. Note that this bifurcation structure
no longer corresponds to square-wave bursting, where spiking ends at a homoclinic orbit,
but rather represents a different bursting class (see also [11, 26, 4]). We have, therefore,
demonstrated the rather surprising result that coupling of cells leads to a change in the
class of bursting activity that occurs. As we demonstrate below, this will partially explain
why the coupled system has an increased dynamic range. A three dimensional caricature
of this novel class of bursting is illustrated in Figure 9. We shall refer to this bursting class
as top hat bursting.

Top hat bursters have several important features that distinguish them from square-
wave bursters. The active phase of a square-wave burster ends at a homoclinic orbit.
For this reason, the spike frequency becomes small at the end of each burst. For top hat
bursters, the active phase ends at a saddle-node of limit cycles. Hence, the spike frequency
approaches some fixed value, bounded away from zero, at the termination of burst activity.

A second difference between square-wave and top hat bursting is related to the transi-
tion to tonic spiking as a parameter, such as gipnic—e, 1S varied. Recall that for a square-wave
burster, this transition takes place as the homoclinic point crosses the slow nullsurface,
denoted by G earlier. For top hat bursters, this transition arises from a very different
mechanism. To understand this new mechanism, we use singular perturbation methods to
reduce the full system of equations (1);-(4); to a reduced system for just the slow variables.
Since we are now assuming that h; = ho, this will lead to a reduction of the full model to
a single equation. The reduction is carried out separately for the silent and active phases.

While in the silent phase, the solution lies close to the lower branch of & and we invoke

a steady state approximation. That is, introduce the slow time variable 7 = €t in (1);-(4);
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Figure 9: A schematic illustration of a top hat burster. A similar top hat structure would
arise from a system with two fast variables and one slow variable or from a projection of
a higher-dimensional system, such as we consider, onto two fast dimensions and one slow
dimension.

and then set € = 0. The right hand sides of the fast equations (1);, (3);, and (4); then
become zero and we may solve for fast variables (v;, n;, s;), @ = 1,2, in terms of h. While
there are multiple possible solutions, we choose that with the smallest v, corresponding
to the silent phase. As a result, since we use the same h for i = 1 and ¢ = 2, we obtain
(v1,n1, 81) = (v2, N2, S2) in the silent phase. After substituting v; = vy into (2), we obtain
a single equation for the evolution of A in the silent phase.

For the active phase, we use the method of averaging. Suppose that APs exists for
hr, < h < hg (Figure 8). For hy < h < hg, let (v;(t, h),n;(t,h), s;(t,h)), i = 1,2, be the
corresponding antiphase periodic orbit of the fast subsystem and assume that its period

is T'(h). Then, in the limit € — 0, the evolution of & during the active phase is governed
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by the averaged equation

= ﬁ | O s (s 1)) — B) (v, )t = a(h) (5)

Here, differentiation is with respect to 7. We may use v; or vs in (5), since we are assuming
that hy = hy and we are therefore integrating over a common periodic orbit for 7 = 1 and
1 = 2, although the cells may be out-of-phase along the orbit.

Now the system exhibits bursting if a(h) < 0 for all h € (hr,hg). In this case, the
solution drifts to the left while oscillating along APs. The onset of tonic spiking occurs at
the minimal value of g;on;c— for which there exists a stable fixed point of equation (5) in
[hr, hgr] that has the lower knee of S in its basin of attraction. In theory, such a fixed point
could arise at the saddle-node of periodic orbits at h;, (Figure 8), yielding a unique tonic
spiking solution, or it could first appear via a double zero a(h) in (hy, hgr), leading to a
saddle-node bifurcation of tonic spiking solutions, one stable and one unstable, as gipnic_e
increases [26, 4]. Our simulations show that a(h) is a monotone decreasing function on
[hr, hgr]. Thus, the transition from bursting to tonic spiking happens at gionic_e such that
a(hr) = 0. An example is given in Figure 10. In the next subsection, we provide further
support for the idea that the onset of spiking occurs at a(hz) = 0.

The criterion a(h;) = 0 gives an accurate prediction for the value of gonic—e at which
the transition from bursting to tonic spiking occurs for large values of gy, .. For small
and moderate values of gy, ., this curve does not match the actual transition; it severely
underestimates the increase in dynamic range of bursting activity. The reason for this
discrepancy is that, for small and moderate values of gy, ., the behavior of the full
system is inconsistent with the assumption that A; = hy. We must, therefore, extend our

fast /slow analysis to the case of two slow variables.

20



-3

x 10

— 9

=5
tonic—e
—— Yionic—e"

_15,
—o— gtonic—e:'
e Yionic-e™
20l

|’]L

Figure 10: The function a(h) plotted over [hr, hrk] for gs .. = 8 and several gionic—e
values, where hpx is the h-value for the lower knee of S. For all gionic e, a(h) remains
monotone decreasing. AS @ionic_e increases from 0.61 to 0.62, a zero of a(h) occurs at
h = hr, and this zero moves away from h; toward larger h-values as gionic—e increases
further. Note that hp, hpx depend on gipnic—e, but all plots have been aligned from the
corresponding hy, values for comparison.

