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Abstract

We consider the synthesis of a recent subgrid stabilization method with defect cor-
rection methods. The combination is particularly efficient and combines the best algo-
rithmic features of each. We give a thorough numerical analysis of the combination and
present some numerical tests which both verify the theoretical predictions and illustrate
the methods promise.

1 Introduction

This report studies the synthesis of defect correction methods and subgrid stabilization.
Our proposed method adds an eddy viscosity stabilization on only the last few resolved
scales on arbitrary, unstructured meshes. Computational considerations for total algo-
rithmic efficiency suggest combining the stabilization method with defect correction when
solving underresolved, equilibrium flow problems. In this work, we study precisely this com-
bination in that context. We analyze convergence of the combination for the (nonlinear)
Navier-Stokes equations. This analysis gives mathematical guidance on the selection of the
methods algorithmic parameters. In our accompanying tests, we observe that the subgrid
stabilized defect correction method has greater accuracy than the artificial viscosity method
without the oscillations reported in the usual (centered) Galerkin finite element method or
the unmodified defect correction finite element method.

Let © C R? (d = 2 or 3) denote a bounded, regular flow domain. We consider the
approximate solution of the Navier-Stokes equations for internal flow on Q: find u : Q — R%,
p: Q — R satisfying

—vAu+ (u-Vu+Vp = f inQ,
V-u = 0 inQ,
u = 0 on 09,
pr de = 0.

In (1.1), the coefficient v is the kinematic viscosity of the fluid and f € L%(Q)¢ is the body
force driving the flow.
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Let (-,-), || - || denote the usual L? inner product and norm, respectively. Define X :=
HH(Q) := {v € L2(Q)¢ : Vv € L2(2)¥*¢ and v = 0 on 0N}, Q := L2(Q) = {q € L*(Q) :
Joaq dz = 0}, and define b*(u,v,w) = %(u - Vo, w) — %(u - Vw,v) for all u,v,w € X.
Integrating by parts gives the following standard variational formulation of (1.1): find
u € X, p € Q satisfying:

v(Vu, Vv) + b*(u,u,v) — (p,V-v) = (f,v) YveX,

(V-u,q) = 0 Vg € Q. (1.2)

For the finite element discretization, we choose the conforming velocity-pressure finite ele-
ment spaces, X, C X and @} C Q, satisfying the discrete inf-sup condition

inf sup (qha V ° Uh)

> >0, (1.3)
0 E€Qn vy ex,, |1anlll[Vonl

where £ is independent of h.

The stabilization we consider requires a coarser finite element velocity space, Xy C
X corresponding to the large scales of the fluid velocity. Since finite element spaces are
constructed based upon triangulations of the domain 2, typically (although not necessarily
for our analysis) Xy C X C X. We define the following space

Ly =VXy C LA(Q)%. (1.4)

The stabilized finite element method we consider herein is: find u, € X}, p, € @ and
g € Ly satisfying

(V + a)(vuha V’Uh) + " (uha Up, Uh)
—algm, Vop) — (pn, V-vn) = (f,on) VYop € X, (1.5)
(V-up,qn) = 0 Yan € Qn, '
(9 — Vup,lg) = 0 Vig € Ly,

where « is the user-selected stabilization parameter and typically, « = O(h). It is easy to
verify that the last equality in (1.5) implies that gg is the L? projection of Vu", denoted
by Vuy,.

In a typical implementation of (1.5), the variables gy,ly in Ly are defined on macro-
elements, i.e., elements of the coarse mesh. Thus, solving (1.5) involves coupling of micro-
variables (functions in X}, Q) across macro-elements. Thus, although these terms are
cheap to evaluate in a residual calculation, the bandwidth of the linearized system arising
from (1.5) increases substantially and the solution of the linear system containing these
terms is not attractive. This issue is discussed briefly in Layton [31] and at some length
John, Kaya and Layton [27] and Anitescu, Layton and Pahlevani[2] for the evolutionary
problem.

