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compared. The semi-implicit VMS was much more efficient. The observed global
accuracy of the most straightforward VMS implementation was much better than
the artificial diffusion stabilization and comparable to a streamline-diffusion finite
element method in our tests.
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1 The variational multiscale method

We consider a time-dependent scalar convection-diffusion equation

ut − ε∆u+ b · ∇u+ cu = f in (0, T ] × Ω

u = 0 on [0, T ] × ∂Ω

u(0,x) = u0(x) in Ω.

(1)

Here, Ω ⊂ R
d, d ∈ {2, 3}, is a bounded polyhedral domain. The functions b ∈

(L∞(0, T ;L∞(Ω)))d, c ∈ L∞(0, T ;L∞(Ω)) with c(x, t) ≥ 0, f ∈ L2(0, T ;L2(Ω)),
u0(x) ∈ H1

0 (Ω) and the constant ε > 0 are given. The use of homogeneous
Dirichlet boundary conditions is only for convenience of presentation. Non-
homogeneous Dirichlet boundary conditions are considered in the numerical
studies. Let X = H1

0 (Ω) and let (·, ·) denote the L2(Ω)-inner product. The
variational solution of (1) is a strongly differentiable map: u : [0, T ] → X
satisfying u(0,x) = u0(x) ∈ X and

(ut, v) + a(u, v) = (f, v) ∀ v ∈ X, (2)

where

a(u, v) = (ε∇u,∇v) + (b · ∇u+ cu, v).

We consider the case that ε is small compared to ‖b‖(L∞(0,T ;L∞(Ω)))d . The
convection-diffusion equation (1) above occurs in many practical problems in
which the diffusion coefficient is very small compared to the velocity field
b which drives the convection, precisely the case which is most difficult to
solve accurately. The solution then contains many scales composed of a com-
plex collection of boundary and interior layers. Usual (centered) finite element
methods typically produce approximate solutions with large, non-physical os-
cillations unless either the mesh width h is globally small with respect to the
diffusion coefficient ε or enough is known about the exact solution to generate
Shishkin-like meshes which are locally small with respect to ε in all transition
regions in a very precise sense, [29]. Thus, various stabilizations have proven
to be essential computational tools. Recently, Hughes and co-workers [12,10]
have developed the variational multiscale method (VMS) which is motivated
by the inherent multiscale structure of the solution of (1). We consider in
this paper a method which arose from related considerations [25] and is, in
fact, a VMS. The method (3) below introduces global stabilization and then
anti-diffuses these effects on the large scales of the solution. Thus, effective
stabilization is retained only on the smallest resolved scales (in which the
non-physical oscillations occur).
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Let T H(Ω) be a conforming triangulation of Ω and let T h(Ω) be a refinement of
T H(Ω) or T h(Ω) = T H(Ω). The finite element approximation of the solution of
(2) is sought in the conforming finite element space Xh ⊂ X. Let LH denote a
vector-valued finite element subspace of (L2(Ω))d. The discretization we study
adds additional diffusion acting on all discrete scales and then antidiffuses on
the scales resolvable on T H(Ω) as follows: find uh : [0, T ] → Xh, gH : [0, T ] →
LH satisfying

(uh
t , v

h) + a(uh, vh)

+(εadd∇uh,∇vh) − (εaddg
H ,∇vh) = (f, vh) ∀ vh ∈ Xh

(gH −∇uh, lH) = 0 ∀ lH ∈ LH .

(3)

Here, εadd is a non-negative function depending on the mesh size h.

The second equation of (3) states that gH = PH(∇uh) where PH is the L2-
orthogonal projection into LH . Consider the case that εadd is a non-negative
constant. Using a simple orthogonality argument, [25], we find that uh :
[0, T ] → Xh satisfies:

(uh
t , v

h) + a(uh, vh) + (εadd(I − PH)(∇uh), (I − PH)∇vh) = (f, vh) (4)

for all vh ∈ Xh. Since LH represents the large scales of the gradients, (I −
PH)∇uh clearly represents the small fluctuations of ∇uh. Thus, the method
(4) introduces additional diffusion acting only on the fluctuating components
of ∇uh. In the case that εadd is a constant, the Pythagorean theorem gives

(εadd(I − PH)(∇uh), (I − PH)∇vh) = (εadd∇uh,∇vh) − (εadd∇uh,∇vh),

where

∇uh = PH(∇uh).