3.4 The transition from bursting to tonic spiking in the full
model for two coupled cells

3.4.1 Using slow averaged dynamics in the oscillation region to analyze ac-
tivity states

The previous subsections demonstrate that to capture the full picture of the dynamic range
of bursting for two coupled pre-BotC cells, it is necessary to consider the full four-equation
model (1)-(4) for each cell. Again, there is a natural fast-slow decomposition, achieved by
taking hq, hy as slow variables; below, we refer to the fast subsystem to mean the other six
equations with A, hy frozen. Rather than visualizing fast subsystem bifurcation structures,
we will now consider dynamics projected to the (hy, hy)-plane.

To start, fix (gtonic—e, gsyn—e) and note that for some pairs (hq, ko), the fast subsystem
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will support regular, stable tonic spiking, while for others, such sustained oscillations will
not exist. We can use direct simulation of the fast subsystem (e.g., fixing ho, varying hy
systematically, and then repeating for a different hs), to estimate a boundary curve for
the oscillation region O in (hy, hy)-space, such that for (hy, hy) values below this curve,
regular, stable oscillations do not exist for the fast subsystem. In what follows, we denote

this boundary curve as B.

Remark 3.3 We use the term regular oscillations to refer specifically to periodic solutions
in which the two cells fire in alternation, with constant interspike intervals. We will return
to the issue of regular versus irregular oscillations of the fast subsystem later in this

subsection.

We use averaging to reduce the full system to a system of two equations for just the

slow variables. For g(v, h) = (hoo(v) — h)/mh(v), the reduced system can be written as

h:l = m fg(hl’h2) g(’l}lp(hl, hg,t), hl) dt = al(hl, hg)

: (6)
hQ = m f(;l“(h1,h2) g(’Uzp (hl, h/2, t), hg) dt = a,g(hl, hg),

where (hy, he) € O, T(h1, hs) is the period of the fast subsystem periodic orbit for this
choice of (hy, hy), and vy,,vo, are the time courses of vy, v, around the orbit, which both
depend on both h; and hs, since the orbit itself does. Note that tonic spiking corresponds
to a stable fixed point of (6). In fact, as we now demonstrate, the complete transition
from bursting to tonic spiking for the full system can be understood by analyzing the
phase planes generated by (6).

Figure 11 illustrates phase planes of (6) with g5y, = 3 and four values of gionic_e-
Note that for this value of gyy,—., the analysis in the preceding section, in which we
assumed that h; = hy, does not give an accurate prediction for when the transition from
bursting to spiking takes place for the full system. In each panel of Figure 11, the black
curve represents B, the boundary of the oscillation region. When a bursting solution
crosses B, it falls back to the silent phase (not shown in the figure), and spiking activity

stops until a subsequent burst cycle begins. The red and blue curves in Figure 11 are
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numerically computed averaged nullclines, namely A; = {(h1, hs) : a1(hi, hy) = 0} and
Ay = {(h1, ha) : as(h1, hy) = 0}. Fixed points of (6) are given by the intersections of these
nullclines, and one can usually determine the stability of the fixed points by considering
the nullcline configuration.

In Figure 11A, gionic—e = .57. Note that A; and A, are not present in O, and therefore
both h; and hy remain negative along every trajectory in (. Hence, every solution of
the averaged slow equations (6) must eventually leave O through B and the full system
(1);-(4); exhibits bursting. The bursting is symmetric in the sense that trajectories of (6)
converge to the line £ = {(hy, ha) : hi = he} over successive burst cycles and oscillate
symmetrically about it while in O, and hence we refer to this as symmetric bursting. In
general, this is a top hat burster and can be analyzed using the one slow variable analysis
described in the preceding section.

For Figure 11B, gipnic—e = -83 and the full system still exhibits bursting. However, the
slow system (6) now has a fixed point, denoted by py in Figure 11B, inside of O. From
the configuration of the nullclines, we conclude that py is an unstable saddle. The stable
manifold of py lies along the line £ = {(h1,hs) : hy = hy}, while each solution of (6)
that does not begin along £ must eventually leave the oscillation region through B. As a
result, the full system generically exhibits bursting oscillations. We shall refer to this as
asymmetric bursting since h; # hy along the solution. We note that it is essential here to
consider two-slow variable analysis. If, as in the preceding section, we assume that h; = ho,
then we would incorrectly predict that the full system exhibits tonic spiking as soon as
po enters O, which occurs at significantly smaller gy, than the actual spiking onset.
That is, po is stable with respect to solutions of (6) that lie along the stable manifold L.
This explains why the analysis in the preceding section does not accurately predict the
full dynamic range of rhythmic bursting oscillations. Further, the fact that no saddle-node
bifurcation gives rise to critical points of (6) along L, away from B, as gonic_. increases
corroborates our earlier claim that no saddle-node bifurcation occurs in the fixed points
of (5).

For Figure 11C, we set gionic—e = -87. While there is still an unstable fixed point
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Figure 11: Averaged phase planes, corresponding to (6), with superimposed trajectories
of (1);-(4);, for gsyn—e = 3. Throughout this figure, the jump-down curve B is solid black,
the nullclines A;, A, are red and blue, respectively, the symmetry axis £ is dashed black,
and trajectories are green. A) For gionic—e = -57, hl,hg are negative everywhere in the
oscillatory region . Thus, every solution of the averaged equations leaves the oscillatory
region O through B and the system exhibits symmetric bursting. B) For gipic_e = .83,
there is an unstable fixed point py in O where the averaged nullclines intersect. The system
exhibits asymmetric bursting. C) For goni.—e = .87, the averaged nullclines intersect at
three fixed points in O, namely py, which is still unstable, and ¢4, ¢g, which are stable.
The system exhibits asymmetric tonic spiking. An asymmetric tonic spiking solution is
shown in green; similar solutions exist near ¢4. D) For gipnic—e = .91, po is a stable fixed
point and the system exhibits symmetric spiking. Here B is not visible since it lies at
smaller (hq, hy) values than those shown in this plot.

po € O, the averaged nullclines A; and A, now intersect at two new fixed points, labelled
as g4 and ¢p, in the oscillatory region 0. These fixed points are stable, as can be seen
from the configuration of the nullclines, and they represent tonic spiking of the full system.
We say that this is asymmetric tonic spiking because hy # ho at g4 and ¢p; that is, the
stable fixed points do not lie along the axis of symmetry L.