For this reason, we consider a further defect correction discretization of (1.2) herein.
This combination greatly increases efficiency by shifting the macro-micro coupling to a
residual calculation. The method consists of an initialization step followed by k correction
steps, where k is the local polynomial degree of Xj:

Initialization Step. Solve for (u};,p}) € (Xp,Qp) such that

(V + a)(vu}lwvvh) + b*(u}luu}luvh) - (pllmv * Uh) = (f, Uh) VIUh € Xh,a

(V-up,qn) = 0 Van € Q. (16)



k- Correction Steps. Given (ui,p{l) € (Xp,Qp) for j =1,2...,k, solve for (u J+1’p;1+1)
(X1, Qp) satisfying
v+ a)(V(u ™ =), Vo) + b (uf, " ul T o) — b (uf, uf, vn) — (P — P}, V - vn)
= (f,vn) = [(v + &) (Y, Von) + b* (u), ul), 0) — (P}, V - vn) — gly, Vou)] Vo € X,
(V-ul",qn) =0 Vau € Qn, (1.7)
(gl — Vul,lg) =0 Vig € L.

Remark 1.1. It is typical that while defect correction methods are algorithmically simple to
implement, they are cumbersome to write (as above) and can resist analysis. There are also
several equivalent formulations of (1.7) and several algorithmic options within the defect
correction idea. We stress that this is not an iteration: only k steps are performed where k
is the local polynomial degree of Xp. Thus, an asymptotic analysis as j — 0o s irrelevant;
we analyze herein the method as h — 0 for fized j.

The algorithmic efficiency of the defect correction method (1.6), (1.7) can be seen by
rewriting (1.7) as follows: find (u}, I+ p7+1) € (Xp, Qp) satisfying
(v + a)(Vul ™, Vop) + 0% (ud T ul ™ oy

) .
(h+1_v 'Uh; = (fon) +algy, Vou) Yo € L, o)
)

(V- ul", qn 0 Vg € Qn,
(gft[ VU%JH =0 Vig € Ly.

Since ui is'known in (1.8), gfq is explicitly calculable by computing the L? projection oper-
ator of Vu? into Ly. Since Ly is (typically) a space of discontinuous piecewise polynomials
of degree £k — 1 on a coarse mesh, this projection calculation uncouples into one, well-
conditioned small linear system per coarse mesh element. Given g, the solution uf’ then
only involves solving an artificial viscosity discretization of the Navier-Stokes equations. If
a = O(h), this is known to lead to linearized systems which can be solved efficiently.

An alternative formulation of defect correction method is to begin with nonlinear, sta-
bilized artificial viscosity approximation (1.6) for (uj},p;) and then correct by solving the

linearized problem instead of the nonlinear one. This has the advantage that only one linear
j+1 j+1

solution is needed per correction step. This variation reads: given (uj, p{l) find (uy™",p3"")
satisfying:
v+ a) (V™ —ul), Vo) + 0" (u),ul T —wl op) + 0" (Wl ™ —ulul vp)
—@ = pl, Vo) = (fyon) — [(v + @) (Vud, Vop) + b*(ug;, ul  vp)
(P}, V - vn) — algly, Vou)] - VYo € X,
(V- Hl,qh) =0 Vqn € Qp, (1.9)
(g% — Vul ly) =0 Vig € Ly.

The correction (1.9) is in the familiar residual-update form. It can be simplified to read:
find (u J+1,ph ) satisfying

(v + ) (Vul ™, Vop) + b (uf, uf ™ on) + 07 (ud 7, uf, o)
— ,;+1,V -vp) = (f,op) + b*(ui,uh,vh) + a(gH,Vvh) Yoy, € X,
(V-ul",q0) =0 Vau € Qn, (1.10)
(g — Vi, lg) =0 Vig € Ly.



1.1 Literature Review for Defect Correction Method

The idea of defect correction is simple and universal. In its initial form, it was considered an
algorithmically efficient way to perform Richardson’s extrapolation, e.g. Stetter [38]. Since
most practical problems do not have enough regularity, the practical importance was not
recognized until the work of Hemker [21, 20] and Hemker and Koren [23, 22]. One current
view of defect correction method is that it allows for a solution that is nearly nonsingular,
ill-conditioned problems through stabilization and correction, for a sample of recent works,
see e. g. Altase and Burrage [1], Axelsson and Nikolova [4], Juncu [28], Graziadei, Mattheij
and Boonkkamp [16], Heinrichs [19, 18], Desideri and Hemker [6], Nemedov and Mattheij
[34], Shaw and Crumpton [37]. For example, when applied to viscoelastic fluid flow (Lee
[32]), the defect correction method proved to be the key algorithmic idea for computing
with a Weissenberg number beyond which other algorithms failed.

