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Abstract. We obtain a closing kinetic relation for a mixed type hyperbolic-elliptic p-system
originating in the theory of martensitic phase transitions by replacing continuum model with its
natural discrete prototype. The procedure can be viewed as either regularization by discretization
or as a physically motivated account of underlying discrete (atomic or mesoscopic) microstructure.
Our fully inertial lattice model describes an isolated phase boundary and its novelty is in taking into
account nonlocality in the form of general harmonic long-range interactions. Although the model
is Hamiltonian at the microscale, it generates a nontrivial macroscopic jump relation between the
velocity of the discontinuity and the conjugate configurational force. This relation characterizes the
rate of (apparent) dissipation, respects entropy inequality but is supplementary to the usual Rankine-
Hugoniot jump conditions. The dissipation at the macrolevel is due to the induced radiation of lattice
waves carrying energy away from the propagating front. We show that sufficiently strong nonlocality
has a significant effect on the kinetic relation in both near-sonic and small-velocity regions.
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1. Introduction. A characteristic feature of martensitic phase transitions in ac-
tive materials is the energy dissipation leading to experimentally observed hysteresis.
The dissipation is due to propagating domain boundaries which can be represented
at the continuum level as surfaces of discontinuity. Classical elastodynamics admits
nonzero dissipation on moving discontinuities but provides no information about its
origin and kinetics. Although the arbitrariness of the rate of dissipation does not
create problems in the case of classical shock waves, it is known to be the cause
of nonuniqueness in the case of subsonic phase boundaries. The ambiguity at the
macroscale reflects the failure of the continuum theory to describe phenomena inside
the narrow transition fronts where dissipation actually takes place. The missing clos-
ing relation can be found by analyzing a regularized theory describing fine structure
of the transition front. Usually the problem reduces to a study of a one-dimensional
steady-state model (see [9, 19, 27] for recent reviews).

To formulate the simplest problem of this type it is sufficient to consider longitu-
dinal motions of a homogeneous elastic bar. The total energy of the bar is the sum
of kinetic and potential contributions

E =

∫
[

ρu̇2

2
+ φ(ux)

]

dx, (1.1)

where u(x, t) is the displacement field, u̇ ≡ ∂u/∂t is the velocity, ux ≡ ∂u/∂x is the
strain, ρ is the mass density, and φ(ux) is the elastic energy density. The function
u(x, t) satisfies the nonlinear wave equation

ρü = (σ(ux))x, (1.2)
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where σ(ux) = φ′(ux) is the stress-strain relation. Although in classical elastodynam-
ics equation (1.2), also known as p-system, is hyperbolic, the hyperbolicity condition
σ′(ux) > 0 is violated for martensitic materials with non-monotone stress-strain rela-
tion σ(ux) [10]. This makes the initial-value problem associated with the mixed-type
equation (1.2) ill-posed; in particular, it leads to the appearance of non-evolutionary
or undercompressed discontinuities (kinks, phase boundaries, e.g. [22, 23, 38]). The
parameters of these discontinuities satisfy both the classical Rankine-Hugoniot jump
conditions

[[u̇]] + V [[ux]] = 0, ρV [[u̇]] + [[σ(ux)]] = 0, (1.3)

where [[f ]] ≡ f+ − f− and V is the jump velocity, and the entropy inequality R =
GV ≥ 0, where

G = [[φ]] − {σ}[[ux]] (1.4)

is the configurational (driving) force and {σ} ≡ (σ++σ−)/2, but fail to satisfy the Lax
condition c+ < V < c−, where c± are the sound velocities in front and behind. One
way to remedy the resulting instability is to supplement (1.3) by a relation specifying
the dependence of the configurational force on the velocity of the phase boundary
G = G(V ) (kinetic relation, [1, 37]). Since the nonlinear wave equation (1.2) provides
no information about the kinetic relation, the dependence G(V ) has often been either
extracted from experiment [2, 11] or modeled phenomenologically [1, 36, 37]. An
alternative approach has been to derive the kinetic relation from an augmented model
incorporating regularizing terms. A typical example is the viscosity-capillarity model,
incorporating into (1.2) both dispersive and dissipative terms [28, 36]. The problem
with this approach is that it introduces into the theory phenomenological dimensional
parameters of unclear physical origin (see the review [12]).