Finally, suppose that gionic—e = -91. In this case, as shown in Figure 11D, p, is a stable

fixed point of (6) and the full system exhibits symmetric tonic spiking. The configuration of
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the nullclines A; and A, has now switched from the previous case. That is, as we increase
Gtonic—e from .87 to .91, a pitchfork bifurcation occurs. In this bifurcation, the stable fixed
points ¢4 and ¢p come together at py, and py switches from being a saddle to being a
stable node. Figure 11D also shows an example of how a tonic spiking trajectory oscillates
symmetrically about py. It is important to note that, even in these symmetric tonic spiking
solutions, we expect v; and v, to be anti-phase. This can be checked for small g;y,,—. by
calculating the H-function [13, 10]. The functions H(¢) and H,qi(¢) = (H(¢) — H(—¢))/2
for gronic—e =1.05 and gsyn—. =1 appear in Figure 12. A zero of H,4q(¢) represents a phase-
locked, periodic solution of the full system, which is stable (unstable) if the derivative of
H,q4q is positive (negative) there. Since the phase shift in a solution is given by the value
of ¢ at which the corresponding zero of H,y4(¢) occurs, Figure 12 predicts that vy, v will

be exactly anti-phase for this (gionic—e, gsyn—c) (see also Figure 6).

2 ‘ ‘ ‘ ‘ 0.5
H(®) H (9)

1.8 1 odd
1.6
1.4 0
1.2

1
0.8 : : : : -0.5 : : : :

0 02 04 06 08 g1 0 02 04 06 08 @l

Figure 12: H-function and its odd part H,qq for giomic—e =1.05 and ggn— = 1. Since
H,44(0.5) = 0 and H!,,(0.5) > 0, the anti-phase symmetric spiking solution is predicted
to be stable.

Remark 3.4 We have also numerically computed the H-function for symmetric bursting
for particular values of gsonic—e, gsyn—e- The results agree with our analysis, showing that
spikes are out-of-phase within the stable solution. The results also suggest that a com-
pletely anti-phase solution, in which the cells take turns bursting, should also be stable.
However, it is important to note that this calculation is relevant in the weak coupling limit.

Our simulations show that such anti-phase bursting solutions indeed may stably exist, but
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only for extremely small gy, .. Further consideration of anti-phase bursting solutions is

outside of the scope of this work.

Figure 13 shows regions in (gionic—e, gsyn—e) parameter space where the full coupled
system (1);-(4); is predicted to exhibit symmetric bursting (SB), asymmetric bursting
(AB), asymmetric spiking (AS) and symmetric spiking (SS). As seen above, the SB region
corresponds to the absence of fixed points in O, and the symmetry expected here refers
to an approximate equality of h; and hy. We have not yet justified why solutions in SB
should, in general, have h; = ho, however, and this is discussed in subsection 3.4.3 in the
context of synchronization of bursts. The blue curve corresponds to when the fixed point
po first appears in O as gionic—e is varied, representing the transition from SB to AB. This
is where the one-slow variable analysis described in the previous section predicts that there
should be the transition from bursting to tonic spiking. The green curve corresponds to
the transition from AB to AS. Recall that this occurs when the additional intersections of
the averaged nullclines A; and Aj,, namely the stable fixed points g4 and ¢g, appear in O.
The red curve corresponds to the transition to SS. This corresponds to the occurrence of

a pitchfork bifurcation for the slow averaged equations (6).

3.4.2 Changes in the transition pathway as g;,, . is increased

In Figure 13, the region between the black line and the green curve where it exists, or
the blue curve where the green curve does not exist, gives the set of parameter values
for which bursting is predicted. This gives excellent quantitative agreement with the
simulation results from [2]. Note from Figure 13 that qualitatively different transitions
through activity states occur for gs,, . above or below a threshold of approximately 7.5.
Figure 14 shows examples of SB and SS solutions for gsy,—. = 8.

AS gsyn—e is increased to larger values, the AB and AS regions in (gtonic—e; gsyn—e) SPace
shrink, as shown in Figure 13. For all gz, . < 7.5, the AS region persists, although it
becomes so narrow that it can hardly be distinguished from AB on the scale used in Figure
13. Note that in fact there cannot be a direct transition from SB to AB to SS. That is,

in the AB state, the unstable symmetric fixed point py of (6) lies in O, and in the SS
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Figure 13: A summary of how the activity of a pair of coupled pre-B6tC cells depends on
the parameters gionic—e; gsyn—e- Each solid curve represents a boundary between regions
in (Gtonic—e; gsyn—e)-space corresponding to different activity patterns. The question mark
indicates that for very weak coupling gsy,—., numerical difficulties prevent us from distin-
guishing precisely where the AB — AS transition occurs. See text for a full discussion of
the regions and transitions specified in this figure.

state, this fixed point is stable. The stabilization occurs through a pitchfork bifurcation
as Giomic—e 18 increased, which requires the existence of the two stable equilibria gy4, ¢g in
O for gionic—e sufficiently close to, but below, the onset of SS. For such ¢;pni.—. values, AS
will occur.