Much analytical insight into defect correction method was obtained early for periodic,
constant coefficient problems by local model analysis. The first complete convergence the-
ory for defect correction method for convection dominated problem in 1D was performed
in Ervin and Layton [8] in which uniform epsilon convergence was proven away from lay-
ers. This result was extended to higher dimensions, higher order methods and unstruc-
tured meshes Axelsson and Layton [3]. Recently, global uniform in epsilon convergence on
Shishkin meshes has been proven in 1D (Frohner, Linss and Roos [11], Frohner and Roos
[12], Hemker, Shishkin and Shishkina [24]).

It was noticed early by Hemker [21], that defect correction method overcorrects near
layers and should be modified. Various proposals have been advanced, e.g. Hemker [21, 20],
Hemker and Koren [22, 23], Ervin and Layton [7]. The one considered herein is to correct
the large scales only and leave a small amount of stabilization in the small scales. This is
a discretization idea of Layton [31] which is related to ideas of Maday and Tadmor [33],
Guermond [17], and Hughes, Mazzei and Jansen [25]. For current work on this discretization
for flow problems, see, e.g. Kaya and Riviere [29], John and Kaya [26], John, Kaya and
Layton [27].

Because of the attractive form of the defect correction method, it is particular efficient
when used in conjunction with adaptivity. The first theoretical study and computational
testing of defect correction plus adaptivity was in Ervin, Layton and Maubach [9, 10] and
Cawood, Ervin, Layton and Maubach [5]. Interesting recent work in this direction has
been done by Nikolova [35] and Axelsson and Nikolova [4]. In particular, [10] considers
the problems of stationary turbulence with Smagorinsky model. It was noted there that
the estimators decompose into residuals associated with the base discretization’s numerical
error, the defect correction method’s update error and the turbulence model’s modelling
error - an interesting feature of both defect correction method and adaptive solution of
various turbulence model.

2 Mathematical Preliminaries

The error analysis we shall perform for the method (1.6), (1.7) will be for nonsingular
solutions of the Navier-Stokes equations (1.1), (1.2). We thus collect few useful facts about
nonsingular solutions.

Definition 2.1. Let V and V}, denote respectively the divergence free subspaces of X and



Vi={veX:(¢,V-v)=0, VgeQ},
Vit {n € Xyt (g ¥ o) =0, Vg € Qu}.

Although typically V}, C V, it is known that under the discrete inf-sup condition (1.3),
functions in V' are well approximated by ones in V;, (Girault and Raviart [14]).

Lemma 2.1. Let the discrete inf-sup condition (1.3) holds. Then for any v € V

1
inf — <C(1+4 —) inf — . 2.1
Jnf 90— )] O+ ) inf V(0 —wy)] @)
Proof. We refer to [14] for the proof of this lemma. O

We shall denote by M as a finite constant with

10" (u, v, )|
M = sup .
woweX [|[Vull[|Voll| V|

Definition 2.2. wu is a nonsingular solution of (1.1) if there is a p = u(u,v) > 0 such that

inf sup v(Vv, Vw) + b*(u,v,w) + b* (v, u, w)

>p>0. (2.2)
vEV wey Vol Vel

Definition 2.3. u is isolated solution of (1.1), if there is a 6 > 0 such that there exists no
other solution u' of (1.1) with |V (u —u')|| < é.

The following basic facts are known concerning the equilibrium Navier-Stokes equations

(1.1).

Proposition 2.1. (a) Given f € H™1(Q)? there exists at least one (u,p) € (X, Q) satisfying
(1.1).

(b) For ||f|| small enough, that solution is unique and nonsingular.

(c) There is an open dense subset D C H~Y(Q)¢ such that for all f € D, all solutions of
(1.1) are nonsingular and the number of solutions for each f € D is finite and odd.

(d) A nonsingular solution is isolated.