Then, (4) can be rewritten in the form

(uh
t , v

h)+a(uh, vh)+(εadd∇uh,∇vh)−(εadd∇uh,∇vh) = (f, vh) ∀vh ∈ Xh. (5)

This paper studies algorithmic aspects of the two formulations (3) and (5).
In both, the large scale space LH must be chosen . If Xh is a higher order
finite element space on a given mesh, one approach is to define the large scale
space using lower order finite elements on the same mesh. The implementa-
tion of this choice was discussed in [17]. For low order elements, which are
the only elements available in many codes, the only option is to define the
large scale space LH on a coarse mesh leading to a two-level discretization,
considered herein. Low order elements are also the most common choice for
diffusion-transport problems in geophysics because of the very large scales of
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the problems studied. The goal of this paper is to study efficient implemen-
tations of the two-level VMS idea and to delineate pros and cons of different
time stepping methods for multiscale discretization.

Theoretical studies of this method began in [25] and were continued in [9,17,20–
24,28]. We note that it is inspired by both physical ideas in turbulence mod-
eling and algorithmic ideas developed for simulation of non-Newtonian fluids,
[4]. It can also be thought of as a finite element realization of the method
of spectral viscosity, e.g., see Maday and Tadmor [27] or Chen, Du and Tad-
mor [2].

Multiscale discretizations have recently attracted attention for the simulation
of turbulent flows, [12,8,10,5–7]. The VMS idea is to use a variationally con-
sistent discretization for the large scales and to stabilize only small scales.
Equivalently, to add stabilization which accounts only for the effects of the
unresolved solution scales upon the smallest resolved scales in the approxi-
mate solution. The first realization of this approach tested in, e.g., [11,14,6,7],
uses standard finite element spaces for the large scale velocity/pressure and
bubble functions to model the small scales. The implementation of this ap-
proach is straightforward because the bubble functions vanish on every face
of the mesh cells, so their contribution to the global stiffness matrix can be
eliminated by static condensation. On the other hand, this choice imposes a
constraint for computational convenience rather than physical fidelity on the
small scales that they must vanish on all mesh cell boundaries. Thus, we are
consider herein a more complex model for fluctuations. With extra complexity,
the question of its computational difficulty and implementation becomes more
important.

2 Algorithmic aspects

We will start by considering the formulation (3) of the VMS. As discretization
in time, an implicit θ-scheme is applied. This leads in the discrete time tk to
the following fully discrete equations

(uh
k, v

h) + θ1∆tk

[

((ε+ εadd)∇uh
k,∇vh) + (b · ∇uh

k + cuh
k, v

h) − (εaddg
H
k ,∇vh)

]

=(uh
k−1, v

h) − θ2∆tk

[

((ε+ εadd)∇uh
k−1,∇vh) + (b · ∇uh

k−1 + cuh
k−1, v

h)

−(εaddg
H
k−1,∇vh)

]

+ θ3∆tk(fk−1, v
h) + θ4∆tk(fk, v

h) ∀vh ∈ V h (6)

(gH
k −∇uh

k, l
H) = 0 ∀lH ∈ LH .
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Here, ∆tk = tk − tk−1. Different choices of the parameters θ1, . . . , θ4 give
different time stepping schemes, see Table 1. The parameters in the fractional-
step θ-scheme are given by

θ = 1 −
√

2

2
, θ̃ = 1 − 2θ, τ =

θ̃

1 − θ
, η = 1 − τ.