In theory, there could be a direct transition from SB to AS, if g4, ¢ were to enter O
before pg as gionic—e Were increased. However, our numerical simulations indicate that both
the AB and the AS regions terminate together, at gonic—e & 7.5. The schematic diagram
in Figure 15 illustrates the transition from SB — AB — AS — SS to SB — SS that occurs

as geyn—e is raised through 7.5. Figure 14 gives examples of the dynamics in O on both
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Figure 14: Averaged phase planes from (6), with superimposed trajectories of the full
system, for g5y, . = 8, corresponding to a direct transition from SB to SS. The labels here
are as in Figure 11. A) Symmetric bursting solution for gipnic e = .6. The green trajectory
shown travels first from the upper right part of the region to the lower left, where it hits
the black boundary curve B. At this point, the cells enter the silent phase and h, hy both
increase. Correspondingly, the trajectory here moves back from lower left to upper right,
although the cells are not spiking and the dynamics of (6) are irrelevant. The jump up to
the active phase for the next burst cycle corresponds to the trajectory turning around and
heading back toward B. Note that h; and h, become closer during the silent phase and
jump-up, such that the trajectory subsequently travels close to £ (black dashed line). B)
Symmetric spiking solution for gipnic—e = .63. The red and blue curves are the nullclines A
and Ay, respectively, of (6). The inset shows how the sample trajectory shown approaches
the fixed point py where A; N A, occurs.

sides of the SB — SS transition for gsy,—. = 8.

3.4.3 Details of activity patterns within regions

The analysis illustrated in Figure 11 characterizes a path in (gionic—e, gsyn—e) Space along
which all four activity states occur as gionic_e increases. While this same set of transitions
arises for an interval of g, . values, subtle differences in activity within the same state
may emerge for different (gionic—e, gsyn—e) values, based on what happens when trajectories
leave . We next consider a mechanism underlying these differences, and then we briefly
return to the issue of synchronization of bursting solutions.

To understand how differences in the details of asymmetric bursting can arise, note
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Figure 15: A schematic diagram showing how the change occurs in the bifurcation diagram
for the dynamics of (6) inside O as gsyn—. crosses through 7.5. The horizontal black lines
indicate the presence of the fixed point py in O, while the black curves denote the fixed
points g4 and ¢p; stable fixed points are given by solid curves, while unstable ones are
indicated by dashed curves. As g, . approaches 7.5, the AB and AS regions become
narrower, until they cease to exist together at gy, ~ 7.5.

that the cells are only coupled through the variables s;, each of which depends on v;.
For each i, we can consider the (v;, h;) bifurcation diagram generated by the dynamics
of (v;,n;) with h; as a bifurcation parameter and with s; also frozen. This will yield a
picture similar to those in Figure 2, with the value of s; (for fixed gsyn_) selecting the
relative positions of P and of the homoclinic orbit that terminates P; for s; treated as a
fixed constant in this way, changes in s; also affect the position of &, unlike in the right
panel of Figure 2. In reality, the s; have fast dynamics, so one can think of the (v;, h;)
bifurcation diagram as jumping around rapidly, driven by changes in s;, but at each instant
in time, there exists an appropriate diagram. Based on this collection of structures, for

each fixed (gtonic—e, gsyn—e), there exists a curve H of (h, s)-values such that at each value
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on the curve, the (v,n)-system has a homoclinic orbit. Note that H has negative slope (cf.
Figure 2); an example appears in Figure 16A. For a trajectory of (6) to exit O through the
boundary curve B, it is necessary but not sufficient that the (h, s) coordinates for one cell
should move to the non-oscillatory side of H, where no periodic oscillations are supported
by the (v;, n;) dynamics. If one cell, say cell 1, does cross H, then the input from the other
cell, via s;, may pull it back across, causing regular network oscillations to continue. If this
does not happen, then the trajectory of cell 1 will be attracted to the lower branch of S,
causing s to drop. One possibility is that this loss of synaptic input will pull cell 2 across
‘H as well, terminating the pair’s oscillations. This is exactly the case in which exit from
O through variation of one or both of the parameters hi, ho yields an abrupt transition
from tonic spiking to quiescence in the fast subsystem (1);,(3);,(4);, as illustrated in Figure
16B. For g5y, . = 3 and other intermediate values of gy, ., at least away from a small
neighborhood of the AB — AS transition, this possibility is realized. Correspondingly,
when trajectories of the slow averaged equations (6) that start from initial conditions in
O leave O, the fast variables stop oscillating altogether and the subsequent silent phase
dynamics of the full system (1);-(4); causes (h1, ho) to grow. Eventually, oscillations return,
with (h1, hy) somewhere in O, and the dynamics of (6) becomes relevant again.

