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Abstract. The purpose of this report is to give a self-contained and detailed mathematical
introduction to the analysis in the report [LL04c] of the accuracy of some predictive model’s of
turbulence. The models are based on approximate de-convolution methods and were introduced into
LES by Stolz and Adams. We recall the development of the models, review the known theory of
the models and expand the proof from [LL04c] that the time averaged consistency error of the Nth
approximate deconvolution LES model converges to zero uniformly in the kinematic viscosity and
in the Reynolds number as the cube root of the averaging radius. We also give a higher order
but non-uniform consistency error bound for the zeroth order model directly from the Navier-Stokes
equations and study the distribution of consistency errors among length-scales.
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1. Introduction. Direct numerical simulation of turbulent flows of incompress-
ible, viscous fluids is often not computationally economical or even feasible. Thus,
various turbulence models are used for simulations seeking to predict flow statistics
or averages. In LES (large eddy simulation) the evolution of local, spatial averages
is sought. The goal of large eddy simulation is thus to predict reliably the evolution
of large scales of turbulent flows. Thus, LES is inherently concerned with dynamics
of turbulence. The definition of large scales is done through a local, spacial averag-
ing process associated with an averaging radius δ. The selection of this averaging
radius δ is determined typically by three factors: computational resources i.e. δ must
be related to the finest computationally feasible mesh, turnaround time needed for
the calculation, and estimates of the scales of the persistent eddies needed to be re-
solved for accurate simulation. Three types of averaging processes are common and
in large eddy simulations: filtering by convolution, differential filters and filtering by
projection.

Once an averaging radius and a filtering process is selected, an LES model most
be developed. Once a model is selected, important and fundamental questions arise
concerning whether the model correctly captures the global energy balance of the
large scales. Mathematically, this is expressed as the question.• Does the LES model have unique, strong solutions which depend stably on

the problem data?
Broadly, there are two types of LES models of turbulence: descriptive or phe-

nomenological models (e.g., eddy viscosity models) and predictive models (considered
herein). The accuracy of a model measured in a chosen norm, || · || , mean

||average(NSE solution)− LES solution||.
A model’s accuracy can be assessed in several experimental and analytical ways.

The strongest test is to obtain an NSE solution from a data base, a DNS or exper-
imental data from a real flow, explicitly average it and compare it to the velocity
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predicted by a large eddy simulation1 . Another important experimental approach is
to use a velocity field from a direct numerical simulation (a DNS) to compute some
norm of the model’s consistency error (defined precisely below) evaluated at the DNS
solution (which is regarded as a "truth solution")2 . Either experimental approach of
course limits assessments to Reynolds numbers and geometries for which reliable DNS
data is available. A third complementary approach (for which there are currently few
results) is to study analytically the model’s consistency error as a function of the av-
eraging radius δ and the Reynolds number Re. The inherent difficulties in analytical
studies are that• consistency error bounds for infinitely smooth functions hardy address es-

sential features of turbulent flows such as irregularity and richness of scales,
and• worst case bounds for general weak solutions of the Navier Stokes equations
are so pessimistic as to yield little insight.

However, it is known that after time or ensemble averaging, turbulent velocity
fields are often observed to have an intermediate smoothness as predicted by the Kol-
mogorov theory (often called the K41 theory), see, for example, [F95],[BIL04],[P00],
[S01] , [Les97]. This case is often referred to as homogeneous isotropic turbulence and
various norms of flow quantities can be estimated in this case using the K41 theory,
Parseval’s equality and spectral integration. We mentioned Lilly’s famous paper [L67]
as an early and important example.

In this report we consider this third way begun in [LL04b] and carried out in
[LL04c, LL04c]: consistency error bounds are developed for time averaged, fully de-
veloped, homogeneous, isotropic turbulence. Such bounds are inherently interesting
and they also help answer two important related questions of accuracy and feasibility
of large eddy simulation:• How small must δ be with respect to Re to have the average consistency error

<< O(1)?• Can consistency error<< O(1) be attained for the cutoff length-scale δ within
the inertial range?

A related issue is to asses the accuracy of the model in laminar flow regions.• For smooth u , what is the order of accuracy of the model?
1.1. Summary of results. The notation, formalism, results, proofs and con-

clusions of this report will be carefully developed in detail in the following sections.
However, many interested in de-convolution models and large eddy simulation will be
familiar with our notation and the K41 formalism. For those specialists, it is useful
to give here a summary of results of the report. We stress that for those not familiar
with de-convolution models or the K41 formalism, e.g., as in Lilly’s paper, [L67], and
for those who are familiar and are interested in the details why of the results are true,
we shall develop the results carefully in a complete and self-contained way.

To present the results, let
U = reference velocity,
L = reference global length scale,
ν = kinematic viscosity,

1Because of the uncertainties and fluctuations of turbulent flow, often (or usually) "compare"
means to compare time-averaged flow statistics rather than compute the time evolution of norms of
differences.

2These two approaches are known in LES as a priori testing and a posteriori testing of the model
under consideration.
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< · >= long time averaging.
For the generality we consider, a good candidate for U to non-dimensionalize the

equations is
U =< 1

L3 ||u(x, t)||2L2(Ω) > 1
2 .

The first question of existence, uniqueness and accuracy of the model was answered
in a remarkable paper of Dunca and Epshteyn [DE04] in the following theorem.

T������ 1.1. Consider the Nth approximate de-convolution LES model under
periodic boundary conditions and with smooth enough initial condition and body force.
For every N this model has a unique strong solution. If the problem data u0 ∈ C∞(Ω)
and f ∈ C∞(Ω× (0,∞)) then the solution is also C∞(Ω× (0,∞)) .

Let w = w(δ) denote this solution. Then, there is a subsequence δj → 0 and a
weak solution of the Navier-stokes equations such 3

w(δj) → u, as δj → 0.
If additionally the solution to the NSE is a unique strong solution, specifically if∫ T
0 ||∇u(t)||4L2(Ω)dt < ∞, then

max0≤t≤T ||u−w||2L2(Ω) +
∫ T

0
ν||∇(u−w)||2L2(Ω)dt ≤ C

∫ T

0
||τ ||2L2(Ω)dt.

If additionally △N+1u ∈ L2(Ω) , then ∫ T
0 ||τ ||2L2(Ω)dt ≤ C(u)δ2N+2 so the modeling

error is O(δN+1) non-uniformly in the Reynolds number.
Proof. See Dunca and Epshteyn [DE04] for the proof.
The remaining questions were answered in estimates of averaged consistency errors

in [LL04c].Our estimates are based on the following three plausible assumptions on
time-averages of solutions of the Navier-Stokes equations and which are implied for
homogeneous, isotropic turbulence by the K41 theory.

Assumption 1. The equations are non-dimensionalized by a selection of U and
L consistent with

< 1
L3 ||u(x, t)||2L2(Ω) > 1

2≤ U.
Assumption 2. The time averaged energy dissipation rate ε(u) satisfies

ε(u) ≤ C1
U3
L .

Assumption 3. The time averaged energy spectrum of the flow, defined precisely
in section 2, satisfies

E(k) ≤ αε 2
3 k−5

3 .
Let the filter be a standard differential filter (defined precisely below). Let Re =
Reynolds number, GN = Nth approximate de-convolution operator defined by the
van Cittert approximate de-convolution procedure and let

τN := GNuGNu− uu
3As above, the convergence is in the norms of the natural energy spaces for the Navier-Stokes

equations.
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be the consistency error tensor in the Nth approximate de-convolution model. For
homogeneous, isotropic turbulence (i.e., under the above three assumptions) we prove
for the whole family of models that the consistency error converges to zero uniformly
in the Reynolds number like O(δ 1

3 ).

T������ 1.2. Consider the Cauchy problem or the periodic problem. Suppose
Assumptions 1, 2 and 3 hold. Then,

< ||τN ||L1(Ω) >≤ C 1
31 (N + 2)(3 + 2

4N + 10
3
) 1

2α 1
2U2L 7

6 δ 1
3 .

This holds for the periodic problem and the problem without boundaries. For
flows in bounded domains with no-slip boundary conditions, the assumption that the
flow is homogeneous and isotropic is unrealistic. For flows in bounded domains with
no-slip boundary conditions, working directly from the Navier-Stokes equations we
prove a result a result for the zeroth order model that is not uniform in Re.