Table 1
Implicit θ-schemes

θ1 θ2 θ3 θ4 tk−1 tk ∆tk

backward Euler 1 0 0 1 tn−1 tn ∆tn

Crank-Nicolson 0.5 0.5 0.5 0.5 tn−1 tn ∆tn

fractional-step, step 1 τθ ηθ ηθ τθ tn−1 tn−1 + θ∆tn θ∆tn

step 2 ηθ̃ τ θ̃ τ θ̃ ηθ̃ tn−1 + θ∆tn tn − θ∆tn θ̃∆tn

step 3 τθ ηθ ηθ τθ tn − θ∆tn tn θ∆tn

We consider for convenience of presentation the two-dimensional case. The
same ideas can be applied in a straightforward way to three-dimensional
convection-diffusion equations. The finite element spaces are equipped with
bases:

Xh = span{φh
i }, i = 1, . . . , NX ,

LH = span
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i

0
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0
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, i = 1, . . . , NL. (7)

Then, the algebraic representation of (6) looks as follows
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where

M = (φh
j , φ

h
i )i,j=1,...,NX

,

A= (((ε+ εadd)∇φh
j ,∇φh

i ) + (b · ∇φh
j + cφh

j , φ
h
i ))i,j=1,...,NX

,

B1 =−(εaddψ
H
j , (φ

h
i )x)i=1,...,NX ,j=1,...,NL

,

B2 =−(εaddψ
H
j , (φ

h
i )y)i=1,...,NX ,j=1,...,NL

,

C1 =−(ψH
i , (φ

h
j )x)i=1,...,NL,j=1,...,NX

,

C2 =−(ψH
i , (φ

h
j )y)i=1,...,NL,j=1,...,NX

,

D= (ψH
j , ψ

H
i )i,j=1,...,NL

.

Note, the blocks B1, B2 have to be scaled in the same way in (8) as the block
A since the additional diffusion εadd has to be the same in all of these blocks.

The matrix blocks M,A and D are sparse since they are build from inner
products with finite element functions from only one space. Thus, the sparsity
of these blocks is a standard property. However, the sparsity of the matrix
blocks B1, B2, C1, C2 depends heavily on the choice of LH . An inner product
defining an entry of these matrices does not vanish if the intersection of the
support of the two factors has a positive measure

meas(supp(ψH
i ) ∩ supp(φh

j )) > 0, ψH
i ∈ LH , φh

j ∈ Xh.

The number of non-zero entries connected to the basis function ψH
i becomes

the smaller, the smaller the support of ψH
i is. The smallest possible support

is one mesh cell on T H(Ω). This can be realized if LH is a discontinuous finite
element space.

The fully implicit VMS introduces 2NL additional equations for the unknowns
gk,1, gk,2. A way to avoid this problem is to use a semi-implicit version of (6)

(uh
k, v

h) + θ1∆tk

[

((ε+ εadd)∇uh
k,∇vh) + (b · ∇uh

k + cuh
k, v

h)
]

=(uh
k−1, v

h) − θ2∆tk

[

((ε+ εadd)∇uh
k−1,∇vh) + (b · ∇uh

k−1 + cuh
k−1, v

h)
]

+∆tk(εaddg
H
k−1,∇vh) + θ3∆tk(fk−1, v

h) + θ4∆tk(fk, v
h) ∀vh ∈ V h (9)

(gH
k−1, l

H) = (∇uh
k−1, l

H) ∀lH ∈ LH .

In this semi-implicit version, the subtraction of the additional diffusion in the
large scales is treated explicitly. The algebraic form of the second equation of
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the coupled system (9) is







D 0

0 D













gk−1,1

gk−1,2





 = −







C1uk−1

C2uk−1





 . (10)

If the mass matrix D of LH is diagonal, that means iff the basis functions of
LH are L2-orthogonal, the solution of this system is very simple. This property
can be achieved easily for discontinuous finite element spaces, e.g., by using
a basis consisting of Legendre polynomials. Inserting the solution of (10) into
the first equation of (8) gives

(M + θ1∆tkA)uk = θ3∆tkfk−1 + θ4∆tkfk + (M − θ2∆tkA)uk−1

+∆tkB1D
−1C1uk−1 + ∆tkB2D

−1C2uk−1. (11)

Note, the matrix A includes an additional diffusion in the diffusive term.
Thus, the operator on the left hand side of (11) is stable if the amount of
additional diffusion is sufficiently large. In addition, many standard solvers and
preconditioners work well for such problems. The only difference to the simple
artificial diffusion stabilization of a convection-diffusion equation consists in
the last two terms on the right hand side of (11).