An alternative scenario, which arises most prominently for small gsyn_, is that even
for s, = 0, cell 2 can continue to oscillate. In this case, it is possible that successive
oscillations of cell 2 can cause cell 1 to resume oscillating after cell 1 crosses H, even
though a single oscillation of cell 2 does not; in particular, as seen in Figure 17A, cell 2
never crosses 7. When this form of rescued oscillation arises in the fast subsystem (1);,
(3):, (4); with hy, hy fixed, as shown in Figure 17B, this does not qualify as regular tonic
spiking, and thus by our definition (hq,h2) do not lie in O. Further, this effect yields
bursting solutions of the full system (1);-(4); featuring a very small interburst interval, in
which one cell never spends time in the silent phase; see Figure 17C. Figure 17D shows a
corresponding example of an asymmetric bursting solution with gy, = 2, projected onto
the (hq, he) plane, which differs from that shown in Figure 11B for g4y, . = 3 in that the

projection of the burst trajectory onto (hi, he) stays very close to B for all time. If the net

30



homoclinic curve oH
cell1 cell 2
0.1r B -10H
$ \ ‘ V-20H
0.05r | 30}
\ —40] b
0 ‘ . . —U N -50 . s .
0 0.05 0.1 0.15 0.2 0.25 0 500 1000 1500
t

h

Figure 16: Exit from O for an asymmetric bursting solution with g5y, e = 3, gtonic—e = 0.8.
A) When cell 1 crosses the homoclinic curve (A in the text) from above to below, it pulls
cell 2 down with it, resulting in a cessation of oscillations, with si,s, &= 0 while A, hs
increase (in the silent phase). The arrows show the direction of time evolution for cell
1, as it transitions from its final oscillation (down arrow) to the silent phase (horizontal
arrow) to its return to the active phase (up arrow). The evolution for cell 2 is similar.
B) Correspondingly, the transition across B yields an abrupt switch from oscillations to
quiescence in the dynamics of the fast subsystem (1);, (3);, (4);. Here, a crossing of B was
implemented by decreasing h; from .169 to .168, at time 999, with hy = .180. The v time
course is only shown for one cell; it was qualitatively similar for the other cell.

drift in (hq, hy) during such a solution were actually zero, then there could exist a bursting
solution of the full system (1);-(4); that never enters O. In summary, the transition
across B corresponds to different fast subsystem dynamics for different (gonic—e, Gsyn—e)
values, leading to differences in the details of the asymmetric bursting that results. We
emphasize that the existence of such possibilities does not affect the validity of our analysis
of transitions between bursting and tonic spiking: as long as there is no stable fixed point
of (6) in O, regular tonic spiking of the full system will not occur.

Finally, from the idea of considering changes in bifurcation structure as both s and h
vary, it becomes clear that the synchronization of the cells in bursting solutions relates in
part to a form of fast threshold modulation (FTM) [28, 32]. In theory, FTM can act at
either or both of the jump down to the silent phase and the jump up to the active phase.

Based on our simulations, most of the compression toward synchrony occurs in the silent
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Figure 17: The sustained oscillations of one cell can rescue the oscillations another cell
to which it is coupled, as shown here for gsn— = 2, gronic—e = 0.88. A) Even when
cell 1 crosses from above to below the curve of homoclinic orbits (H in the text), cell
2 continues to oscillate. The coupling from cell 2 pulls cell 1 back across H, where it
resumes oscillations. B) The transition across B yields a switch from tonic spiking to
irregular sustained oscillations in the dynamics of the fast subsystem (1);, (3);, (4);. Here,
a crossing of B was implemented by decreasing h; from .1693 to .1692 at time 999, with
ho = .205. The v time course is only shown for one cell; it was qualitatively similar for
the other cell. C) The dynamics of the full system shows asymmetric bursting with short
interburst intervals, with a change in burst cycle occurring when cell 2 (blue) fires two
consecutive spikes. D) This asymmetric bursting solution (green) remains very close to B
(black) in the (hi1, he) plane; the red and blue curves show the nullclines A;, As of (6) as
they terminate on B.
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phase and in the jump up to the active phase of each burst (e.g., bottom panel of Figure 7).
When one cell, say cell 1, reaches the lower knee of its corresponding critical point curve
S1 and begins to oscillate, the coupling from cell 1 to cell 2 shifts S to the left, advancing
the jump-up time of cell 2. This can allow compression in the h-coordinates of the cells
relative to the uncoupled case, in which hy would have had to evolve to larger values before
jumping up. During this additional evolution in the uncoupled case, h; would have been
decreasing, leading to an approximately constant magnitude of |hy — hy| before and after
jump-up.

There is also compression in the silent phase, which in theory could be analyzed using
the slow dynamics [31, 21]. In the AB case, after this compression and FTM bring trajec-
tories toward synchrony, they are pushed away from the axis of symmetry £ in the active
phase by the flow of (6) in O. In the SB case, no such instability occurs to counteract
synchronization. It remains to explore the full details of synchronization of bursts in the

SB region in the full 8-dimensional system (1);-(4);.

4 Burst duration and interburst interval of coupled
pre-BotC cells

Our analysis in the previous section explained the dynamic range of bursting of coupled
pre-BotC cells. We next give an explanation for the numerically observed changes in
burst duration (active phase) and interburst interval (silent phase) under variations of
(Gsyn—e» Gtonic—e), as shown in Figure 18. The features of the different bursting regimes,
symmetric (SB) and asymmetric (AB), are critical for understanding how the burst dura-

tion is determined.