T������ 1.3. Let Ω be a bounded domain with sufficiently smooth boundary
with no-slip boundary conditions. Suppose Assumptions 1 and 2 hold. Then,

< ||τ0||L1(Ω) >≤ C 1
21 L2U2Re 1

2 δ.

It is possible to develop such a result without assumptions of homogeneity or
isotropy because of the important recent breakthroughs of Doering and Constantin
and Wang and Foias and others, [CD92], [W97] , [CKG01], [DF02], in deriving
estimates of time-averaging energy dissipation rates directly from the Navier-Stokes
equations. Although this result is not uniform in the Reynolds number, this result
also implies that large eddy simulation is feasible; in other words, the (time averaged)
consistency error is << O(1) for cutoff length well inside the inertial range.

We also consider the distribution of consistency errors among wave numbers or
length scales. This leads to interesting distinctions between the models. For example,
the next figure is a plot of the consistency error of the N = 0 through 7 approximate
de-convolution models over (re-scaled) wave numbers 0 ≤ k ≤ π. The order of the
plots is decreasing consistency error near the origin (i.e., for the largest length scales)
corresponds to increasing order.
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Consistency errors, N=0 through 7.
Note that the consistency errors decrease rapidly as the order increases over the first
third of the resolved scales but decrease very slowly over the next third and actually
increases significantly over the remaining third.

2. Notation and Mathematical Tools. The set of all measurable, square
integrable functions, vectors and tensors will be denoted, as usual, by L2(Ω) and
L1(Ω)will denote the integrable functions. We will make no distinction in our notation
between the scalar, vector and tensor cases. for a measurable function φ defined on
the flow domain Ω, the associated norms are defined by

||φ(x)||L2(Ω) : =
√∫

Ω
|φ(x)|2dx,

||φ(x)||L1(Ω) : =
∫
Ω
|φ(x)|dx.

If, for example, the function φ represents a fluid velocity then L2(Ω) represents
the set of all functions with finite kinetic energy.

The function space H1(Ω) denotes
H1(Ω) : = {φ ∈ L2(Ω) : ∇φ ∈ L2(Ω)}, and||φ||2H1(Ω) : = ||∇φ||2L2(Ω) + ||φ||2L2(Ω).

More to come: Fourier transforms. Plancherel’s and Parseval’s theorems. Basic
properties of Fourier transforms.

3. The Space Filtered Navier-Stokes equations. Let the velocity u(x, t) =
uj(x1, x2, x3, t), (j = 1, 2, 3) and pressure p(x, t) = p(x1, x2, x3, t) be a weak solution
to the underlying Navier Stokes equations (NSE for short)

ut + u · ∇u− ν△u+∇p = f, and ∇ · u = 0, in �× (0, T ), (3.1)
where ν = µ/ρ is the kinematic viscosity, f is the body force, p is the pressure, and the
flow domain Ω is either a bounded region with a smooth (where the no-slip condition
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is imposed), a cube Ω = (0, L)3 (with periodic boundary conditions) or all of R3. The
above Navier-Stokes equations are supplemented by the initial condition, the usual
pressure normalization condition

u(x, 0) = u0(x), and
∫
Ω
pdx = 0, (3.2)

and appropriate boundary conditions. The mathematical theory of the Navier-Stokes
equations is based upon the three physical quantities of kinetic energy, energy dissi-
pation rate and power input, given by

Kinetic energy: E(t) := 1
2
∫
Ω
|u(x, t)|2dx = 1

2 ||u||2L2(Ω),

Energy dissipation rate: ε(t) := 1
L3

∫
Ω
ν|∇u(x, t)|2dx , L = a selected length-scale,

Power input: P (t) := 1
L3

∫
Ω
f(x, t) · u(x, t)dx .

Theories of turbulence are typically based on time averages (or other averages) of
these same three quantities.

The boundary conditions we consider include the no-slip condition
u(x, t) = 0,x ∈ ∂Ω, Ω a bounded domain,

periodic boundary conditions with zero mean imposed on the solution and all data
u(x+Lej , t) = u(x, t),

∫
Ω
udx =

∫
Ω
pdx =

∫
Ω
fdx =

∫
Ω
u0dx = 0,

and the problem on all of R3 without boundaries (the Cauchy problem). For the
Cauchy problem, the role of boundary conditions at infinity is played by the assump-
tion that the solution’s kinetic energy, total energy dissipated and power input are all
finite

for all t > 0 :,
∫
R3

|u(x, t)|2dx < ∞, (3.3)

for all T > 0,
∫ T

0

∫
R3

|∇u(x, t)|2dxdt < ∞, (3.4)

assuming
∫
R3

|u0(x)|2dx < ∞,
∫
R3

|f(x, t)|2dx < ∞, for 0 < t. (3.5)

We study a model for spacial averages of the fluid velocity with the following
differential filter. Let δ denote the selected averaging radius; given φ ∈ L2(Ω), its
average, denoted φ, is the solution in H1(Ω) of the following problem 4 :

Aφ := −δ2△φ+ φ = φ. (3.6)
4This precise definition of the differential filter is important since we consider dimensional scaling

and L. It is obtained by rescaling x to x/L.
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The precise scaling in the above with respect to L is important in, for example, geo-
physical flow problems, [Lew97]. Differential filters are well-established in large eddy
simulation, starting with work of Germano[Ger86] and continuing [GL00], [S01], and
have many connections to regularization processes such as the Yoshida regularization
of semigroups and the very interesting work of Foias, Holm, Titi [FHT01] (and others)
on Lagrange averaging of the Navier-Stokes equations.

Averaging the Navier-Stokes equations shows that away from walls in the case of
a bounded domain and the no-slip condition and everywhere for the periodic problem
and the problem without boundaries, the true flow averages satisfy the (non-closed)
equations known as the space filtered Navier-Stokes equations or SFNSE

ut +∇ · (u u)− ν△u+∇p = f, and ∇ · u = 0. (3.7)
The SFNSE is not closed. One way (of many) to describe the closure problem is to
replace the tensor uu in the SFNSE with a tensor S(u, u) that depends only on u not
u . Calling w, q the approximations to u,p that result from this model, this leads to
the following large eddy simulation model for predicting the averages u, p

wt +∇ · (S(w, w))− ν△w +∇q = f, and ∇ · w = 0.
The consistency error tensor of this approximation is τ := S(u, u) − u u . For
example, the true filtered momentum equation can be rewritten as

ut +∇ · (S(u, u))− ν△u+∇p = f +∇ · τ .
Comparing the last two equations, the deviation of the true flow averages u from the
model’s solution w is driven by the consistency error tensor τ .

D������ 3.1 (Modeling and numerical errors). The modeling error is the
deviation of the model’s solution from the true flow averages

emodeling := u−w.
Let wh denote a computed approximation of the large eddy simulation model. The nu-
merical error is the deviation of the computed solution from the large eddy simulation
model’s true solution,

enumerical := w −wh.

Subtracting the last two equations (SFNSE-LESmodel) gives the equation for the
modeling error, e(x, t) = u−w: e(x, 0) = 0,∇ · e = 0 and

(u−w)t +∇ · (S(u, u)− S(w, w))− ν△(u−w) +∇(p− q) = ∇ · τ , (3.8)
which is driven only by the model’s consistency error τ . Thus, having a small
modeling error depends on (i) having a small model consistency error, and (ii) the
model being stable and stable to perturbations.