The summary of the algorithmic aspects of using the VMS (3) is as follows:

• the additional matrix blocks B1, B2, C1, C2 and D are needed, at least
one dimension of these blocks is NL,

• the sparsest structure of B1, B2, C1, C2 is achieved if LH is a discontinuous
finite element space,

• the fully implicit approach (8) requires the additional vectors gk,1, gk,2,
• the algebraic system (8) possesses 2NL additional equations,

• the semi-implicit approach (11) can be implemented easily if the basis
functions of LH are L2-orthogonal,

• the system matrix of (11) corresponds to a very stable operator.

Now, we will consider the formulation (5) of the VMS. The application of a
implicit theta-scheme leads in each discrete time to a scalar equation of the
form

(uh
k, v

h) + θ1∆tk

[

((ε+ εadd)∇uh
k,∇vh) + (b · ∇uh

k + cuh
k, v

h) − (εadd∇uh,∇vh)
]

=(uh
k−1, v

h) − θ2∆tk

[

((ε+ εadd)∇uh
k−1,∇vh) + (b · ∇uh

k−1 + cuh
k−1, v

h)

−(εadd∇uh,∇vh)
]

+ θ3∆tk(fk−1, v
h) + θ4∆tk(fk, v

h) ∀vh ∈ V h. (12)
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In this equations, the large scales gH are eliminated. But the term (εadd∇uh,∇vh)
couples the variables of Xh across the mesh cells of the coarse triangulation
T H(Ω). Let φh

i , φ
h
j be two basis functions of Xh. Since supp(φh

i ) ⊂ supp(∇φh
i ),

the term (εadd∇φh
j ,∇φh

i ) does not vanish if

meas(supp(∇φh
i ) ∩ supp(∇φh

j )) > 0. (13)

To minimize the number of non-vanishing terms of this form, the support of
the projections has to be minimized. This is achieved by using a discontinuous
finite element space for LH . The algebraic representation of (12) is

(M +θ1∆tk(A+B))uk = θ3∆tkfk−1 +θ4∆tkfk(M−θ2∆tk(A+B))uk−1. (14)

This can be derived also from (8) by solving for gk,1, gk,2 which shows that

B = −B1D
−1C1 −B2D

−1C2.

However, the matrix B in (14) is not given in this product form but it is
assembled directly by evaluating terms of the form

(B)ij = (εadd∇φh
j ,∇φh

i ). (15)

This can be done in the following way:

1. Compute in a pre-processing step the matrix structure of B by checking
(13).

2. If (B)ij is a member of this matrix structure, then compute ∇φh
i , and

∇φh
j . Taking the basis (7) and using the ansatz

∇φh
i =

NL
∑

j=1

φjψ
H
j ,

one gets for the evaluation of ∇φh
i

NL
∑

j=1

(ψH
j , ψ

H
k )φj = (∇φh

i , ψ
H
k ), k = 1, . . . , NL. (16)

The coefficients φj can be easily computed if the system matrix is diag-
onal, i.e. if the basis functions of LH are L2-orthogonal. But even if LH

is solely a discontinuous finite element space, (16) decouples in a number
of small problems which can be solved in parallel.

3. Compute the inner product (15).

The dimension of B is NX ×NX . In comparison to the matrix blocks M and
A, the block B creates a substantial fill-in.
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The problem of having this substantial fill-in does not arise if a semi-implicit
version of (12) is used

(uh
k, v

h) + θ1∆tk

[

((ε+ εadd)∇uh
k,∇vh) + (b · ∇uh

k + cuh
k, v

h)
]

=(uh
k−1, v

h) − θ2∆tk

[

((ε+ εadd)∇uh
k−1,∇vh) + (b · ∇uh

k−1 + cuh
k−1, v

h)
]

+∆tk(εadd∇uh,∇vh) + θ3∆tk(fk−1, v
h) + θ4∆tk(fk, v

h) ∀vh ∈ V h.(17)

To evaluate the term (εadd∇uh,∇vh) on the right hand side, one can use the
same approach as for computing the entries of B. The algebraic form of the
semi-implicit system is like (11). Here, the additional terms on the right hand
side of (11) are not computed by matrix-vector products but by computing
the explicit projection of the finite element function and the appropriate inner
products. Additional matrices are not necessary. However, the approach of
assembling the matrix blocks B1, B2, C1, C2 and the computing of the matrix-
vector products as in (11) seems to be easier to implement.