The aim of the present paper is to obtain the kinetic relation without any phe-
nomenological assumptions at the macroscale by replacing the continuum model (1.2)
with its natural discrete prototype. This procedure of going back from continuum to
discrete can be viewed as either regularization by discretization or as a physically mo-
tivated account of underlying atomic or mesoscopic microstructure. While it is clear
that the discrete model must be Hamiltonian to reproduce the conservative structure
of the smooth solutions of (1.2), the energy dissipation on the discontinuities can be
interpreted as the nonlinearity-induced radiation of lattice-scale waves which takes
the energy away from the long-wave continuum level. This phenomenon is known in
physics literature as radiative damping (e.g. [16, 17]).

Following this idea of regularization of (1.2) from “first principles”, we consider
fully inertial dynamics of a one-dimensional lattice combining bi-stability and long-
range interactions. Following some previous work in fracture [29] and plasticity [3],
we assume piecewise linear interactions allowing one to construct an explicit trav-
eling wave solution of the discrete problem. There exists an extensive literature on
shock waves and solitons in the local and nonlocal discrete systems with convex en-
ergy (e.g. [13, 14, 25, 34]) and on the semilinear analogs of the present system (e.g.
Frenkel-Kontorova model [4, 7, 24]). The discrete quasilinear problem for martensitic
phase transitions in the lattices with nearest-neighbor (NN) interactions has been
recently considered in [32, 41], following previous work on failure waves and shock
waves in discrete structures [31, 33]. In the present paper we extend these results
to the case of harmonic interactions of arbitrary range, including Coulomb or Kac-
Baker interactions, among others. In addition to providing the formal solution to
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the general problem, we show that the local model with NN interactions (mean field
approximation) is degenerate and consider in detail the simplest nonlocal model in-
volving interaction between next-to-nearest neighbors (NNN). In particular, we study
a transition from weak coupling case, when the domain of lattice trapping region is the
largest, to an almost continuous, when the trapping region completely disappears. We
also demonstrate that sufficiently strong NNN interactions generate a much broader
class of admissible solutions than in the NN case with a possibility of radiation both
in front and behind the moving discontinuity. The analytical solution obtained in
this paper allows us to capture certain details that are difficult or impossible to de-
tect in numerical simulations (e.g. [26]), such as singular behavior of solutions near
static-dynamic bifurcation, around resonances and in the sonic limit.

The paper is organized as follows. The discrete model with long-range interac-
tions and the associated dynamical problem are introduced in Section 2. In Section 3
we formulate the dimensionless equations for the traveling waves, the boundary con-
ditions and the admissibility conditions. An explicit solution for the traveling wave
is obtained by Fourier transform in Section 4. In Section 5 we rederive known static
solutions describing lattice-trapped states and link them to a nontrivial limit of the
dynamic solutions. The energy transfer from long to short waves is studied in Sec-
tion 6, where we obtain a closed-form kinetic relation. In Section 7 we illustrate the
general theory on the case when the only long-range interactions are due to second
nearest neighbors. The conclusions are presented in Section 8.

2. Discrete model. The simplest lattice structure can be modeled as a chain
of particles connected with elastic springs. Suppose that the interactions are of long-
range type and that every particle interacts with its q neighbors on each side. If un(t)
is the displacement of the nth particle, the total energy of the chain can be written
as

E = ε

∞
∑

n=−∞

[

ρu̇2
n

2
+

q
∑

p=1

pφp

(

un+p − un

pε

)]

, (2.1)

where ε is the reference interparticle distance and φp(w) is the energy density of the
interaction between pth nearest neighbors. The dynamics of the chain is governed by
an infinite system of ordinary differential equations:

ρün =

q
∑

p=1

[

φ′
p

(

un+p − un

pε

)

− φ′
p

(

un − un−p

pε

)]

, (2.2)

which replace the nonlinear wave equation (1.2). The microscopically homogeneous
configurations of the bar generate macroscopic stress-strain relation [18]

σ(w) =

q
∑

p=1

pφ′
p(w). (2.3)

For this correspondence to be valid, the functions φp(w) must satisfy certain conditions
preventing formation of microinhomogeneities which we specify for the case q = 2 in
Section 7.