One approach to finding such a tensor S(u, u) ≃ uu is approximate de-convolution.
An approximate de-convolution operatorGN of order 2N+2 is an approximate inverse
of the filtering process of formal accuracy O(δ2N+2): given u , GN (u) satisfies

u = GN (u) +O(δ2N+2) for smooth velocity fields u.
7



Any such approximation de-convolution operator determine a closure model of formal
accuracy O(δ2N+2) via u u ≃ S(u, u) := GN (u)GN (u). The associated large eddy
simulation approximate de-convolution model is then

wt +∇ · (GN (w)GN ( w))− ν△w +∇q = f, and ∇ · w = 0.
As a concrete example, the zeroth order model, studied in [LL03],[LL04], arises

from G0(u) = u(= u + O(δ2)), or S(u, u) = u u, giving the closure approximation
uu = S(u, u)+O(δ2) for smooth u . Calling w, q the resulting approximations to u, p,
the zeroth order model is given by :

wt +∇ · (w w)− ν△w +∇q = f, and ∇ · w = 0. (3.9)
Subtracting the model from the SFNSE, the model’s error, e := u − w, satisfies
e(x, 0) = 0,∇ · e = 0 and

(u−w)t +∇ · (u u−w w)− ν△(u−w) +∇(p− q) = ∇ · (uu− uu), (3.10)
which is driven only by the term ∇ · (uu− uu). The consistency error of the zeroth
order model is thus defined to be τ0 := u u−u u. Since the model is stable and stable
to perturbations, [LL04], the accuracy of the model is governed by the size of various
norms of its consistency error tensor τ05 .

4. More about differential filters. It is useful is provide some background
information about filtering in general and the simple differential filter we focus on in
particular. Recall that L denotes the global length-scale and δ the selected averaging
radius. For the periodic problem or the problem on all of R3 (the Cauchy problem),
the differential filter can be defined very simply as follows: given φ ∈ L2(Ω), its
average, denoted φ, is the solution with φ ∈ L2(Ω) and ∇φ ∈ L2(Ω) of the following
problem

Aφ := −δ2△φ+ φ = φ. (4.1)
The parameter δ has units of length. It represents the cut-off length scale in the
filter or, equivalently, the filter’s averaging radius. The exact interpretation of δ as
a physical length, rather than a generic, nondimensional parameter, in the above
is important in, for example, geophysical flow problems, [Lew97].Differential filters
are well-established in large eddy simulation, starting with work of Germano[Ger86]
and continuing [GL00], [S01], and have many connections to regularization processes
such as the Yoshida regularization of semigroups and the very interesting work of
Foias, Holm, Titi [FHT01] (and others) on Lagrange averaging of the Navier-Stokes
equations.

The definition of the differential filter must be modified for the problem with no-
slip boundary conditions. Briefly, the above definition preserves incompressibility for
periodic boundary conditions and for the Cauchy problem but not for the problem
with no-slip boundary conditions. The correct modification is to solve a shifted Stokes
problem. Given φ ∈ L2(Ω), with ∇φ ∈ L2(Ω) its average, denoted φ, is the solution
with φ ∈ L2(Ω), and ∇ φ ∈ L2(Ω) of the following problem: find φ, λ satisfying

−δ2{△φ+∇λ}+ φ = φ, in Ω,∇ · φ = ∇ · φ , in Ω,
φ = φ , on ∂Ω.

5As above, analysis of the dynamics of this error equation in [LL03], [LL04] showed that the
modeling error is actually driven by τ0 rather than ∇ · τ0.
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Generally, a filtering operator is shares many features of an averaging process; it is
a positive semi-definite operator which is smoothing, attenuates high frequencies and
converges to the identity operator as δ → 0, i.e., φ → φ as δ → 0. Much of the math-
ematical foundation of filtering was laid down by the famous applied mathematician
Norbert Wiener (who studied the de-convolution problem), e.g.[W49] . Much of this
theory is phrased in terms of the transfer function or symbol of the filtering operator
under Fourier transform, [W33]. The Fourier transform of the above equation (4.1)
which defines the filtering operation is

(δ2(k21 + k22 + k23) + 1)φ̂(k1, k2, k3) = φ̂(k1, k2, k3).
Here k = (k1, k2, k3) is the dual variable of the Fourier transform. The dual

variable (k1, k2, k3) is also called the wave number vector and its magnitude k :=√k21 + k22 + k23 = |k| the wave number. The last equation can be rewritten as

φ̂(k1, k2, k3) = 1
δ2(k21 + k22 + k23) + 1 φ̂(k1, k2, k3),

so the transfer function or symbol of the filter is a(δk) := (δ2(k21 + k22 + k23) + 1)−1 =
[1+ |δk|2]−1 = [1+ (δk)2]−1. Normally this is represented graphically by the obvious
re-scaling δk → k , so a(k) = (1 + k2)−1.

52.50-2.5-5

1

0.8
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0.4
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wave number k

a(k)

wave number k

a(k)

Transfer function of the differential filter.
The smoothing property of the differential filter is reflected in the decay at infinity of
its transfer function.

It follows readily that the averaging process is stable and smoothing in the sense
below and the filtered function is a good approximation of the true function, if it
is smooth. Detailed proofs of such estimates in these and other norms are given in
[LL04].

L���� 4.1 (Stability and smoothing of differential filters). For any φ ∈ L2(Ω),

||φ||L2(Ω) ≤ ||φ||L2(Ω), (4.2)
2δ||∇φ||L2(Ω) ≤ ||φ||L2(Ω), and (4.3)

1
2δ

2||△φ||L2(Ω) ≤ ||φ||L2(Ω). (4.4)

Proof. Multiply (1.5) by φ, integrate over Ω and integrate by parts. This gives
9



∫
Ω
δ2|∇φ|2 + |φ|2dx ≤ ∫

Ω
φφdx

Use the Cauchy-Schwarz inequality on the right hand side gives the first two. For the
third, note that the definition of the differential filter implies −δ2△φ = φ− φ. thus,

δ2||△φ||L2(Ω) = ||φ− φ||L2(Ω) ≤≤ 2||φ||L2(Ω).

L���� 4.2 (Accuracy of approximation by filtering). For any φ ∈ L2(Ω),
||φ− φ||L2(Ω) ≤ 1

2δ||∇φ||L2(Ω), (4.5)
||∇(φ− φ)||L2(Ω) ≤ 1√2δ||△φ||L2(Ω), and (4.6)

||φ− φ||L2(Ω) ≤ δ2||△φ||L2(Ω). (4.7)

Proof. The averaging error by Φ = (φ− φ) satisfies the equation
−δ2△Φ+Φ = −δ2△φ.

The above error bounds for Φ follow in much the same ways as the above stability
bounds.

5. The K-41 formalism. The most important components of the K-41 theory
are the time (or ensemble) averaged energy dissipation rate, ε, and the distribution of
the flows averaged kinetic energy across wave numbers, E(k). Let < · > denote long
time averaging

< φ > (x) := limT→∞
1
T
∫ T

0
φ(x, t)dt. (5.1)

Time averaging is the original approach to turbulence of Reynolds, [R95]. It satisfies
the following Cauchy-Schwarz inequality.

L���� 5.1 (Time-averaged Cauchy-Schwartz inequality). For all
φ, ψ : (0,∞) → L2(Ω),

with the right hand side finite
< (φ, ψ)L2(Ω) > ≤ < ||φ||2L2(Ω) > 1

2< ||ψ||2L2(Ω) > 1
2 . (5.2)

Proof. This follows, for example, by applying the usual Cauchy-Schwarz inequality
on Ω× (0, T ) followed by taking limits or from the connection with the inner product
on the space of Besicovitch almost periodic functions, e.g., [Z85],[L84], [CB89].

Given the velocity field of a particular flow, u(x, t) , the (time averaged) energy
dissipation rate of that flow is defined to be

ε(u) :=< 1
L3

∫
Ω
ν|∇u(x, t)|2dx > . (5.3)
10



It is known for many turbulent flows that the energy dissipation rate ε scales like
U3

L . This estimate, which is exactly Assumption 2 below, follows for homogeneous,
isotropic turbulence from the K41 formalism, [F95], [Les97], [P00], [S84], [S98] and was
first proven as an upper bound directly from the Navier Stokes equations for turbulent
flows in bounded domains driven by persistent shearing of a moving boundary (rather
than a body force), [CD92] ,[W97], . The same estimate has been proven, [F97],
[CKG01], [DF02] when the flow is driven by a persistent body force, the boundary
conditions are periodic and the forcing acts on the largest modes.