4.1 The symmetric bursting regime

The onset of bursting is described in Section 3.1 and is due to the crossing of the h-
nullsurface G from the stable lower branch to the unstable middle-branch of S. Recall
that this crossing is almost independent of gs,,—_., because the position of the lower knee

of § depends only very weakly on gy, ., and happens at gionic— ~ 0.26. After the onset
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Figure 18: Simulated burst durations and (inter)burst intervals from Butera et al. [2]. A)
The color-coded plot shows how burst duration in a pair of coupled pre-BotC cells changes
with gonic—e and gsyn—e. The transition curves that we have computed for the onset and
offset of symmetric and asymmetric bursting, from Figure 13, are shown for comparison,
illustrating in particular that the transition from symmetric to asymmetric bursting is
responsible for the abrupt increase in burst duration with gonic—e- B) Interburst interval
increases with ggyn—. and decreases with g;onic—e. The color-coded plots of burst duration
and interburst interval shown here appeared in [2] and are used with permission of the
American Physiological Society.

of bursting, we are in the symmetric (or top hat) bursting regime, which was analyzed in
Section 3.3.

If we fiX gionic—e in this SB regime and increase ggy,—., then the burst duration as well
as the interburst interval increase. The reason is the following: as gsy,—. increases, the
Hopf point as well as the stable branch of periodic orbits APs corresponding to the top
hat burster move to the left, while the lower knee of S is fixed, increasing the bistable

region of the top hat burster; an example appears in Figure 19A. Thus, solutions stay
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longer in both the active phase and the silent phase for increased gy -
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Figure 19: Changes in APs induced by changes in gsyn—e and gronic—e. A) With gonic—e =
0.3, increasing gsyn—e from 4 (blue) to 8 (green) moves APg, and the corresponding Hopf
point, to the left, while the lower knee of & remains unchanged. B) With gsn_. = 8,
increasing gionic_e from 0.3 (green) to 0.6 (black) moves both APs and the lower knee of
S to the left. (Note that the red copies of APgs in both panels are identical.)

If we fix gsyn—e in the SB regime and increase gionic—e, then the lower knee of S moves
to the left. The Hopf point and the stable branch of periodic orbits APs associated to the
top hat burster move to the left as well, but they do so more slowly, as seen in Figure 19B
and analogously to what is shown in the bottom left panel of Figure 2. This causes a net
decrease in the size of the bistable region. Further, this smaller bistable region is moved
to the left, with APs becoming closer to the A-nullsurface G and the lower branch of S
becoming farther from G (see e.g. the bottom row of Figure 3). These changes cause both a
slower drift in the active phase and a faster drift in the silent phase. It follows immediately
that for increased g;onic—e the interburst interval decreases, because the bistable region gets
smaller and the drift in the silent phase becomes faster.

On the other hand, although the bistable region gets smaller, the slower drift in the
active phase counters this effect and in fact causes the burst duration to increase with
Gtonic—e- 10 understand why the slower drift dominates, recall from Section 3.3 that the
transition from bursting to spiking in the analysis of the top hat burster is described by

a zero drift condition a(hy) = 0 of system (5), describing the averaged evolution of A
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during the active phase. For values of gz, . > 7.5, this analysis captures the transition
from bursting to spiking of coupled pre-B&tC cells. In this parameter regime, the average
drift in the active phase decreases to zero with increasing g;onic_e, causing the transition
to spiking. Since the size of the bistable region is bounded away from 0 because of the
folded termination of the top hat structure, this slowing overcomes the shrinking of the
bistable region and thus the burst duration generally increases with increasing gionic—_e-
For intermediate and lower values gyy,—. < 7.5, the increase of burst duration with
increasing gionic—e Still occurs in the SB regime, by the same argument. However, the zero
drift condition (for Ay = hs) now corresponds to the appearance of the unstable fixed point
po in O and thus determines the transition from SB to AB, given by the blue curve in
Figure 18, rather than the transition from SB to SS. Changes in burst duration in the AB

region are discussed in the following subsections.

4.2 The asymmetric bursting regime for moderate and large
Jsyn—e S 7.5

Here we discuss the abrupt change in burst duration seen at the transition from SB to
AB (Figure 18A), the impact of gonic—e and gsyn—e on burst duration within AB, and the
impact of gionic—e and gsyn— On interburst interval within AB, for gy, . < 7.5 but not too
small.

The AB regime was analyzed in Section 3.4 via the study of the reduced system (6).
The appearance of the saddle point py in (hq, he)-space forces solutions to leave the neigh-
borhood of the symmetry axis £ (see Figure 11B). This scenario causes a very sharp
increase in burst duration near the onset of asymmetric bursting. More precisely, AB
solutions of system (6) follow close to £, heading toward the boundary B of the oscillatory
region . Once they pass close to the saddle point py, however, they are diverted to a
path between the nullclines A;, As and the curve B, crossing both 4; and .A; before they
can reach B and jump from the active phase to the silent phase (see Figure 11B). This
excursion can be of quite substantial duration even for g¢;,ni._. close to the SB — AB

transition, depending on where A;, A, lie relative to B. Thus, this phase plane analysis
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for the reduced system (6) explains nicely the sharp increase in burst duration seen in
Figure 18A. Note in particular that the ‘discontinuity’ observed in the burst duration as
Gtonic—e 18 increased matches exactly the SB — AB transition curve for 7.5 > g5y > 3.