The algorithmic aspects for the VMS of form (5) are summarized as follows:

• for the fully implicit approach (14), the additional matrix B of dimension
NX ×NX is needed, this matrix is considerably less sparse than the other
blocks,

• the sparsest structure of B is achieved if LH is a discontinuous finite
element space,

• the fully implicit approach (14) does not generate additional equations,
• matrix-vector products with the system matrix become considerably more

expensive due to the additional fill-in of the matrix B,
• if LH is a discontinuous finite element space, the computation of the

projections decouples in a number of small systems which can be solved
in parallel,

• for an easy computation of the projections, it is also advantageous if the
basis functions of LH are L2-orthogonal.

The attractive semi-implicit strategy (9) and (17) has been studied in [1]. In
[1], the method (17) was proven to be unconditionally stable. Concurrently,
this method and stability results were obtained in a different context and to
a different end by Johnson and Liu in [19]. A second order generalization is
considered in [19]. Although a fully satisfactory stability proof for the second
order extension is still open, preliminary analysis and computations in [19]
look promising.

The finite element error in the energy norm for this semi-discrete VMS was an-
alyzed in [9] for convection-diffusion equations and in [16] for the Navier-Stokes
equations. Let e = u−uh, one will obtain an optimal order of convergence for
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‖∇e‖L2(0,T ;L2) if the coarse space LH is sufficiently fine and if u is sufficiently
smooth. Denote by h and H the mesh widths for the fine and the coarse mesh,
respectively, the fineness condition on L reads h ∼ Hβ with β ≤ 2. Beyond
this, many theoretical problems are still open for (5).

3 Numerical studies

This section presents numerical studies comparing the fully implicit approach
(6) and the semi-implicit approach (9). The algebraic representations of these
approaches are given in (8) and (11), respectively. As mentioned above, the
implementation of (6) and (9) seems to us easier than of (12) and (17). In
addition, the basis equation (5) of (12) and (17) is equivalent to the VMS (3)
only in the case of constant εadd.

The numerical studies were carried out with the code MooNMD, [15,18]. The
finite element space Xh consists of continuous piecewise linear or bilinear
functions, i.e., Xh = P1 on a triangular mesh T h(Ω) and Xh = Q1 on a
quadrilateral mesh T h(Ω). For the finite element space LH on T H(Ω), we
have used the simplest choice, namely piecewise constant functions. Note, this
choice satisfies all conditions on LH given in Section 2. The additional diffusion
is chosen to be εadd = 0.1 h.

The efficiency of the solver for the algebraic systems is crucial for the efficiency
of the whole numerical simulation. We applied a flexible GMRES method,
[30], with a multigrid method as preconditioner. In the case of the scalar
system (11), the preconditioner is a geometric multigrid method. We used the
F (1, 1)-cycle, ILUβ with β = 1 as smoother and the coarse grid system was
solved directly by Gaussian elimination. Note, the ILU-decomposition has to
be computed only once in the initial time step.

For the coupled system (8), an algebraic multigrid method was applied as pre-
conditioner. Here, the W (2, 2)-cycle was used, ILUβ with β = 1 as smoother
and also as coarse grid solver. The algebraic multigrid method, which is de-
scribed in [26], belongs to the class of aggregation methods, i.e. the unknowns
of the coarse grid are defined by an appropriate clustering of the unknowns of
the fine grid. A constant prolongation is applied and the restriction is defined
to be the adjoint operator. The coarse grids and coarse grid matrices of the
algebraic multigrid have to be constructed before the iterative solution of the
linear system can start. For equi-distant time-steps, this has to be done only
once at the first discrete time since the matrices are the same for all discrete
times. The diagonal entry aH

ii of the coarse grid matrix is the sum of all cou-
plings of the fine grid nodes which are forming cluster i. The off diagonal entry
aH

ij , i 6= j, is the sum of all fine grid entries ah
kl, k 6= l, where node k belongs to
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cluster i and node l to cluster j.