(e) Let u be a nonsingular solution of (1.1) with data f and @ another solution with data
FIF IV (u— )| < u(u)/AM then

2 .
V(u—-a)|| < ——If - fll-1-
IV (u—a)l ) | |
Proof. (a), (b), (c) are well known in the Navier-Stokes equations literature, see, e.g., [14]
for (a) and (b) and Temam [39] for (c). Part (e) was proven in Layton [30] and part (d) is
a standard result about nonsingular solutions of nonlinear problems. O

Since the set of invertible operators is open and b*(-, -, -) is continuous in X, it is known
that the point of linearization in various terms of (2.2) can be shifted slightly without
changing the essential conclusions.



Lemma 2.2. Let u be a nonsingular solution of (1.1). Then there is a 6 > 0 such that for
any a < 0, u' and u" € V with |V(u —u')|| <9, ||V(u—u")|| < § satisfying

(! " "
inf sup (v + ) (Vv, Vw) 4+ b"(u', v, w) + b*(v, ", w)
vEV weV Vo[ Vel

> %H(“)-

Proof. This is a standard result in nonlinear analysis (Schwartz [36]). O

It will be important to note that if (1.3) holds the infimum and supremum in Lemma
(2.2) can also be taken over V.

Lemma 2.3. Let u be a nonsingular solution of (1.1). Then there is a 6 > 0 such that for
any a < d, u' and u" € V or V}, with |V(u —u)|| < 4, ||V(u—u")|| <& satisfying

inf  sup (v + &) (Von, Vws) + 0" (u', vp, wp) + b* (v, u”, wh)

>
vn €V wy eV, [Von | Vws]|

p(w)-

N =

Proof. For the proof see e.g. Girault and Raviart [15]. O

3 Error Analysis

The basic principle of defect correction method in this context is that each step attempts to
increase the rate of convergence by one power of h up to the order of the basic method. To
begin, note that (u},p}) is just the usual artificial viscosity approximation to (u,p). Since
the error analysis for this step is standard (and a special case of the general step in which
(u),p%) = (0,0)), we present the result only. The error analysis uses basic tools from [14],
[15] and requires a few basic assumptions on (Xp, @) that assume that (1.3) holds and
that (X}, @p) become dense in (X, Q) as h — 0. Specifically, we assume:

Proposition 3.1. Let (1.8) holds. For any o > 0 and f € H 1(Q)%, the algorithm (1.6),
(1.7) is well-defined: there exist approzimate solutions (uj,p}) for j =1,2,....

Proof. Existence of (uj,p}) follows from the fact that (X, Qp) is finite dimensional, the
fixed point theory and the following 4 priori bounds

(+ )Vl < 1IF1l-1, (3.1)
Iphll < B7H2+ M(a+v) )| f]l-1.

The first result (3.1) is obtained by setting v, = uj in (1.1). The second (3.2)follows from
(1.3), exactly as for the usual Galerkin approximation.

Given (u),p;) € (Xp,Qp) the same argument can be only used in the formulation
(1.8) to prove existence of (u{fl,pﬂﬂ) provided only || g5 || is bounded. To see this, note
that in the second equation of (1.8), g%, is the L? projection into Ly of Vu]. Thus,

g%, || < |Vl || < oo, which is the required bound. O

A similar result is true for the defect correction using the linearization (1.6), (1.9)
provided h is small enough.



Proposition 3.2. Let (1.8) holds. Consider the algorithm (1.6), (1.9) (or equivalently,
(1.6), (1.10)). Assume that u is a nonsingular solution of (1.1). For any f € H=Y(Q) let
a > 0 tend to zero as h tends to zero. Then, there is hg > 0 such that for h < hyg, (u%,p,zl)
exists and is unique. More generally, if ufl 1s close enough to u in X, then (ufl, ,'lH)
erists and is unique.

Proof. This is a linearization argument. First we note that since (u},p}) is the artificial
viscosity approximation to a nonsingular solution, standard error analysis of branches of
nonsingular solution, e.g., [14], [15], shows that limu} = u as h tends to 0, (see Proposition
3.3, which follows for more detail). Thus, by Lemma 2.3, the linearization (1.10) is invertible
for h small enough. Thus, (u7,p?) exists uniquely.