The total kinetic energy in the flow (assuming unit density) at time t is, as above,
E(t) := ∫

Ω
1
2 |u(x, t)|2dx.Thus, the kinetic energy at the point x in space at time t is

given by 1
2 |u(x, t)|2. For the rest of this section, let Ω denote R3.6 If û(k, t) denotes

the Fourier transform of u(x, t) where k is the wave-number vector and k = |k| is
its magnitude, then Parseval’s equality states that ∫Ω |u(x, t)|2dx = ∫

R3 |û(k,t)|2dk.
This implies that the kinetic energy in the flow can be evaluated in physical space or
in wave number space using the Fourier transform û of u

E(t) := 1
2 ||u||2L2(Ω) =

∫
Ω
1
2 |u(x, t)|2dx =

∫
R3

1
2 |û(k,t)|2dk. (5.4)

Thus 1
2 |û(k,t)|2 represents the distribution of kinetic energy at time t among waves

with associated wave-number vector k. Time averaging and rewriting the last integral
in spherical coordinates gives

< E(t) >=< 1
2 ||u||2L2(R3) >=

∫ ∞

0
E(k)dk, (5.5)

where E(k) : =
∫
|k|=k

1
2 |<̂ u >(k, t)|2dσ. (5.6)

Thus, E(k) represents the total (time averaged) kinetic energy in all waves with
frequency k. The case of homogeneous, isotropic turbulence includes the assumption
that after time or ensemble averaging <̂ u >(k) depends only on k and not the angles
θ or ϕ. Thus, in this case,

E(k) = 2πk2|<̂ u >(k)|2. (5.7)
Further, the K-41 theory states that at high enough Reynolds numbers there is a
range of wave numbers

0 < kmin := Uν−1 ≤ k ≤ ε 1
4 ν− 3

4 =: kmax < ∞, (5.8)
known as the inertial range, beyond which the kinetic energy in u is negligible, and
in this range

E(k) .= αε 2
3 k−5

3 , (5.9)
where α is the universal Kolmogorov constant whose value is generally believed to
be between 1.4 and 1.7, k is the wave number and ε is the particular flow’s energy
dissipation rate. The energy dissipation rate ε is the only parameter which differs from

6All the results hold as well for Ω = (0, L)3 with periodic boundary conditions if integrals are
replaced by sums, Fourier transforms by Fourier series and Parseval’s equality for Fourier transforms
by Parseval’s equality for Fourier series.
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F��. 5.1. log-log plot reveals k− 5
3 law, figure 6.14 page 235 in [P00]

one flow to another. Outside the inertial range the kinetic energy in the small scales
decays exponentially. Thus, we still have E(k) ≤ αε 2

3 k− 5
3 since, after time averaging

the energy in those scales is negligible, E(k) ≃ 0 for k ≥ kmax and E(k) ≤ E(kmin) for
k ≤ kmin. The fundamental assumption underlying our consistency error estimates is
Assumption 3 that over all wave numbers

E(k) ≤ αε 2
3 k−5

3 .
Indeed, in the next figure, which is taken from Pope [P00], figure 6.14 page 235
in [P00], the power spectrums of 17 different turbulent flows taken from Saddoughi
and Veeravalli [SV94, SV94] (which also contains the references to the particular
experiments) are plotted on log-log plots. The slope of the linear region in this plot
has the universal value of −5

3 for all 17 turbulent flows, exactly corresponding to
the k− 5

3 law. Note that for all 17 flows the actual energy spectrum outside the
inertial range is below this line with slope −5

3 , verifying that for all wave numbers
E(k) ≤ αε 2

3 k− 5
3 .

Our estimates are based on the following three plausible assumptions on time-
averages of solutions of the Navier-Stokes equations and which are implied for ho-
mogeneous, isotropic turbulence by the K41 theory. Assumptions 1 is a choice of
length and velocity scales. Assumption 2 is that the energy dissipation rate ε scales
like C1U3

L . This assumption is consistent with (and predicted by) the K41 formalism,
12



[F95], [Les97, Lesieur’s book] . The estimate ε ≤ C1 U3

L has also been proven directly
from the Navier-Stokes equations for turbulent shear flows in bounded domains by
Constantin and Doering [CD92] , and Wang [W97] without any assumptions of homo-
geneity or isotropy. Assumption 2 has been proven directly from the Navier-Stokes
equations for flows driven by body forces by Foias [F97], Doering and Foias [DF02],
Childress, Kerswell and Gilbert [CKG01] (others have also contributed to this im-
portant theory as well) provided the forcing function inputs energy into the largest
scales7 . Thus, a consistency error estimate using Assumptions 1 and 2 is one derived
from the NSE and is independent of any assumptions of homogeneity and isotropy
(and the K41 theory). An estimate using Assumption 3 depends through Assumption
3 on K41.

Assumption 1. The equations are non-dimensionalized by a selection of U and
L consistent with

< 1
L3 ||u(x, t)||2L2(Ω) > 1

2≤ U.

Assumption 2. The time averaged energy dissipation rate ε(u) satisfies

ε(u) ≤ C1
U3
L .

Assumption 3. The time averaged energy spectrum of the flow satisfies
E(k) ≤ αε 2

3 k−5
3 .

6. Approximate de-convolution. The de-convolution problem is central in

image processing, [BB98]. Thus, there are very many algorithms that can be adapted
from image processing to give a possible large eddy simulation closure model. How-
ever, the challenges of turbulence are substantially different from those of image
processing. The noise occurring in images stem from sources whose statistics are
at least predictable. The "noise" in a turbulent flow simulation comes from the non-
linear interactions of the large eddy simulation closure model, boundary conditions,
discretization procedure etc. The goal of de-convolution in large eddy simulation is
to recover accurately the resolved scales asymptotically as δ → 0. The de-convolution
closure must result in an LES model with lucid energy balance and favorable proper-
ties for its approximate solution. In particular, the de-convolution LES model should
have a unique, strong smooth solution which has a negligible amount of energy is the
solution scales smaller than O(δ) so that the amount of information in the model’s
solution is substantially reduced over that of the Navier-Stokes equations. With these
constraints in mind, we review de-convolution methods. First, we note that with a
differential filter, exact de-convolution is possible but not useful (an observation of
M. Germano). Indeed, since φ = (−δ2△+ 1)−1φ, the solution of the de-convolution
problem is φ = (−δ2△ + 1)φ. Let the operator A denote this exact de-convolution
operator A := (−δ2△ + 1). Clearly A is not a bounded operator on L2(Ω) so ex-
act de-convolution is unstable to high frequency perturbations (this is known as the

7This is exactly the case described in the Richardson-Kolmogorov energy cascade. Thus, the
restriction on the body forces in these results is both consistent with the K41 theory and a mathe-
matical formalization of the Richardson’s description of the energy cascade.
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small divisor problem). Further, if exact de-convolution is used to obtain the (exact)
equation for the flow averages, we obtain

ut +∇ · (Au Au)− ν△u+∇p = f, and ∇ · u = 0.
The important observation is that this is just a change of variables in the Navier-
Stokes equations. Thus, it does not reduce the amount of information contained in
the model’s solution and any theory of the model will share all the gaps in its math-
ematical theory with that of the Navier-Stokes equations. Thus, only approximate
de-convolution can produce a useful model.8

The basic problem in approximate de-convolution is thus: given u find useful
approximations of u. In other words, solve the equation

Gu = u, solve for u.
For most averaging operators, G is symmetric and positive semi-definite. Typically, G
is not invertible or at least not stably invertible due to small divisor problems. Thus,
this de-convolution problem is ill-posed. Also typically, G is invertible on a subspace
which becomes dense in L2(R3) as δ → 0.

The de-convolution algorithm we consider was studied by van Cittert in 1931.
For each N = 0, 1, ... it computes an approximate solution uN to the above de-
convolution equation by N steps of a fixed point iteration, [BB98]. Rewrite the above
de-convolution equation as the fixed point problem:

given u solve u = u+ {u−Gu} for u.
The de-convolution approximation is then computed as follows.

A������� 6.1 (van Cittert approximate de-convolution algorithm). u0 = u ,
for n=1,2,...,N-1, perform
un+1 = un + {u−Gun}
Clearly, this is nothing but the first order Richardson iteration for the oper-

ator equation Gu = u involving a possibly non-invertible operator G. Since the
de-convolution problem is ill posed, convergence as N → ∞ is not expected. Call
uN = GNu . By eliminating the intermediate steps, it is easy to find an explicit
formula for the N th de-convolution operator GN :

GNφ :=
N∑

n=0
(I −G)nφ. (6.1)

For example, the approximate de-convolution operator corresponding to N = 0, 1, 2
are G0u = u, and G1u = 2u− u, and G2u = 3u− 3u+ u.