To obtain analytical results, we consider the simplest potentials compatible with
phase transitions: bi-quadratic for local interactions (NN) and quadratic for nonlocal
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Fig. 2.1. The bi-linear macroscopic stress-strain law and the Rayleigh line connecting the
states at infinity for a martensitic phase boundary. The difference between the shaded areas A2−A1

represents the configurational force.

interactions (NNN, NNNN, etc.) Specifically we define

φ1(w) =

{

1
2Ψ(1)w2, w ≤ wc
1
2Ψ(1)(w − a)2, w ≥ wc,

(2.4)

and

φp(w) =
1

2
pΨ(p)w2, p = 2, ..., q. (2.5)

The nonlinear springs representing NN interactions can be found in two different states
depending on whether the strain w is below (phase I) or above (phase II) the critical
value wc; parameter a defines microscopic transformation strain. For simplicity we
assume that the phases have equal elastic moduli Ψ(1) > 0. It is convenient to rewrite
the governing equations (2.2) in terms of strain variables wn = (un − un−1)/ε and to
use dimensionless variables:

t̄ = t(Ψ(1)/ρ)1/2/ε w̄ = w/a Ψ̄(p) = Ψ(p)/Ψ(1), p = 1, ..., q (2.6)

In terms of these variables with bars dropped, we can rewrite the governing equations
(2.2) in the form

ẅn −
∑

|k−n|≤q

Ψ(k − n)wk = 2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc), (2.7)

where

Ψ(0) = −2

q
∑

p=1

Ψ(p), Ψ(−p) = Ψ(p) (2.8)

and θ(w) is a unit step function. The macroscopic stress-strain relation (2.3) takes
the form

σ(w) = c2w − θ(w − wc), (2.9)

where

c =

( q
∑

p=1

p2Ψ(p)

)1/2

(2.10)

is the dimensionless macroscopic sonic speed. We choose the moduli Ψ(p) to ensure
that the function σ(w) takes the form presented in Figure 2.1.
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3. Traveling waves. An isolated phase boundary moving with a constant ve-
locity V can be obtained as a traveling wave solution of (2.7) with wn(t) = w(ξ),
ξ = n − V t. We assume further that in the moving coordinate system all springs in
the region ξ > 0 are in phase I (wn < wc), and all springs with ξ < 0 are in phase II.
The system (2.7) can then be replaced by a single nonlinear advance-delay differential
equation:

V 2w′′ −
∑

|p|≤q

Ψ(p)w(ξ + p) = 2θ(−ξ) − θ(−ξ − 1) − θ(1 − ξ), (3.1)

The configurations at ξ = ±∞ must correspond to stable homogeneous equilibria plus
superimposed short-wave oscillations with zero average:

〈w(ξ)〉 → w± as ξ → ±∞. (3.2)

The nonlinearity of the problem is in the switching condition

w(0) = wc. (3.3)

We assume that a solution is admissible if the springs in front of the moving interface
remain in phase I and behind it in phase II. This implies that

w(ξ) < wc for ξ > 0, w(ξ) > wc for ξ < 0. (3.4)

Consequently, the mathematical problem reduces to solving (3.1) subject to (3.2),
(3.3) and (3.4).

First observe that the equation (2.7) is linear in each phase (ξ > 0 and ξ > 0),
which means that the solution can be represented as a superposition of linear waves
wn = exp(i(kn − ωt)). Since the elastic moduli are equal, the dispersion relation

ω2(k) = 4

q
∑

p=1

Ψ(p) sin2 pk

2
(3.5)

is the same in both phases. In order for the linear modes to be compatible with the
traveling wave ansatz, their phase velocity Vp(k) = ω/k must be equal to V . This
gives the restriction on the admissible wave lengths in the form

L(k, V ) = 0, (3.6)

where

L(k, V ) = 4

q
∑

p=1

Ψ(p) sin2 pk

2
− V 2k2. (3.7)

Among the modes selected by (3.6), the ones with complex wave numbers describe
the core structure of the phase boundary, while the ones with real wave numbers
correspond to radiation. Waves with k = 0 will be associated with the macroscopic
configuration.
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4. Exact solution. We solve Eq. (3.1) by writing w(ξ) = h(ξ)+w− and apply-
ing the complex Fourier transform