The remainder of the proof is an induction argument which follows similarly: once u%
exists uniquely and the linearization (1.10) at uj is invertible, it will follow that u? converges
to u as h tends to 0 (with appropriate error estimates). This implies that uj exists uniquely
and the argument is repeated.

This argument fails if (1.10) is an iteration but it is correct since it is a correction only
performed a fixed number of times. O

Concerning the error in U}L, we have the following proposition.

Proposition 3.3. Assume the spaces (Xp,Qp) satisfy (1.8). Suppose u is a nonsingular
solution of the (1.1). Suppose « tends to 0 as h tends to 0. Then, there is hg > 0 such that
for h < hg, the error in (u},,p}) satisfies:

IV@—u)ll < CELslatv+ o) +1] inf V(o)

2
2 T inf lp — Ml + al|Vall],
e hnt o = Xl + d Vul]
1

1 2M o
—pt 1+ —=) inf - Ml+=+a+ — DIV = ud)|| + = Vull.
lp—phl < (1+3), int o=l + 5 IV = )+ 51Vl

VAN

Proof. The proof that u; — u is standard, following, e.g., [14], [15]. We shall only thus
give the proof of the error bound since it gives the ideas of the proof of the general case in
a simpler context. The true solution (u,p) satisfies for any v, € Vi, A\, € Qp:

(v + a)(Vu, Vo) + b*(u, u,vn) — (p — A, V- o) = (f, vn) + a(Vu, Vop,). (3.3)

Let @ € V}, be an approximation to u and write e! = u — u,ll = 1n — ¢ where ¢, = u}L -
and 7 = u — @. Subtracting from (3.3), the equation (1.6) for (uj,p}) gives:

(v + @) (Vel, Vup) + b* (u, u, vp) — b* (up, up,vp) = (p — M, V - 0p) + (Vu, Vo). (3.4)
The nonlinear term can be rewritten as
b* (u, u, vp) — b* (up, up,vp) = b*(e',u,vp) + b* (up, e, vp)
= b (n,u,vn) = " (@n, u,vp) + 0% (un,m,vp) — b (un, Pp,vn)-
Using this decomposition of b*(-, -,-) and splitting e! = n — ¢;, gives

(V + a)(V(bh, V’Uh) + b*(¢h,u,vh) + b*(uha ¢havh) = (V + a)(vn7 V’Uh) + b*(n’uavh)
—|—b*(’U,h, n, Uh) - @ - Aha V. Uh) - OA(VU, V’Uh), V(Uh, Ah) € (Vha Qh) (35)



Applying standard bounds to the right hand side of (3.5) gives

||V N (v + @) (Von, Vup) + 0" (én, u, vp) + b (up, dp,vp)]
< (v + )|Vl + M([[Vull + [[Vur D IVall + llp = Al + o[ Val|.

Taking supremum over the v, € V}, using Lemma 2.3 and 4 priori bounds on ||Vul|| and
[[Vup|| yield

1 1
@IVl < fa+v+ M| f]- 1( + o IVall+lip = Anll + o Vull.

By using triangle inequality, taking the infimum over v" € V* A\ € Q" and using Lemma,
2.1, one obtains the required result.

For the pressure estimate (just as for the Stokes problem) we begin with the error
equation for v, € X} (rather than V},):

(p - pllv,a V- 'Uh) = (V + O‘)(vela Vvh) + b*(ela u, 'Uh) - b*(uha 61,’Uh) - a(Vu, V'Uh)'
Write p — pi = p — Ay — (pf, — M) where A, € Qp, approximates p well. Then

(Ph =M, Vevp) = (p— A, V-op) — (v + @) (Ve', Vop)
_b*(ela u, Uh) + b*(uha elavh) + a(vua VIvh)
< e = Aall + (v + @) Ve || + M(|[Vull + [[Vupl) [ Ve'|
+af[Vul[][[Vup].-

Dividing by ||Vuvy||, taking the supremum over v, € X}, using the inf-sup condition (1.3)
and the triangle inequality, we have

1 1 M «
lp—pull < (1+ B)Ilp =Ml + v+ )| Ve' | + E(IIVHII + Vet Ve || + BIIVUII-

B
Finally, using 4 priori bounds (3.1), v||Vul|| < ||f]|-1 gives the required result. O

Concerning the error in the method we consider the variant (1.6), (1.9) in which one
linearized problem is solved per correction step. Intuitively, one would expect that the
defect correction method (1.6), (1.7) would be more robust and more accurate. On the
other hand, complete error analysis of defect correction method with nonlinear correction
(1.6), (1.7) is an open problem in the case of large data and nonsingular solutions.