L���� 6.2 (Stability of approximate de-convolution). Let averaging be defined
by the above differential filter. Let || · || denote the L2(Ω) operator norm. Then GNis a self-adjoint, positive semi-definite operator on L2(Ω) and

||GN || = N + 1.
8One, completely different, way to generate LES models is by asymptotic approximations of this

equation. For example, if the nonlinear term is expanded and truncated st O(δ4) terms the Rational
Model of [GL98] results after simplifications.
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Proof. First, note that since A−1 = G is a self-adjoint positive definite operator
with eigenvalues between zero and one and GN := ∑N

n=0(I − G)n , GN is also self-
adjoint. By the spectral mapping theorem

λ(GN ) =
N∑

n=0
λ(I −G)n =

N∑
n=0

(I − λ(G))n.

Thus, the eigenvalues of GN are non-negative and GN is also positive semi-definite.
Since GN is self-adjoint, the operator norm ||GN || is also easily bounded by the
spectral mapping theorem by

||GN || = N∑
n=0

λmax(I −A−1)n =
N∑

n=0
(I − 1

λmax
)n = N + 1. (6.2)

The point-wise accuracy of the van Cittert de-convolution operator was estimated
in Dunca and Epshteyn [DE04]by exploiting the fact thatGN is a truncated geometric
series. We give the argument next for completeness and to highlight the simple and
elegant mathematical structure of these models.

L���� 6.3 (Error in approximate de-convolution). For any φ ∈ L2(Ω),
φ−GNφ = (I −A−1)N+1φ

= (−1)N+1δ2N+2△N+1A−(N+1)φ.
Proof. Let B = I −A−1. Since φ = A−1φ, φ = (I −B)φ.
Since GN := ∑N

n=0Bn,a geometric series calculation gives
(I −B)GNφ = (I −BN+1)φ.

Subtraction gives
φ−GNφ = ABN+1φ = BN+1Aφ = BN+1φ.

Finally, B = I −A−1, so rearranging terms gives
φ−GNφ = (A− I)N+1A−(N+1)φ

= A−(N+1)((−1)N+1δ2N+2△N+1)φ,
which are the claimed results.

It is insightful to consider the Cauchy problem or the periodic problem and visu-
alize the approximate de-convolution operators GN in wave number space (re-scaled
by k ← δk ). The transfer function or symbol of the first three are

Ĝ0 = 1,
Ĝ1 = 2− 1

k2 + 1 = 2k2 + 1
k2 + 1 , and

Ĝ2 = 1 + k2
k2 + 1 + ( k2

k2 + 1)
2.
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Approximate de-convolution operators

Note that in the above plot of the transfer functions, each is strictly bounded away
from zero, positive and uniformly bounded. Thus, each is a bounded, SPD operator
on L2(Ω) and the quadratic form with each gives an equivalent norm. These three are
plotted in the next figure together with the transfer function of exact de-convolution.
The transfer function of exact deconvolution is k2 + 1. The next figure plots this in
bold against the above approximate de-convolution operators.
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Exact and approximate de-convolution operators
The large scales are associated with the smooth components and with the wave num-
bers near zero (i.e., |k| small). Thus, the fact that GN is a very accurate solution of
the de-convolution problem for the large scales is reflected in the above graph in that
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the transfer functions have high order contact near k = 0.
7. Approximate de-convolution LES models. The family of Approximate

De-convolution Models (or ADM’s) we study was pioneered in large eddy simulation
by Stolz and Adams in a series of papers,[AS01], [SA99]. Let GN (N = 0, 1, 2, ...)
denote the van Cittert, [BB98], approximate de-convolution operator from the last
section. This de-convolution approximation satisfies, [DE04],

u = GNu+O(δ2N+2), for smooth u. (7.1)
The models studied by Adams and Stolz are given by

wt +∇ · (GNw GNw)− ν△w +∇q +w′ = f, and ∇ · w = 0. (7.2)
The w′term is included to damp strongly the temporal growth of the fluctuating
component of w driven by noise, numerical errors, inexact boundary conditions and
so on9 . The simplest example of such a model arises when N = 0 and the w′ term
is dropped. This zeroth order model also arises as the zeroth order model in many
different families of LES models. It is given by

wt +∇ · (w w)− ν△w +∇q = f, and ∇ · w = 0. (7.3)
The theory of the whole family of models begins, like the Leray theory of the Navier-
Stokes equations, with a clear global energy balance. This is the key to the develop-
ment of this family of models (or any model for that matter). It is clearest for the
periodic problem and for the zeroth order model.

Proceeding formally for the moment, let (w, q) denote a periodic solution of the
zeroth order model. Multiplying by Aw and integrating over the flow domain gives∫

Ω
wt · Aw +∇ · (w w) · Aw − ν△w · Aw +∇q ·Awdx =

∫
Ω
f · Awdx.

The nonlinear term exactly vanishes because∫
Ω
∇ · (w w) · Awdx =

∫
Ω
A−1(∇ · (w w)) ·Awdx =

=
∫
Ω
∇ · (w w) · (A−1Aw)dx =

∫
Ω
∇ · (w w) · wdx =

=
∫
Ω
w · ∇w · wdx = 0.

Integrating by parts the remaining terms gives
d
dt{||w(·, t)||2L2(Ω) + δ2||∇w(·, t)||2L2(Ω)}+

+ ν{||∇w(·, t)||2L2(Ω) + δ2||△w(·, t)||2L2(Ω)} =
∫
Ω
f · wdx.

9The consistency error induced by adding the w′ term is smaller than that of the nonlinear term.
While this term does affect the model’s dynamics, especially over longer time intervals, it does not
affect the overall consistency error estimate. Thus, in our study of consistency errors in the next
section we will drop the w′ term.
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Integrating this gives an energy equality which has parallels to that of the NSE. In
particular, we can clearly identify three physical quantities of kinetic energy, energy
dissipation rate and power input. Let L =the selected length-scale; then these are
given by

Model’s Kinetic energy: Emodel(t) : = 1
2
∫
Ω
|w(x, t)|2dx = 1

2 ||w(·, t)||2L2(Ω),

Model’s Energy dissipation rate: εmodel(t) := 1
L3

∫
Ω
ν|∇w(x, t)|2dx ,

Model’s Power input: Pmodel(t) := 1
L3

∫
Ω
f(x, t) ·w(x, t)dx .

This estimate, combined with a construction now standard for the Navier-Stokes
equations, is strong enough to prove existence, uniqueness and regularity of strong
solution of the zeroth order model, [LL04b], [LL04].

T������ 7.1. Consider the zeroth order model under periodic boundary condi-
tions and with smooth enough initial condition and body force. The zeroth order model
has a unique strong solution. If the problem data u0 ∈ C∞(Ω) and f ∈ C∞(Ω×(0,∞))
then the solution is also C∞(Ω× (0,∞)) .

Let w = w(δ) denote this solution. Then, there is a subsequence δj → 0 and a
weak solution of the Navier-stokes equations such 10

w(δj) → u, as δj → 0.

Proof. See [LL04b], [LL04] for proofs.
These results are remarkable because these are exactly properties which any rea-

sonably derived sub model for the Navier Stokes equations should satisfy but which
either have not been proven or likely are not true for most models in large eddy sim-
ulation. Again, the key idea is a simple and direct connection between the models
kinetic energy hand the kinetic energy of the Navier Stokes equations through the de-
convolution operator. The main difficulty with this model is that it is a mathematical
toy: It is not sufficient the accurate. Extension of these results to the entire family
of higher-order approximate de-convolution LES models is filled with technical intri-
cacies but was accomplished successfully in a beautiful paper of Dunca and Epshteyn
[DE04]. The first step in such an extension is to verify that the model satisfies an
energy inequality. Paralleling the case of the zeroth order model, the natural idea
is to make the nonlinear term disappear in the energy inequality by multiplying the
model by AGNw then integrating over the flow domain and integrating by parts. To
give a hint of why this procedure is hopeful, we note that, in effect, this is simply
re-norming the space L2(Ω).

L���� 7.2. The norm ||v||GN := (v,GNv) 1
2 is a norm on L2(Ω) which is equiv-

alent to the L2(Ω) norm.
Proof. This follows from the fact that the transfer function of GN , ĜN , is

bounded and bounded away from zero.
By this approach, Dunca and Epshteyn proved the following.