The transition from AB to AS happens due to the appearance of two asymmetric
stable fixed points, g4 and ¢g, in the phase space of system (6), as shown in Figure 11C.
These fixed points correspond to two new intersection points of the (convex) nullclines
A; and Ay. Thus, with increasing gsonic—e in the AB regime, A; and A, get closer until
they intersect in the oscillatory region O at the transition value of gspnic—e. Therefore, as
Gtonic—e increases, solutions will spend more time following the path between the nullclines
A; and A, and the boundary B before leaving O; as a result, the burst duration increases
with increasing gionic—e-

The same argument holds also for fixed gopic— and increasing gy, .; that is, the burst
duration will increase due to the geometry of the nullclines. With increasing gsyn—., A1
and A, again get closer, and pull away from B, before they intersect at the transition to
AS. Therefore, the burst duration increases monotonically with increasing gsyn—e-

The interburst interval behaves the same as in the symmetric case, because the bistable
region of each of the oscillators increases with increasing gsyn—e, with no change in position
relative to G in the silent phase, and decreases with increasing gionic—e, With an increased
distance from G in the silent phase. Correspondingly, the interburst interval increases with
increasing gsyn—. and decreases with increasing gionic—e as well.

Finally, the smaller bistable region that occurs for larger gipn,c—e can mitigate the
increases in burst duration, discussed above, somewhat, but as in the previous subsection,
the bistable region size is bounded away from zero by the top hat structure, and a net
increase in burst duration occurs as gionic_e 1S increased. We shall see in subsection 4.3

that this relation may differ for smaller gy, .

4.3 Asymmetric bursting for small g,

As seen in Figure 20, the top hat structure of APs can be eliminated either by decreasing

Gsyn—e for fixed giopic—e OT by increasing gionic—e for fixed gsyn—_., yielding a transition from
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top hat bursting back to square-wave bursting. This transition happens at smaller g;onic e
for smaller gsyn—e (€.g., near gionic—e = 0.6 for gsyn—e = 2 and near gionic—e = 0.4 for
syn—e = 0.1).

Within both the top hat and the square-wave scenarios, it is possible for the fast
subsystem to feature bistability between periodic orbits on APg and critical points on the
lower branch of S. In the top hat case, this bistability is always present. As a result of
the transition back to the square-wave scenario, however, it is possible for the size of the
bistable region for the fast subsystem to go to zero, corresponding to a saddle-node on an
invariant circle, or SNIC, bifurcation in which the homoclinic point that terminates AP lies
on the lower knee of S, as gyonic—e increases. Thus, the outcome of the competition between
slower drift in the active phase and shrinkage of the bistable region as gipni.—e increases,
and correspondingly the changes in burst duration with g;ynic_e, cannot be predicted. On
the other hand, the shrinking bistable region and accelerating flow in the silent phase still
synergistically induce shorter interburst intervals for larger gionic—e, as discussed previously

for larger gsyn—e.

5 Discussion

This work represents an effort to explain the finding that the introduction of synaptic
coupling in a network of model pre-BotC cells, relevant to respiratory rhythms, extends
the range of parameters over which synchronized bursting oscillations occur, relative to
the uncoupled case. Many subtle issues lurk within this finding, including differences in
the effects of within-network coupling (/. in equation 1) versus external tonic coupling
(Itonic—e in equation 1) and a wide range of complex changes in burst characteristics with
changes in the strengths of these inputs. Using geometric fast/slow analysis of a two-cell
network, we find that the introduction of synaptic coupling qualitatively changes the class
of bursting seen in the network, from square-wave bursting to top hat bursting, except
possibly for a small range of parameters with small coupling strengths. Further, through a
progression of levels of analysis, we have shown that the apparent transition from bursting

to tonic spiking can actually encompass a transition from symmetric bursting to asymmet-
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Figure 20: Changes in the anti-phase (green) and in-phase (red) periodic orbit families
as Gronic—e aNd Ggyn—e vary. As gionic—. is increased for fixed g¢gyn ., the anti-phase family
switches from three branches, connected by two saddle-node bifurcations, to two branches,
corresponding to the switch from top hat bursting to square-wave bursting. Lowering
Gsyn—e for fixed gionic—e has a similar effect.

ric bursting to asymmetric spiking to symmetric spiking, with significant implications for
burst characteristics that we analyze using the two-variable slow averaged system (6). In
particular, the fact that the cells’ spikes are out-of-phase in the solutions observed plays a
key role in extending the dynamic range of bursting to larger gionic—e-

While the equations that we have studied were introduced to model particular cells
implicated in the generation of respiratory rhythms, dynamically they give rise to generic
square-wave bursting, and hence the qualitative aspects of our results apply directly to
general pairs of coupled square-wave bursters. Past work has shown that the introduction
of diffusive coupling between two square-wave bursters can split the associated family