The numerical studies were performed for (1) with the prescribed solution

u(t,x) = t2 cos(x1x
2
2), (18)

with x = (x1, x2), ε = 10−8, b = (2,−1)T , c = 1, Ω = (0, 1)2 and T =
10. The non-homogeneous Dirichlet boundary conditions and the right hand
side f were chosen such that u(t,x) fulfills (1). We decided to use (18) as
prescribed solution because the the Crank-Nicolson scheme is an exact time
integrator in this case and all errors are due to the discretization in space
and the stabilization of the convective term. The Crank-Nicolson scheme was
applied with an equi-distant time step of length ∆tn = 0.125.

The initial quadrilateral grid, level 0, consists of four squares with edge length
0.5. As usual, the size of a mesh cells is the longest distance between two of
its vertices and the mesh size is the maximum of the sizes of the mesh cells.
Accordingly, the mesh size is h0 =

√
2 2−1. The initial triangular grid was

obtained from the initial quadrilateral grid by dividing the squares using the
diagonals from the left lower corner to the right upper corner. The initial grids
were refined uniformly.

The computations have been carried out on a PC with Intel Pentium 4 Pro-
cessor, with 3 GHz.

In the first numerical study, a fixed fine mesh T h(Ω) is considered and the
coarse mesh T H(Ω) is varied. The computations were performed on a quadri-
lateral mesh. The fine mesh is given by refinement level 6 of the initial grid
such that h6 =

√
2 2−7. The number of degrees of freedom (d.o.f.) on this

mesh is 16 641 (including Dirichlet nodes). The coarse mesh is varied between
level L = 1 and L = 6 giving H =

√
2 2−(L+1). The results are presented in

Table 2.

In order to provide an impression on the accuracy of the computed results
with the VMS, the results obtained with the simple artificial diffusion stabi-
lization and the Streamline-Diffusion FEM (SDFEM) are also presented. In
the artificial diffusion stabilization, the same parameter εadd was used as in
the VMS. The SDFEM has in each discrete time the form, see [13,3]: find
uh

k ∈ Xh such that for all vh ∈ Xh

11



(uh
k, v

h) +
∑

K∈Th

τK(uh
k,b · ∇vh)K + θ1∆tk

[

(ε∇uh
k,∇vh)

+(b · ∇uh
k + cuh

k, v
h) +

∑

K∈Th

τK(b · ∇uh
k + cuh

k,b · ∇vh)K

]

=(uh
k−1, v

h) +
∑

K∈Th

τK(uh
k−1,b · ∇vh)K − θ2∆tk

[

(ε∇uh
k−1,∇vh)

+(b · ∇uh
k−1 + cuh

k−1, v
h) +

∑

K∈Th

τK(b · ∇uh
k−1 + cuh

k−1, b · ∇vh)K

]

+θ3∆tk(fk−1, v
h) + θ3∆tk

∑

K∈Th

τK(fk−1,b · ∇vh)K

+θ4∆tk(fk, v
h) + θ4∆tk

∑

K∈Th

τK(fk,b · ∇vh)K.

Here, (·, ·)K denotes the inner product in L2(K) where K is a mesh cell. The
parameter τK is computed as follows

τK =
αKhK

2‖b‖2
, P eK =

‖b‖2hK

2ε
, αK = coth(PeK) − 1

PeK
.

Here, hK is the size of the mesh cell K and ‖b‖2 is the Euclidean norm of b.