10The convergence is in the norms of the natural energy spaces for the Navier-Stokes equations.
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T������ 7.3. Consider the Nth approximate de-convolution LES model under
periodic boundary conditions and with smooth enough initial condition and body force.
For every N this model has a unique strong solution. If the problem data u0 ∈ C∞(Ω)
and f ∈ C∞(Ω× (0,∞)) then the solution is also C∞(Ω× (0,∞)) .

Let w = w(δ) denote this solution. Then, there is a subsequence δj → 0 and a
weak solution of the Navier-stokes equations such 11

w(δj) → u, as δj → 0.
If additionally the solution to the NSE is a unique strong solution, specifically if∫ T
0 ||∇u(t)||4L2(Ω)dt < ∞, then

max0≤t≤T ||u−w||2L2(Ω) +
∫ T

0
ν||∇(u−w)||2L2(Ω)dt ≤ C

∫ T

0
||τ ||2L2(Ω)dt.

If additionally △N+1u ∈ L2(Ω) , then ∫ T
0 ||τ ||2L2(Ω)dt ≤ C(u)δ2N+2 so the modeling

error is O(δN+1) non-uniformly in the Reynolds number.
Proof. See Dunca and Epshteyn [DE04] for the proof.
This is an amazing result; there are few other LES models with a fully rigorous,

mathematical proof that the modeling error is of a high order of accuracy. However,
the smoothness required of the solution restricts the result to laminar flow regions and
the non-uniformity in the Reynolds number can hide the most significant part of the
error. For our purposes, it is important to note that the modeling error is controlled
by τ rather than ∇ · τ or ∇ · τ . Thus, the appropriate quantity to estimate is τ
rather than ∇ · τ or ∇ · τ .

8. Consistency error estimates. Consider the family of Approximate De-

convolution Models (or ADM’s) presented in the last section. The size of the N th
models consistency error tensor directly determines the model’s accuracy for the N th
approximate de-convolution LES models, [DE04]. Let GN (N = 0, 1, 2, ...) denote
the above van Cittert, [BB98], approximate de-convolutionoperator. By the above
lemma, this de-convolution approximation satisfies, [DE04],

u = GNu+O(δ2N+2), for smooth u. (8.1)
The models studied by Adams and Stolz are given by

wt +∇ · (GNw GNw)− ν△w +∇q +w′ = f, and ∇ · w = 0. (8.2)
The w′term is included to damp strongly the temporal growth of the fluctuating
component of w driven by noise, numerical errors, inexact boundary conditions and
so on. The consistency error induced by adding the w′ term is smaller than that of
the nonlinear term. While it does affect the model’s dynamics, it does not affect the
overall consistency error estimate. Thus, herein we drop the w′ term.

First note in all cases, estimates for the consistency error depends upon estimates
of u−GNu because

τN = GNu GNu− u u = (GNu− u)GNu+ u(GNu− u), N = 0, 1, 2, · · ·. (8.3)
11As above, the convergence is in the norms of the natural energy spaces for the Navier-Stokes

equations.
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Thus, by the time averaged Cauchy-Schwarz inequality, we have
< ||τN ||L1(Ω) >≤ (1 + ||GN ||) < ||u||2L2(Ω) > 1

2< ||u−GNu||2L2(Ω) > 1
2 (8.4)

Thus, estimates for the consistency error in L1(Ω) flow from estimates of ||u −
GNu||L2(Ω) , estimates of < ||u−GNu||2L2(Ω) > 1

2 and and stability bounds for GN .
8.1. The Zeroth Order Model. Consider first the case of the zeroth order

model, (1.7) above. We prove an estimate for the modeling error for the zeroth order
model directly from the Navier-Stokes equations.

T������ 8.1. Let Ω be a bounded domain with sufficiently smooth boundary
with no-slip boundary conditions. Suppose Assumptions 1 and 2 hold. Then,

< ||τ0||L1(Ω) >≤ C 1
21 L2U2Re 1

2 δ.

Proof. Consider τ0. By the time-averaged Cauchy-Schwarz inequality we have

< ||τ0||L1(Ω) >≤ 2 < ||u||2L2(Ω) > 1
2< ||u− u||2L2(Ω) > 1

2 (8.5)
Estimates for τ thus follow from estimates for ||u− u||L2(Ω) and < ||u− u||2L2(Ω) > 1

2 .
We estimate < ||τ0||L1(Ω) > by scaling, simple inequalities and Assumptions 1 and 2
as follows. Holder’s inequality and the estimate

||u− u||L2(Ω) ≤ 1
2δ||∇u|| ≤ 1

2δ||∇u||
give

< ||τ0||L1(Ω) >≤ 2 < ||u||2L2(Ω) > 1
2< ||u− u||2L2(Ω) > 1

2≤ (8.6)
≤ UL 3

2 δ < ||∇u||2 > 1
2≤ (8.7)

≤ L3Uδν− 1
2 < 1

L3 ν||∇u||2L2(Ω) > 1
2 , or (8.8)

< ||τ0||L1(Ω) >≤ ν− 1
2L3Uδε 1

2 . (8.9)
Assumption 2 is that the time averaged energy dissipation rate ε is bounded by C1U3

L .
As noted in above, this assumption is consistent with the K41 formalism, [F95], [Les97,
Lesieur’s book] and has also been proven directly from the Navier-Stokes equations
for turbulent flows in bounded domains by, e.g., [CD92] ,[W97] . Using this upper
bound for ε and rewriting the result in term of the Reynolds number gives the claimed
bound

< ||τ0||L1(Ω) >≤ C 1
21 L2U2Re 1

2 δ. (8.10)

R����� 8.2. How sharp is the estimate < ||τ0||L1(Ω) >≤ C 1
21 L2U2Re 1

2 δ ? And,
what does "sharp" mean? Since the above inequality contains a generic constant,
generally such an estimate is considered sharp if a lower inequality holds in some cases
with the same scaling in the important variables but possibly a different multiplicative
constant. Thus, we would like to prove a (much harder ) estimate of the following
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form for some velocity fields < ||τ0||L1(Ω) >≥ C2(L,U)Re 1
2 δ. Such an estimate is

likely not true. To see why, note that the upper estimate is an inequality instead of
an equality due to three steps. It is useful (even when proving a lower estimate is
not hoped for with current mathematical techniques) to consider these steps to assess
how sharp the final result will be. The three steps are Holder’s inequality, the stability
bound ||∇u|| ≤ ||∇u|| and the bound on the energy dissipation rate in Assumption 3.
Holders inequality is not "sharp" in the above sense only when the terms involved are
orthogonal. Thus it is generically sharp. The bound in assumption 3 is dimensionally
correct and consistent with the K41 theory. Thus, it is widely believed to be sharp
although there is a gap between what is believed and what has been proven in the
literature on the subject. The main step in which sharpness is lost is in the stability
bound ||∇u|| ≤ ||∇u|| . Indeed, this is a sharp etimate for the large scales of the
velocity but a very crude estimate of the small scales. It does not take into account
any of the smoothing of the filtering. Thus, this is the main ingredient which we shall
try to improve to obtain an estimate that (we believe) better reflects the actual behavior
of the consistency error.

The bound in this theorem implies the model becomes accurate already in the
inertial range as certain flow features begin to resolve. However, it is also pessimistic
since it requires δ << Re−1

2 for accuracy, see the conclusions section. This estimate
comes directly from the Navier Stokes equations and is thus independent of the K41
theory. Remarkably, using K41 it is improvable to one uniform in the Reynolds
number in the case of homogeneous, isotropic turbulence, i.e., using Assumption 3.
We shall prove this uniform estimate for the entire family of models. Before doing so,
we shall prove another non-uniform estimate for the zeroth order model that is higher
order in δ .

For the case N = 0 and for smooth u, it is easy to show that τ0 = O(( δ)2).Indeed,
simple estimates give

L���� 8.3. For any u with △u ∈ L2(Ω)
||u− u||L2(Ω) ≤ δ2||△u||L2(Ω).

Proof. Since −δ2△u + u = u,it follows that u − u = −δ2△u. Taking norms of
both sides gives the result.