ĥ(k) =

∫ ∞

−∞

h(ξ)ei(k+iδ)ξdξ, h(ξ) =
1

2π

∫ ∞+iδ

−∞+iδ

ĥ(k)e−ikξdk,

where δ > 0 is a small parameter which guarantees convergence of the integrals. After
inverting the Fourier transform and letting δ → 0, we obtain

w(ξ) = w− − 2

πi

∫

Γ

sin2(k/2)eikξdk

kL(k, V )
, (4.1)

where the contour Γ coincides with the real axis passing the singular point k = 0
from below. The singularities associated with nonzero real roots of L(k, V ) = 0 must
comply with the radiation conditions. Specifically, the modes with group velocity
Vg = ∂ω/∂k larger than V can appear only in front, while the modes with Vg < V
can appear only behind the phase boundary [31]. Using the relation

Vg = V +
Lk(k, V )

2V k
, (4.2)

where Lk(k, V ) = ∂L/∂k and assuming V > 0, we obtain that Vg ≷ V whenever
kLk(k, V ) ≷ 0. Therefore to satisfy the radiation conditions, we need to dent the
integration contour in (4.1) so that it passes below the singularities on the real axis
if kLk(k, V ) > 0 and above if kLk(k, V ) < 0.

To compute the integral (4.1) explicitly, we use the residue method closing the
contour in the upper half-plane when ξ > 0 and in the lower half-plane when ξ < 0.
The solutions look different in the generic case q > 1 and the degenerate case q = 1.
For q > 1 the Jordan’s Lemma can be applied directly and we obtain

w(ξ) =



















w− +
∑

k∈M−

4 sin2(k/2)eikξ

kLk(k, V )
for ξ < 0

w− − 1

c2 − V 2
− ∑

k∈M+

4 sin2(k/2)eikξ

kLk(k, V )
for ξ > 0,

(4.3)

where M± = {k : L(k, V ) = 0, {Imk ≷ 0}⋃{Imk = 0, kLk(k, V ) ≷ 0}}. For q = 1
(short range interactions only) the contribution from a semi-arch at infinity does not
vanish at ξ = ±0 and relations (4.3) must be supplemented by the following limiting
conditions

w(ξ) =



















w− +
∑

k∈M−

4 sin2(k/2)eikξ

kLk(k, V )
− 1

2
for ξ = 0−

w− − 1

c2 − V 2
−

∑

k∈M+

4 sin2(k/2)eikξ

kLk(k, V )
+

1

2
for ξ = 0+.

(4.4)

In both cases, by applying the boundary conditions at infinity we obtain

w+ = w− − 1

c2 − V 2
. (4.5)

This condition coincides with the Rankine-Hugoniot relation V 2[[w]] = [[σ]], for the
macroscopic stress-strain relation (2.9). The continuity of w(ξ) at ξ = 0, implies that

1

c2 − V 2
+

∑

k∈M

4 sin2(k/2)

kLk(k, V )
=

{

1, q = 1
0, q > 1,

(4.6)
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where M = M+
⋃

M− is the set of all nonzero roots of the dispersion relation (3.6).
This condition is automatically satisfied for q > 1 since the sum of residues at all
poles (including k = 0) equals zero; for q = 1 and ξ = 0 the integral over a contour
at infinity contributes additional 1 in the right hand side of (4.6). The switching
condition (3.3) together with (4.6) requires that

w± = wc ∓
1

2(c2 − V 2)
+

∑

k∈Npos

4 sin2(k/2)

|kLk(k, V )| , (4.7)

where Npos = N+
pos

⋃

N−
pos, N±

pos = {k : L(k, V ) = 0, Imk = 0, k > 0, kLk(k, V ) ≷ 0}
are the sets of positive real roots with group velocities above and below V . By virtue
of (4.5) the two conditions (4.7) are not independent and can be replaced by a single
condition

1

2
(w− + w+) − wc =

∑

k∈Npos

4 sin2(k/2)

|kLk(k, V )| . (4.8)

As we show in Section 6, equation (4.8) represents the desired kinetic relation.
When V 6= 0, we can use the explicit formulae for w(ξ) to reconstruct the particle

velocity profile v(ξ) = −V u′(ξ). The relation between the velocity and the strain
fields reads

v(ξ) − v(ξ − 1) = −V w′(ξ). (4.9)

where the right hand side is known. Solving (4.9) again by the Fourier transform, we
obtain

v(ξ) =



















v+ − V

c2 − V 2
− 2V

∑

k∈M−

sin(k/2)eik(ξ+ 1
2
)

Lk(k, V )
for ξ < −1

2

v+ + 2V
∑

k∈M+

sin(k/2)eik(ξ+ 1
2
)

Lk(k, V )
for ξ > −1

2
.