of periodic solutions into an unstable in-phase family and an anti-phase family, with an
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associated increase in burst period [25, 5]. This finding is similar to what we report
here with synaptic coupling, although in the diffusive case the anti-phase family is stable
and affects period only when coupling is weak, whereas we find that it remains stable
for strong synaptic coupling. Further, in addition to simply noting that this splitting
occurs, we consider the qualitative changes in burst pattern resulting from the saddle-
node termination of the stable anti-phase periodic branch, as also noted in [11, 26, 4]. An
additional difference between the diffusive and synaptic analyses is that the analysis done
for diffusive coupling capitalizes on the observation that he — hy & constant, where h; is
the slow variable for cell ¢, to focus on the single bifurcation parameter § = (he — hq)/2
for the coupled system. In the synaptic case, we have shown that this single slow variable
picture fails to capture the full dynamic range of bursting, which we have explained using
analysis of a two-variable slow averaged system. This approach allows us to consider a
range of dynamic effects resulting from turning on and varying the strength of synaptic
coupling, including complex changes in burst duration and interburst interval, in addition
to transitions between asymmetric and symmetric bursting and tonic spiking states.
Clearly, it will be interesting to see whether the effects of changes in g5y, and gionic e
on pre-BotC activity patterns predicted by this analysis can be observed experimentally.
In an experimental recording, if different cells’ voltage time courses were identical, ex-
cept for a systematic time shift, then the network activity pattern could be classified as
symmetric, whereas other differences in voltage time courses across different cells would
characterize asymmetric activity patterns. Of course, noise would complicate this distinc-
tion. Interestingly, the analysis in subsection 4.3 points out that bistability of periodic
and rest states may be lost as gimic—. increases for relatively small gyy,—.. This leads
to the prediction, illustrated in Figure 21, that transient, hyperpolarizing inputs to tonic
spiking solutions could be used to gauge the strength of synaptic coupling in an experi-
mental preparation. More precisely, for large enough ¢y, ., such an input would lead to
a prolonged delay before return to spiking, because it would induce a prolonged excursion
along a branch of stable steady states of the fast subsystem, as seen in Figure 21 A B. On
the other hand, for sufficiently small g,y,_., bistability would be lost, and the effects of a
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transient, hyperpolarizing input would be gone as soon as the input were terminated, as
seen in Figure 21 C,D.

We use a fast/slow decomposition in the singular limit, in which solutions consist of
trajectories generated by a slow subsystem, connected by jumps formed by solutions of a
fast subsystem. This approach has been used effectively in past analyses of bursting (e.g.,
[19, 20, 22]), and rigorous analysis has shown that sufficiently close to the singular limit,
for most initial conditions, trajectories of square-wave bursters behave similarly to such
concatenated solutions [30, 29, 16]. In the case of the pre-B6tC in particular, the predic-
tions from our fast/slow analysis yields good quantitative agreement with past simulation
results [2] while explaining the mechansims underlying many of the burst characteristics
that were observed in the simulations. However, the rigorous extension of these ideas
beyond the singular limit remains to be performed.

Clearly, much insight regarding the fundamental influences of gonic—e; gsyn—e, and the
role asynchrony of spikes has been gained through our study of a pair of synaptically
coupled cells. To understand fully the bursting dynamics observed in the pre-BotC ex-
perimentally, additional biological features will need to be considered, starting with the
addition of more cells and the inclusion of heterogeneity in parameter values and features
across cells. Indeed, heterogeneity in parameters was observed to enhance the robustness
of synchronized bursting in simulations, and while we have analyzed conditions for syn-
chrony in the presence of heterogeneity previously [23], that work focused on a reduced
model and on a restricted class of heterogeneities. Further, it appears that there may
be heterogeneous ionic mechanisms that contribute to rhythmic oscillations across an en-
tire pre-BotC cell network [6, 17, 7], and the interactions of multiple mechanisms could
be a rich source of network dynamics. Finally, while this work has focused on synchro-
nized bursting, experiments have shown that modifications, such as increases in external
potassium concentration or decreases in gy, ., can lead to clustered or aperiodic behavior
[8, 24]. Since various quasiperiodic and mixed-mode oscillations have been observed in
spontaneous breathing of human infants and neonatal rodents [8], it will be important to

analyze transitions away from full-population bursting to characterize fully the dynamics
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Figure 21: Effects of transient, hyperpolarizing inputs on tonic spiking solutions. A)
With (gionic—es gsyn—e) = (0.9, 5), a hyperpolarizing input of 100 msec leads to a prolonged
delay before tonic spiking resumes. B) Bifurcation diagram showing a critical point curve
(solid stable points and dashed unstable points) and the family of anti-phase periodic
orbits AP (thick dotted curve) for the fast subsystem for (gionic—e, gsyn—e) = (0.9, 5). The
(h,v) coordinates of the trajectory from A) are superimposed. Before the input, this
trajectory consists of an oscillation with A at a constant value below the knee of the
critical point curve. The initial effect of hyperpolarization is to pull the trajectory below
AP, as marked by the arrow. After this, the trajectory makes a prolonged excursion along
the branch of stable critical points before jumping toward AP and then drifting leftward,
back to the h-value where it started. C) With (gtonic—e, gsyn—e) = (0.9, 1), cessation of a 100
msec hyperpolarizing input leads to an immediate return to tonic spiking. D) Bifurcation
diagram and trajectory for (gonic—e, gsyn—e) = (0.9, 1), labelled as in B). The arrow shows
the small drop in v due to hyperpolarization.
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of the pre-BotC.

6 Appendix

Equations (1),(2),(3) were introduced in [1], while the synaptic equation (4) is given in [2].

In these equations, for x € {mp, m, h,n, s}, the function x(v) takes the form z(v) =

{1 + exp[(v — 0;)/0,]} !, and for z € {h,n}, the function 7,(v) takes the form 7,(v) =

Tz/ cosh[(v—0;)/20,]. The parameter values used in these equations are listed in the table

below.
| parameter | value | parameter | value | parameter | value | parameter | value |
gnaep | 2.8 1S Eng | 50.0 mV Om,p | -40 mV Om,p | -6 mV
T /€ | 10000 msec 0, | -48 mV on | 6 mV
gna | 28 nS 0,, | -34 mV Om | -5 mV
T, | 10 msec 0, | -29 mV op | -4 mV
gr, | 2.8 nS Ep | -65.0 mV C | 21 pF Egyn—re | 0mV
a, | 0.2 msec™! T, | 5 msec 0, | -10.0 mV os | -b mV
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