Since τ = u (u− u) + (u− u)u, it follows immediately that
||τ0||L1(Ω) ≤ 2||u||L2(Ω)δ2||△u||L2(Ω).

Next we show that under Assumptions 1, 2 and 3, the time average of this yields an
O( δ2) bound.

T������ 8.4. Consider either the Cauchy problem or the periodic problem.
Suppose Assumptions 1, 2 and 3 hold. Then,

< ||τ0||L1(Ω) >≤
√6

5C
3
41 α 1

2
U2

L 1
2
Re 5

4 δ2 (8.11)

Proof. Taking the time average of the previous inequality and using the time-
averaged Cauchy-Schwarz inequality gives

< ||τ0||L1(Ω) >≤ 2 < ||u||2L2(Ω) > 1
2 δ2 < ||△u||2L2(Ω) > 1

2 (8.12)
≤ 2UL 3

2 δ2 < ||△u||2L2(Ω) > 1
2 (8.13)

≤ 2UL 3
2 δ2 < ||△u||2L2(Ω) > 1

2 , (8.14)
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using Assumption 1 and stability of averaging. The term < ||△u||2L2(Ω) > 1
2 can be

estimated in the case of homogeneous, isotropic turbulence (i.e., under Assumption
3) using spectral integration as follows

< ||△u||2L2(Ω) >=
∫ kmax

k0

k4E(k)dk (8.15)

≤ αε 2
3

∫ kmax

0
k 7

3 dk = .3αε 2
3 (ε 1

4 ν− 3
4 ) 10

3 . (8.16)

Using the estimate ε ≤ C1U3

L and rearranging the resulting right hand side into terms
involving the Reynolds number gives

< ||△u||2L2(Ω) > 1
2≤

√ 3
10C

3
41 α 1

2
U
L2Re

5
4 δ2. (8.17)

Inserting this estimate into the bound for the consistency error gives

< ||τ0||L1(Ω) >≤
√6

5C
3
41 α 1

2
U2

L 1
2
Re 5

4 δ2, (8.18)

which is the claimed result.
This is an asymptotically higher power of δ for moderate Reynolds numbers but

it yields the consistency condition δ << Re− 5
8 which is worse than the preceding

one. While this last bound is relevant in smooth regions of transitional flows, this
smoothness, △u ∈ L2(Ω) , needed does not describe the typical case of turbulent
flows and is the cause of the more singular behavior as → ∞. These two estimates,
are not sufficiently sharp to draw useful conclusions at higher Reynolds numbers. For
example, this estimate suggests the zeroth order model is O( δ) accurate only for
δ << Re− 1

2 . In our third estimate (a special case of the next theorem), using the
K41 phenomenology and spectral integration, we show, remarkably, the time averaged
modeling consistency error is O(δ 1

3 ) uniformly in the Reynolds number Re and the
kinematic viscosity ν:

< ||τ0||L1(Ω) >≤ C 1
31

√72
5 U2L 7

6 ε 1
3 δ 1

3 . (8.19)

This bound is, we believe, quite sharp. It is a special case of the next theorem (which
gives the analogous consistency error estimate for the entire family of de-convolution
models).

To illustrate the improvement of this result over the previous two, suppressing all
parameters except δ and Re, these two bounds together imply

< ||τ0||L1(Ω) >≃ Cmin{δ 1
3 , Re 1

2 δ,Re 5
4 δ2}. (8.20)

The third upper bound in the minimum is never smaller than the first two for un-
resolved flows. The crossover point when the first becomes sharper than the second
in the above minimum is when δ 1

3 ≃ Re 1
2 δ, or equivalently δ ≃ Re−3

4 , i.e., also only
when the flow is fully resolved according to the classical estimates of the numbers of
degrees of freedom in a turbulent flow!
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8.2. The General Approximate de-convolution Model. The sub-section
gives a proof of consistency error estimates for the general de-convolution model.
Thus consider the consistency error, τN , where τN is defined by

τN := GNuGNu− u u. (8.21)
T������ 8.5. Consider the Cauchy problem or the periodic problem. Suppose

Assumptions 1, 2 and 3 hold. Then, the model’s consistency error satisfies

< ||τN ||L1(Ω) >≤ 2α 1
2

(2N + 4
5) 1

2

U2

LN− 1
2
δ2N+2Re 3

4N+ 1
2 ,

non uniformly in the Reynolds number and
< ||τN ||L1(Ω) >≤ C 1

31 (N + 2)(3 + 2
4N + 10

3
) 1

2α 1
2U2L 7

6 δ 1
3 ,

uniformly in Re.
Proof. The analysis in the case N = 1, 2, 3, · · · follows the zeroth order case. Using

stability of GN and the estimates
< ||τN ||L1 >≤ (1 + ||GN ||) < ||u||2L2 > 1

2< ||u−GNu||2L2 > 1
2 . (8.22)

Indeed, by Assumption 1 we can begin with < ||u||2L2 > 1
2≤ UL 3

2 , yielding
< ||τN ||L1(Ω) >≤ (1 + ||GN ||)UL 3

2 < ||u−GNu||2L2(Ω) > 1
2 . (8.23)

As for the zeroth order model, we use spectral integration to evaluate the error in
u−GNu. Lemma 3.1 implies

I :=< ||u−GNu||2L2(Ω) >= 2
∫ kmax

k0

( δ2k2
1 + δ2k2 )

2N+2E(k)dk. (8.24)

Since E(k) ≤ αε 2
3k− 5

3 holds by Assumption 3, we have

I ≤ 2αε 2
3

∫ kmax

k0

( δ2k2
1 + δ2k2 )

2N+2k− 5
3dk.

The remainder of the work in the proof is direct estimation of the above integral. The
integral I requires different treatments for small and large wave numbers. We shall
thus estimate the two cases separately depending on which term in the denominator
( δ2k2 or 1 ) is dominant. The transition point is the cutoff wave number 1

δ ; thus webreak it into two integrals at this point

I := Ilow + Ihigh,where Ilow =
∫ 1

δ

k0

...dk, and Ihigh =
∫ khigh

1
δ

...dk. (8.25)

For the low frequency components we have
1
2δ

2k2 ≤ δ2k2
δ2k2 + 1 ≤ δ2k2, for 0 ≤ k ≤ 1

δ , (8.26)
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For the low frequencies thus we have

Ilow ≤ δ4N+42αε 2
3

∫ 1
δ

0
k4N+ 7

3dk = (8.27)

= 2αε 2
3

4N + 10
3
δ 2

3 . (8.28)

Thus,

Ilow ≤ 2αε 2
3

4N + 10
3
δ 2

3 . (8.29)

For the high frequency components the dominant term in the denominator is the k2
term. Thus, we have

1
2 ≤ δ2k2

δ2k2 + 1 ≤ 1, for 1
δ ≤ k ≤ ∞. (8.30)

We thus have
Ihigh ≤ 2αε 2

3

∫ kmax

1
δ

k−5
3 dk (8.31)

≤ 2αε 2
3

∫ ∞
1
δ

k− 5
3dk ≤ 3αε 2

3 δ 2
3 , (8.32)

or, collecting these two estimates,
I ≤ (3 + 2

4N + 10
3
)αε 2

3 δ 2
3 . (8.33)

Using the bound ε ≤ C1U3

L from Assumption 2 gives the second estimate
< ||τN ||L1(Ω) >≤ C 1

31 (N + 2)(3 + 2
4N + 10

3
) 1

2α 1
2U2L 7

6 δ 1
3 . (8.34)

The impact of these estimates on practical issues in large eddy simulation is
considered in the conclusion section which follows last.

9. The distribution of consistency errors among wave numbers. The
above analysis is quite sharp and shows a universal and Reynolds number uniform
convergence to zero of the total, global consistency error as O(( δ) 1

3 ) for the entire
family of LES ADMs. Naturally, this raises the question of how to differentiate one
model from another (e.g., a low order model from a high order one). The only possible
answer is to examine the distribution of consistency errors among wave numbers. First
note that the above bounds for the consistency errors can be rewritten as

< ||τN ||L1(Ω) >2≤ 8C 2
31 αU4L 7

3 δ 2
3

∫ kmax

k0

(N + 2)2( (δk)2
1 + (δk)2 )

2N+2(δk)− 5
3 δdk.