(4.10)

Notice that the average velocities at infinity satisfy the Rankine-Hugoniot condition
(1.3)1, which in our case takes the form

v+ − v− =
V

c2 − V 2
.

To summarize, we have obtained a set of traveling wave solutions parametrized by
the velocity V and the boundary value data w± and v±. The average particle velocity
v+ in front can always be set equal to zero due to the Gallilean invariance. If the
strain in front of the discontinuity is also prescribed, the remaining three macroscopic
parameters are fully constrained by the two classical Rankine-Hugoniot conditions
plus a non-classical condition (4.8).

5. Static solutions. A special treatment should be given to the case V = 0
when the continuous variable ξ = n − V t takes integer values, and the strain profile
becomes discontinuous at every ξ = n. In this limit the differential equation reduces
to a system of finite-difference equations, and we can replace the continuous Fourier
transform by its discrete analog [8, 16, 30]. Observe that for a piecewise continuous
function

ŵ(k) =

∫ ∞

−∞

w(x)eikxdx =

∞
∑

n=−∞

∫ n+1

n

w(x)eikxdx.
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Therefore, assuming that the strain profile w(x) converges to w0(n) as V → 0, we
obtain

ŵ0(k) =

∞
∑

n=−∞

w0(n)
eik(n+1) − eikn

ik
=

eik − 1

ik
ŵD

0 (k), (5.1)

where ŵD
0 (k) =

∑∞
n=−∞ w0(n)eikn is the discrete Fourier transform of w0(n). Now

we can use (4.1) to obtain

ŵ0(k) = 2πδ(k)w− +
4 sin2(k/2)

ikω2(k)
,

where δ(k) is the Dirac delta function and ω2(k) is given by (3.5). Using (5.1) we can
then find ŵD

0 (k) and applying inverse discrete Fourier transform, obtain a represen-
tation of the discrete solution:

wn =
1

2π

∫ π

−π

ŵD
0 (k)e−ikndk = w− − 1

πi

∫ π

−π

sin(k/2)eik(n+1/2)dk

ω2(k)
.

To avoid the singularity at k = 0 we must pass it from below; all other roots of
ω2(k) = 0 inside the strip −π ≤ Rek ≤ π have nonzero imaginary parts. Extending
the integrand analytically by zero outside Rek ∈ [−π, π] and closing the contour of
integration in the upper half-plane for n < 0 and lower half-plane for n > 0, we obtain
by residue theorem

wn =



















w− − ∑

k∈F−

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n < 0

w− − 1

c2
+

∑

k∈F+

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n ≥ 0,

(5.2)

where F± = {k : ω2(k) = 0, Imk ≷ 0,−π ≤ Rek ≤ π}. Solutions satisfying the
admissibility constraints

wn ≥ wc for n ≤ −1, wn ≤ wc for n ≥ 0 (5.3)

form a family of lattice-trapped equilibria (5.2) parametrized by w−, or, equivalently,
by the total stress in the chain σ = c2w− − 1. The whole set of admissible stresses
constitutes the trapping region.

Notice that in this class of static solutions the phase boundary is pinned at the
site n = −1. If the strain profile (5.2) is monotone, which occurs, for instance, when
all long-range interactions are repulsive (Ψ(p) < 0 for p ≥ 2), the constraints (5.3) can
be replaced by w0 ≤ wc and w−1 ≥ wc. The trapping region can then be described
explicitly

σM − σP ≤ σ ≤ σM + σP, (5.4)

where σM = c2wc − 1/2 is the Maxwell stress and

σP =
1

2
− c2

∑

k∈F+

sin(k/2)eik/2

ω(k)ω′(k)
(5.5)
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is the Peierls stress (see also [5, 39]). The phase boundary remains trapped until the
stress reaches one of the limiting values: σ = σM−σP, corresponding to w−1 = wc and
interface moving to the left (V < 0) or σ = σM + σP, corresponding to w0 = wc and
interface moving to the right (V > 0). The two limiting solutions represent unstable
equilibria from which the dynamic solution bifurcates. In Section 7 we compute the
exact value of σP for the case q = 2.