Proposition 3.4. Consider (1.6), (1.9). Let u be a nonsingular solution of the (1.1) and
suppose (1.3) holds. Then, there is § > 0 such that if |V (v —u})|| <6, for j =1,2...:

1 .
AWV (u — W < C(ﬁ)(l/+a+2M(5+||Vu||))vh1é1§h||V(u—vh)||
+ inf |jp — M| + @||[Vu — Vu
/\;thHp wll + al|[Vu — V|
+ M|V (u— )|+ | V(u—u))],
Blp -l < C)\}fggh”p—)\h”+[V+2a+2M||Vu||]||V(u—u?:l)”

+M||V(u—u) 2+ al|V(u — )| + || Vu = Vul.



Proof. The variational formulation of (1.1) can be rewritten as follows: for any v, € V}, and
An € Qh7

(v + a)(Vau, Vo) + b (ud, u, vp) + b (u, 1), v5) — (0 — Ay V - 0p)

= (f,vn)+ [b*(ufl,u,vh) + b*(u,ui,vh) — b*(u,u,vp)]
+a(Vu, Vo) + a(Vu — Vu, Vop,). (3.6)

The square bracketed term on the right hand side of (3.6) becomes:
b*(u?p u, ’Uh) + b*(’ll,, u{p Uh) - b*(u, U, 'Uh) = _b*(u - U’%,’ u— ’U,%’, Uh) + b*('u’?;,’ uia Uh)' (37)

Let e/t = o — uffl, el =u— u?l and note that gy = Vuy (by (1.10)). With this notation
subtract (1.10) from the equation (3.6) and use the last equation (3.7) for the nonlinear
terms on the right hand side. This gives:

(v + a)(Vej+1, V) + b*(ufl, eIt vp) + b*(ej+1,uil, vp)
=(p— A,V -vp) = b*(el, €7, 0) + (Ved, V)
+a(Vu — Vu,Vop)  V(vp, M) € (Vi, Q).

The remainder of the proof follows that of Proposition 3.3: We first split eIt = — ¢y,
n =u—1uand ¢p = uflﬂ —1u where @ € V}, approximates u well. By using this decomposition,
nonlinear terms can be written as

b* (’u";;,a ej+1a Iuh) + b*(€j+1, ugp ’Uh) = b(ui,) m, Uh) - b(’u’%,a ¢ha ’Uh) + b(’]’], uz,,a ’Uh) - b(¢h7 u;la Uh)'
Then, the use of splitting error and Lemma 2.3 give the following inequality for ¢p:

1 .
FH@IVell < (v +a+ [V IVall

+Hlp = Anll + M|V + o[ Vel || + | Vu — Vull.

Since ufl is close enough to u € X, we have ||Vufl|| < 0 4+ 2||Vul|. The triangle inequality
then implies

1 : 1
§N(U)IIV6J+III < (vHat gu(u) +4M[[Vul)[Val

+p = Ml + M| Ve;|I? + ol Vel || + o] Vu — Vul|.
The pressure bound also follows from the case j = 1. O

The error estimate Proposition 3.4 has four terms. The first term ||V (u—w},)|| is the error
in the best approximation to (u,p) € (X, Qp). The second term ||Ve;||? is the linearization
error. Since this is quadratic, it is typically a higher order term. The third, a||Ve;]|, shows
that each step of defect correction method improves the error in the previous step by one
power of h (recall that typically o = O(h)). The last term «||Vu — Vu| arises from the
error of the stabilized discretization.

As a result of the Proposition 3.4, we can give the following corollaries.