With the obvious change of variables k ← δ this bound can be rewritten as

< ||τN ||L1(Ω) >2≤ 8C 2
31 αU4L 7

3 δ 2
3

∫ 1
δ kmax

1
δ k0

(N + 2)2( k2
1 + k2 )

2N+2k−5
3 dk.
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The above is an inequality but each step either arises from assumptions connected
with the K41 theory (which is observed sharp at very high Reynolds numbers) or
mathematical bounds which are either two sided with generic constants or for which
equality is attainable. Thus, we believe that the above inequality is a quite accurate
description of the true consistency error behavior possibly apart from a generic mul-
tiplicative constant. Thus, we shall view the function on the right hand side as the
distribution of consistency errors among wave numbers

< |τ̂N | > (k) ≤ {8C 2
31 αU4L 7

3 δ 2
3 (N + 2)2( δ2k2

1 + δ2k2 )
2N+2k− 5

3 δ 5
3 δ} 1

2 ;

Re-scaling the wave numbers by k ← k
δ gives a more tractable formula in the re-scaledwave numbers

< |τ̂N | > (k) ≤ {8C 2
31 αU4L 7

3 δ 2
3 (N + 2)2( k2

1 + k2 )
2N+2k− 5

3 } 1
2

The above estimates show that, over the resolved scales, 0 ≤ k ≤ π, the consistency
errors distribution among wave numbers is given by

< |τ̂N | > (k) ≤ C(α,U, L, δ){(N + 2)( k2
1 + k2 )

N+1k−5
6 }, for 0 ≤ k ≤ π.

The constant multiplier on the right hand side is independent of N, so the difference
in the consistency errors among the de-convolution models is contained in the other
multiplier {(N + 2)( k2

1+k2 )N+1k− 5
6 } ≃< |τ̂N | > (k)/C(α,U, L, δ). Thus define

ϕN (k) := (N + 2)( k2
1 + k2 )

N+1k−5
6 , for 0 ≤ k ≤ π.

We then are led to comparing for varying N, the plots of

ϕN (k) := (N + 2)( k2
1 + k2 )

N+1k−5
6 , for 0 ≤ k ≤ π.

For N = 0, 1, 2, · · ·, 7, for example, we have (dropping the primes) ϕ0(k) = 2k2− 5
6

1+k2 ,
ϕ1(k) = 3 k4− 5

6
(1+k2)2 , ϕ2(k) = 4 k6− 5

6
(1+k2)3 . For N=0, ϕ0(k) = 2k2− 5

6
1+k2 , which is plotted next.
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For N=1 we have, ϕ1(k) = 3 k4− 5
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Consistency errors, N=1 LES-ADM.
For N=2 we have ϕ2(k) = 4 k6− 5
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Consistency errors, N=2 LES-ADM.
For N=3, we have ϕ3(k) = 5( k2

1+k2 )4k− 5
6
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For N=5 we have ϕ5(k) := 7( k2

1+k2 )6k− 5
6 .
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Consistency errors, N=5 LES-ADM.

For N=6 we have ϕ6(k) := 8( k2

1+k2 )7k− 5
6 .
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Consistency errors, N=6 LES-ADM.

For N=7 we have ϕ7(k) := 9( k2

1+k2 )8k− 5
6
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Consistency errors, N=7 LES-ADM.

The pattern is clear: higher order models quickly reduce the consistency errors in
the largest scales and increase the consistency errors around the cutoff frequency. The
decrease of the first and the increase of the second are done in a manner compatible
with the overall global consistency error of O(( δ) 1

3 ). In particular, the error associ-
ated with re-scaled wave numbers between zero and one is very small in the models of
orders 4,5 and 6. Very little improvement in the re-scaled frequencies between 1 and
π for even high order models. Indeed, the next figure gives a plot of the above , all
on the same graph and over the range of re-scaled wave numbers between 0 and 1.
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Consistency errors, N=0 through 7.

Converting re-scaled wave numbers to length scales shows that with filter length-
scale δ , the higher order models have very small consistency errors associated with the
length scales l ≥ π δ and consistency errors associated with length scales l satisfying
δ ≤ l ≤ π δ that are large and actually increase as the order of the model increases.
This suggests that LES-ADMs can provide great accuracy for the largest third of the
scales and that predictions near the cutoff length scale are tenuous at best.
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10. Conclusions. For large eddy simulation with de-convolution models to be
feasible for fully developed turbulence two competing restrictions on the averaging
radius must simultaneously be satisfied. First, δ must be well inside the inertial
range, giving a lower bound on the averaging radius, δ >> ε− 1

4 ν 3
4 . Second, the

models consistency error must be small: < ||τ || ><< 1. We have seem that this gives
an upper bound on δ which decreases as Re increases. For large eddy simulation to
be useful, these two constraints must be satisfied simultaneously.

To illustrate the competition between these two constraints, consider the zeroth
order model first and suppress all constants except δ and Re. Using the consistency
error bound in Theorem 1.2 yields a narrow band of possible values of the averaging
radius

CRe− 3
4 << δ

L << CRe− 1
2 . (10.1)

Thus, the extra analysis required is important for giving an accurate analytical assess-
ment of large eddy simulation. Indeed, using instead the sharper estimate of Theorem
1.1, < ||τ0|| >≤ Cδ 1

3 , predicts feasibility of any of the approximate de-convolution
models provided

CRe− 3
4 << δ

L << O(1). (10.2)
In most applications, turbulent flows simulations require a (more) universal model

which is accuracy for the application’s heterogeneous mix of laminar and transitional
regions, boundary layers and fully developed turbulence. The entire family of ap-
proximate de-convolution models shares a remarkable uniform in Re, time-averaged
accuracy for fully developed turbulence. On the other hand, the higher order models
are significantly more accurate in the laminar and transitional regions. The overall
analytic conclusion is that higher order models are preferable to lower order models
up to the point where their computational cost become prohibitive. This observation,
while surprising from the point of view of traditional error analysis, is consistent with
the extensive experiments in the work of Stolz and Adams with the models.

The global consistency error is interesting but the distribution of those errors
among scales might be essential. Examination of the distribution of consistency errors
among scales in the appendix reveals an interesting pattern. First, the zeroth order
model, which was the critical case for understanding the analysis of the entire family,
has much greater consistency error for the large scales than any of the higher order
models but has less consistency error for the finest resolved scales than the higher
order models. Second, with filter length-scale δ , the higher order models have very
small consistency errors associated with the largest length scales l ≥ π δ . Consistency
errors associated with intermediate, resolved length scales l satisfying δ ≤ l ≤ π δ are
large and essentially undiminished as the order of the model increases. This suggests
that LES-ADMs can provide great accuracy for the largest third of the scales and
that predictions near the cutoff length scale are tenuous at best.

Our results raise (at least) three questions worthy of further study. The uniform-
in-Re global accuracy of O(δ 1

3 ) seems to be an essential feature of scale invariant
models of fully developed turbulence. To improve it seems to require scale dependent
models. The first question is how to formulate such models so that they are compu-
tationally agreeable. Second, a broader understanding of an LES model’s consistency
errors requires developing estimates directly from the Navier-Stokes equations- a very
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hard analytical problem. We have given one such estimate but this is not uniform
in the Reynolds number. Third, understanding how an LES model’s dynamics re-
distributes consistency errors into modeling errors is also a critical question for large
eddy simulation. This is admittedly an extremely broad and difficult problem since
the corresponding one for the Navier-Stokes equations is open. However, this prob-
lem has two interesting features not shared by the Navier-Stokes equations. First,
the LES-ADM has a smooth, globally unique, strong solution. Thus, many technical
problems which occur for the Navier-Stokes equations may not be present. Second,
examining the plots in the appendix shows that a useful approximation is to assume
that the LES-ADM’s error equation is forced only at the moderately small scales
and the result of this forcing on the largest scales is sought. Finally, we note that
the results herein are extendable from the Cauchy problem using Fourier transforms
(herein) to L-periodic problems using Fourier series.

A������� ������ 10.1. We thank Professor S. B. Pope and Cambridge Uni-
versity Press for their permission to use figure 6.14 page 235 in [P00] (data taken
from Saddoughi and Veeravalli [SV94, SV94] ) in this report.
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