6. Kinetic relation. The waves generated in the core region carry the energy
away from the front without changing the average values of parameters at infinity.
At the continuum level these lattice waves are invisible and therefore the associated
energy transfer is perceived as dissipation. To evaluate the rate of dissipation, we
start with the microscopic energy balance

dE
dt

= A(t),

where E is the total energy of the chain and A(t) is the power supplied by the external
loads. Since the solution of the discrete problem at infinity can be represented as a
sum of the macroscopic contribution and the superimposed oscillations, we can split
the averaged power accordingly. We obtain

〈A〉 ≡ 1

τ

∫ τ

0

Adt = P −R, (6.1)

where P = σ+v+ − σ−v− is the macroscopic rate of work and R is the energy release
due to radiated waves (interpreted at the macroscale as dissipation). While in the
general case the expression for R may contain coupling terms, in the piecewise linear
case the macroscopic and microscopic contributions decouple [16, 31]. Moreover, the
dissipation rate R can be written as the sum of the contributions from the areas ahead
and behind the front:

R(V ) = R+(V ) + R−(V ). (6.2)

Furthermore, due to the asymptotic orthogonality of the linear modes, the terms in
the right hand side of (6.2) can be expressed in terms of contributions due to individual
modes. Since the energy flux associated with the linear mode k is the product of the
average energy density 〈Gk〉 and the relative velocity |Vg −V | of the energy transport
with respect to the moving front, we can write

R+(V ) =
∑

k∈N+

〈Gk〉+(Vg − V ), R−(V ) =
∑

k∈N−

〈Gk〉−(V − Vg). (6.3)

where

〈Gk〉 = 〈G − G0〉k ≡ 1

τ

∫ τ(k)

0

(G − G0)dt

with τ(k) = 2π/ω(k). Here

G(ξ) =
1

2
(v(ξ))2 +

c2

2
(w(ξ))2 − θ(−ξ)(w(ξ) − wc)

− 1

2

q−1
∑

p=1

B(p){(w(ξ + p) − w(ξ))2 + (w(ξ) − w(ξ − p))2}
(6.4)
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with B(p) =
∑q−|p|

l=1 lΨ(l + |p|), and

G0 =











1

2
v2
− +

c2

2
w2

− − w− + wc, ξ < 0

1

2
v2
+ +

c2

2
w2

+, ξ > 0

is the corresponding energy density of the homogeneous states. To complete the
computation we need to specify the asymptotic representation of the velocity and
strain fields at ±∞. We can write

v(ξ) ≈ v0(ξ) +
∑

vk(ξ), w(ξ) ≈ w0(ξ) +
∑

wk(ξ).

where

v0(ξ) =

{

v−, ξ < 0
v+, ξ > 0

, w0(ξ) =

{

w−, ξ < 0
w+ ξ > 0

are the homogeneous components and

vk(ξ) =















−4V sin(k/2) cos(k(ξ − 1/2))

Lk(k, V )
, ξ < 0, k ∈ N−

pos

4V sin(k/2) cos(k(ξ − 1/2))

Lk(k, V )
, ξ > 0, k ∈ N+

pos,

wk(ξ) =















8 sin2(k/2) coskξ

kLk(k, V )
, ξ < 0, k ∈ N−

pos

−8 sin2(k/2) coskξ

kLk(k, V )
, ξ > 0, k ∈ N−

pos

(6.5)

are the oscillatory components. The average energy density carried by the wave with
the wave number k ∈ N±

pos can now be written as

〈Gk〉± =
1

2τ(k)

∫ τ(k)

0

[

v2
k(ξ) + c2(wk(ξ))2

−
q−1
∑

p=1

B(p){(wk(ξ + p) − wk(ξ))2 + (wk(ξ) − wk(ξ − p))2)}
]

dt =
8V 2 sin2(k/2)

(Lk(k, V ))2
.

which gives for the total energy flux

R(V ) =
∑

k∈N+
pos

4V sin2(k/2)

kLk(k, V )
−

∑

k∈N−

pos

4V sin2(k/2)

kLk(k, V )
=

∑

k∈Npos

4V sin2(k/2)

|kLk(k, V )| .