Corollary 3.1. In addition to the assumptions of the Proposition 3.4, suppose h < H — 0
as h = 0 and aa — 0 as h — 0. Suppose also Xy, Qp, Ly become dense in X,Q and L
respectively as h — 0. Then, there is a hg > 0 such that for h < hg, and j = 1,2,...k,
uy — u as h — 0.



Corollary 3.2. Suppose Xy, Qn, Ly consist of piecewise polynomials of degree k,k—1 and
k — 1 respectively. Suppose also u € H*T'(Q)N X, p € H*(Q) N Q. Then,

IV(u = w)|| < Clu,p)[B* + al,

and in general, _ .
IV (w = u) || < Clu,p, §)[B* + aH" + o).

This follows by inserting the approximation theoretical orders of convergence into the
right hand side of the Proposition 3.4 and keeping only dominant terms. For example,

IV (u— ul)]| C(u,p)[h* + (h* + @)? + a(h* + @) + aH¥]

<
< Clu,p)[h* + o + o2

The error estimate in the corollary explains the typical algorithmic choices:

j > k:correction step,
a = oph : regularization parameter,

H < Ch"%: lengthscale of large structures.

4 Numerical Studies

In this section, we consider some numerical experiments for the implementation of defect
correction algorithm proposed with (1.6), (1.10). In particular, we present two numerical
examples: one is a known analytical solution; and the other is the driven cavity problem.

All computations are carried out in the domain Q = [0,1] x [0,1]. We divide our
domain into triangles. We use Taylor-Hood elements i.e., continuous piecewise quadratic
functions for the velocity and continuous piecewise linear functions for the pressure. It is
well-known that this conforming pair of finite element spaces satisfies the inf-sup condition
(1.3). For every grid, first artificial viscosity system (1.6) is solved, with & = h. Then, k
(the polynomial degree of the velocity approximation) defect correction steps are performed.
Hence, two corrections steps are required for the Taylor-Hood element. All the nonlinear
systems are solved by using the Newton method with stopping criteria 10°¢. Corollary
3.2 suggests that the algorithmic choices for h and H should be h ~ H? or equivalently,
H ~ h'/2 in order to obtain optimal error rates.

As a first numerical illustration, we study a numerical convergence to confirm the error
estimate given in Proposition 3.4. The prescribed solution is given by

u=—4y’z?, v=2ayt, p=2z+3y—2.

Dirichlet boundary conditions are chosen and the right hand side f is such that (u,v,p) is
the solution of (1.1). In this example, our numerical results are performed for v = 1. For
the Taylor-Hood finite element spaces, the theory predicts a convergence rate of O(h?) in
the energy norm, O(h?) in the L? norm for the velocity and O(h?) for the pressure.

Note that, since we try to verify the theory in this simplest setting, the first numerical
test problem does not require either subgrid eddy viscosity method or defect correction
method for an accurate solution. However, the method (1.6), (1.10) is fully comparable
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to the standard finite approach in this laminar case. In Table 1, the error in the usual
Galerkin discretization of the Navier-Stokes equations is presented. In particular, we give
L? and H& errors and the corresponding convergence rates. As theory predicts, the optimal
convergence rates are obtained. In Table 2, we present convergence rates by using the

‘ h H L? —error H Rate H H{ — error H Rate H L? pressure H Rate H
h=1/2 0.0093 0.2894 0.2934
h=1/4 0.0011 3.07 0.0710 2.02 0.0786 1.90
h=1/8 || 1.3181e-004 || 3.06 0.0177 2.00 0.0200 1.97
h=1/16 || 1.6321e-005 || 3.01 0.0044 2.00 0.0051 1.97

Table 1: Convergence rates by using the Galerkin finite element method.

artificial viscosity method (AV) where we perform only initialization step (1.6) to solve
Navier-Stokes equations. Since we choose @ = h, it is expected and observed that the
convergence rates for this method are suboptimal. In Table 3, the experimental rates of

‘ h H L% — error H Rate H H} — error H Rate H L? pressure H Rate H
h=1/4 0.0061 0.0844 0.4671
h=1/8 0.0032 0.93 0.0306 1.46 0.2146 1.12
h=1/16 0.0016 1.00 0.0137 1.15 0.1023 1.06

Table 2: Convergence rates by using the artificial viscosity method.

convergence for the subgrid stabilized defect correction method are presented. The scalings
between coarse and fine mesh are chosen such that H < h!/? satisfied. These numerical
results demonstrate that the rates of convergence are optimal, as the theory predicts. Hence,

the stabilization used in the method (1.6), (1.10) does not degrade rates of convergence in
laminar flows.