Let e = u− uh. The results presented in Table 2 show that the semi-implicit
approach (9) is much more efficient than the fully implicit one (6). For the fully
implicit approach, we were not able to solve the linear systems of equations
in the cases L ∈ {5, 6}. The accuracy of the results with both approaches is
practically the same. The results become more accurate the finer the coarse
grid becomes. Even for a very coarse space LH , the results with the VMS
are considerably more accurate than the results with the artificial diffusion
stabilization. If LH is defined on finer and finer grids, the results become
more and more accurate. Finally, if the coarse space is defined on the same
grid as the fine space, L = 6, the results are nearly as accurate as for the
SDFEM. Here we like to emphasize that a very simple model for εadd has
been used. The accuracy of the VMS can be certainly improved by applying
more sophisticated models. An important observation is that the use of finer
coarse grids T H(Ω) and the corresponding increase of degrees of freedom in
LH practically does not lead to an increase in the computing times for the
semi-implicit approach (9).

The second numerical tests studies the convergence of the errors if the ratio of
the fine mesh width h and the coarse mesh width H is kept (nearly) constant.
We tested the scalings h ∼ Hβ, β ∈ {5/4, 3/2, 7/4, 2}. The scaling h ∼ H2 was
proposed in [25] for the steady state equations. This scaling is the limit case for
an optimal order of convergence of ‖∇e‖L2(0,T ;L2), see the discussion of finite
element error estimates at the end of Section 2. Neglecting for simplicity the
factor

√
2 in the mesh widths, then h = 2−(l+1) andH = 2−(L+1). Let l be given,
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Table 2
Results for a fixed fine mesh and varying coarse mesh

method L d.o.f. LH ‖e‖L∞(0,T ;L2) ‖e‖L2(0,T ;L2) ‖∇e‖L2(0,T ;L2) time

(6) 1 32 1.078e-2 1.520e-2 1.637e+0 184.4

2 128 5.927e-3 8.365e-3 1.227e+0 181.9

3 512 3.316e-3 4.679e-3 9.141e-1 183.0

4 2048 2.099e-3 2.960e-3 7.349e-1 373.1

(9) 1 32 1.076e-2 1.518e-2 1.621e+0 103.5

2 128 5.960e-3 8.425e-3 1.214e+0 103.2

3 512 3.381e-3 4.800e-3 9.050e-1 103.1

4 2048 2.191e-3 3.130e-3 7.281e-1 102.8

5 8192 1.762e-3 2.531e-3 6.604e-1 103.0

6 32768 7.052e-4 1.094e-3 3.526e-1 103.1

art. diff. 1.806e-1 2.538e-1 5.490e+0 56.3

SDFEM 5.213e-4 7.344e-4 3.414e-1 89.2

one obtains L = β−1(l+1)− 1. Since this number is in general not an integer,
we used in the computations the nearest integer to β−1(l + 1) − 1 as value
for L. The computations were performed on triangular grids with piecewise
linear finite elements. The coarsest grid (level 0) consisted of 8 triangles. The
degrees of freedom for the spaces Xh and LH are given in Table 3.

Table 3
Degrees of freedom on the triangular grids.

level Xh LH

0 16

1 25 64

2 81 256

3 289 1024

4 1089 4096

5 4225 16384

6 16641 65536

7 66049 262144

8 263169

9 1050625

In Tables 4 – 7, errors in several norms are presented. The orders of conver-
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gence are given with respect to h. They were computed using the values on
the two finest levels.

Table 4
Results for a fixed ratio h ∼ H5/4 of the fine mesh width and the coarse mesh

width

L l ‖e‖L∞(0,T ;L2) ‖e‖L2(0,T ;L2) ‖∇e‖L2(0,T ;L2)

1 2 5.225e-1 7.335e-1 1.619e+1

2 3 1.554e-1 2.185e-1 9.432e+0

3 4 4.443e-2 6.254e-2 5.241e+0

4 5 1.218e-2 1.719e-2 2.771e+0

5 6 3.250e-3 4.611e-3 1.422e+0

5 7 7.358e-4 1.062e-3 5.221e-1

6 8 2.046e-4 3.038e-4 2.623e-1

7 9 6.262e-5 9.767e-5 1.316e-1

order 1.708 1.637 0.995

Table 5
Results for a fixed ratio h ∼ H3/2 of the fine mesh width and the coarse mesh

width

L l ‖e‖L∞(0,T ;L2) ‖e‖L2(0,T ;L2) ‖∇e‖L2(0,T ;L2)

1 2 5.225e-1 7.335e-1 1.619e+1

2 3 1.554e-1 2.185e-1 9.432e+0

2 4 3.901e-2 5.506e-2 3.957e+0

3 5 1.046e-2 1.481e-2 2.038e+0

4 6 2.762e-3 3.934e-3 1.035e+0

4 7 9.844e-4 1.409e-3 5.613e-1

5 8 2.655e-4 3.878e-4 2.820e-1

6 9 7.683e-5 1.168e-4 1.415e-1

order 1.789 1.731 0.995

The numerical results show that one obtains first order of convergence if β ∈
{5/4, 3/2, 7/4}. For the limit value β = 2, a first order of convergence is not yet
reached. A second order convergence for ‖e‖L∞(0,T ;L2) and ‖e‖L2(0,T ;L2) cannot
be observed. These observations correspond to the available analytical results,
see the end of Section 2. For the SDFEM, we found for this example first order
convergence in ‖∇e‖L2(0,T ;L2) and second order in ‖e‖L2(0,T ;L2).
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Table 6
Results for a fixed ratio h ∼ H7/4 of the fine mesh width and the coarse mesh

width

L l ‖e‖L∞(0,T ;L2) ‖e‖L2(0,T ;L2) ‖∇e‖L2(0,T ;L2)

1 3 1.407e-1 1.983e-1 7.507e+0

2 4 3.901e-2 5.506e-2 3.957e+0

2 5 1.426e-2 2.015e-2 2.188e+0

3 6 3.748e-3 5.318e-3 1.113e+0

4 7 9.844e-4 1.409e-3 5.613e-1

4 8 4.246e-4 6.096e-4 3.422e-1

5 9 1.157e-4 1.700e-4 1.718e-1

order 1.876 1.842 0.994

Table 7
Results for a fixed ratio h ∼ H2 of the fine mesh width and the coarse mesh width

L l ‖e‖L∞(0,T ;L2) ‖e‖L2(0,T ;L2) ‖∇e‖L2(0,T ;L2)

0 1 1.696e+0 2.380e+0 2.708e+1

1 3 1.407e-1 1.983e-1 7.507e+0

2 5 1.426e-2 2.015e-2 2.188e+0

3 7 1.614e-3 2.292e-3 6.794e-1

4 9 1.980e-4 2.846e-4 2.224e-1

order 1.514 1.505 0.806

4 Summary

The paper studied a two-level variational multiscale method for convection-
diffusion equations. This method possesses two parameters: an additional dif-
fusion εadd and a vector-valued coarse finite element space LH . The two main
topics of the study were the conditions on LH which are necessary for an effi-
cient implementation of the method and the treatment of the additional terms
of the VMS within the temporal discretization. It was shown that an efficient
implementation of the VMS can be achieved if LH consists of discontinuous
finite element functions and that the basis of LH is L2-orthogonal. In this case,
the additional matrices posses a very sparse structure and the inversion of the
mass matrix of LH , which is needed in the semi-implicit approach, can be
done easily. Numerical tests at a model problem showed that a semi-implicit
temporal discretization, which treats the subtraction of the additional diffu-
sion from the large scales explicitly, is much more efficient than a fully implicit
discretization. The computing times in the semi-implicit VMS practically did
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not depend on the dimension of the coarse space LH . This is because the com-
putational overhead, four matrix-vector products and multiplication with the
diagonal matrix D−1, is small in comparison to time needed for solving the
linear system. This property will be shared by other temporal discretizations
which treat the last term on the left hand side of (3) explicitly. A comparison
of this method with the SDFEM showed a similar order of convergence in
several norms for appropriate scalings of the fine and the coarse mesh.

An extension of this method to the Navier-Stokes equations requires similar
algorithmic considerations as for scalar convection-diffusion equations. Based
on the results obtained in this paper, we will use discontinuous finite elements
for the space LH and the semi-implicit approach. For the Navier-Stokes equa-
tions, one has to pay attention to an appropriate choice of the additional
viscosity, using non-linear models like, e.g., the Smagorinsky model [31]. The
application of this kind of VMS to turbulent flows will be future work.
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