‘ H H h H L? —error H Rate H H{ —error H Rate H L? pressure H Rate H
1/2 1/4 0.0012 0.0701 0.0824
1/4 1/8 || 1.4146e-004 || 3.08 0.0174 2.01 0.0224 1.87
1/8 || 1/16 || 1.7565e-005 || 3.01 0.0043 2.01 0.0059 1.92
1/16 || 1/32 || 2.1926e-006 || 3.00 0.0011 1.96 0.0015 1.97

Table 3: Convergence rates of the subgrid stabilized defect correction method.

Our second example is the benchmark problem of the under-resolved driven cavity at
high Reynold numbers. In this example, flow is driven by the tangential velocity field
applied to the top boundary in the absence of other body forces. On the segment {(z,1) :
0 < z < 1}, the velocity is equal to u = (1,0). On the rest of the boundary, zero Dirichlet
conditions are imposed.

The drawbacks of usual, centered Galerkin methods for convection dominated problems
are well known and well documented. Also, the drawbacks of unmodified defect correction
method , although less well known, are very well documented since the 1982 work of Hemker
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[21, 20]. Thus, the focus of our experiments on the driven cavity problem are to (i) show
that subgrid stabilized defect correction method gives high quality, coarse mesh solutions
(comparable to the benchmark, fine mesh results of Ghia, Ghia and Shen [13]), (ii) illustrate
that stabilization of the finest resolved scales is effective in suppressing the oscillations on the
scales typical of unstabilized defect correction method and (iii) illustrate the very substantial
improvement in the results produced by the relatively inexpensive correction steps.

We compute an approximate solution for ¥ = 1072 and v = 25 x 104 for the driven
cavity flow. In particular, we draw the x component of velocity along the vertical centerline
and y component of velocity along the horizontal centerlines. We compare the results
obtained by Ghia, Ghia Shin’s [13]. The present numerical simulations are considered on
very coarse mesh (h = 1/16,h = 1/32) and they are compared to very fine mesh (h = 1/129)
of [13]. Ghia’s algorithm is based on the time dependent streamfunction using the coupled
implicit and multigrid methods. Their results are used as benchmark data as basis for
comparison.

In Figures 1-4, we compare the results obtained by the artificial viscosity method (AV),
the subgrid stabilized defect correction method (1.6), (1.10) and the results of [13]. In
the case v = 102, there is very little difference between the vertical midlines for all three
methods (Fig. 1). For the horizontal midlines, the subgrid stabilized defect correction
method is closer to Ghia, Ghia Shin’s results than the artificial viscosity (see Fig. 2).

In the case of v = 25 x 10™*, namely for higher Reynolds number, Fig. 3 and Fig. 4
clearly show that the subgrid stabilized defect correction method performs much better
than the artificial viscosity method; and is comparable to the results obtained by Ghia,
Ghia Shin on a more refined mesh. We observe that artificial viscosity method is overly
diffusive.

5 Conclusion

The natural combination of defect correction with multiscale stabilization retains the best
features of both methods and overcomes many of their deficits. The combination is accurate,
efficient and a convergence theory of the combination is developed. This latter theory shows
that the good accuracy and stability properties are no accident: they are general features
of the method.

This combination has strong promise but many open questions remain including the
correct extension of the method to time dependent problems, further numerical analysis
(other norms, error functionals, ...) and more extensive testing.
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Figure 1: Vertical midlines for v = 1072 for H = 1/8,h = 1/16.

15



0.2 T T T T

—— AV
=3 —— Subgrid Stabilized Defect Coorection
% Ghia Ghia Shin

0.15

0.1

0.05

-0.05

y component of velocity

-0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: Horizontal midlines for v = 1072 for H = 1/8,h = 1/16.
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Figure 3: Vertical midlines for v = 25 x 10~* for H = 1/16,h = 1/32.
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