Recalling the definition R(V ) = G(V )V we obtain the microscopic expression for the
configurational force:

G(V ) =
∑

k∈Npos

4 sin2(k/2)

|kLk(k, V )| . (6.6)

The function G(V ) is now known since both L(k, V ) and Npos depend explicitly on
V . Comparing (6.6) with the macroscopic definition of the configurational force (1.4)
we obtain

G =
1

2
(w− + w+) − wc, (6.7)
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Fig. 7.1. One-dimensional discrete microstructure with nearest and next-to-nearest-neighbor
interactions (q = 2).

which can be interpreted geometrically as the area difference between two shaded
triangles in Figure 2.1. Notice that by combining (6.6) and (6.7) we obtain exactly
(4.8), which shows that (4.8) is indeed a kinetic relation and that micro and macro
assessments of dissipation are compatible.

7. Example. To illustrate the general solution obtained above, in what follows
we consider a special case q = 2 when both NN and NNN interaction are taken into
account (see Figure 7.1). The model is then characterized by two elastic constants
Ψ(1) and Ψ(2). It can be shown [44] that the homogeneous equilibria in this model
are stable if and only if

Ψ(1) > 0, Ψ(1) + 4Ψ(2) > 0. (7.1)

We assume that these conditions are satisfied and rescale the equations by introducing
a single dimensionless parameter

β = 4Ψ(2)/Ψ(1),

measuring the relative strength of NNN and NN interactions. The stability constraints
give −1 < β ≤ ∞; one can further restrict this interval to

−1 < β ≤ 0 (7.2)

if we recall that the inequality Ψ(2) < 0 is suggested by the linearization of the
potentials of the Lennard-Jones type [39, 43].

The total energy of the system now reduces to

E =
∞
∑

n=−∞

[

v2
n

2
+

1 + β

2
w2

n − θ(wn − wc)(wn − wc) −
β

4
(wn+1 − wn)2

]

. (7.3)

According to (7.3), parameter β/(1+β) characterizes the effect of discreteness: if β ∼
0 we have the case of weak coupling (essential discreteness) while if β ∼ −1 we have
the case of strong coupling implying quasicontinuum behavior. This is compatible
with the fact that at β = 0 the Peierls stress characterizing the width of the lattice-
trapping domain takes the largest value (spinodal limit), while at β = −1 the Peierls
stress is zero and the trapping region disappears.

The energy 7.3 produces the following equation for the traveling waves

V 2w′′ − β

4

(

w(x + 2) − 2w(x) + w(x − 2)

)

− w(x + 1) + 2w(x) − w(x − 1)

= 2θ(−x) − θ(−x − 1) − θ(1 − x).

(7.4)

The formal solution of this equation has been obtained in Section 4. Below we make
it explicit and provide illustrations for the physically justified range of parameters.

11
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Fig. 7.2. Real (a) and imaginary (b) roots of the dispersion relation L(k, V ) = 0 at different β.

7.1. Dispersion relation. To compute the strain and velocity profiles at a given
V we need to find the nonzero roots of the dispersion relation

L(k, V ) = 4 sin2(k/2) + β sin2 k − V 2k2 = 0. (7.5)

We denote the roots by k = k1 + ik2 and divide them into three categories: real,
responsible for radiation; purely imaginary, providing the monotone structure of the
interphase region and complex, describing oscillatory contributions to the core.

Since L(k, V ) is an even function of k, the real roots appear in pairs k = ±k1.
Assuming positive V , we obtain

V (k1) =

√

4 sin2(k1/2) + β sin2 k1

|k1|
.

This function is plotted in Figure 7.2a. An infinite number of local maxima on this
graph V = Vi, correspond to resonance velocities: at these points Lk(k, V ) = 0 and the
sums in (4.3), (4.7) and (4.10) diverge. Between the resonance velocities, equation
(7.5) possesses a finite number of positive real roots corresponding to propagating
waves. To determine whether these waves propagate ahead or behind the front, we
need to check whether kLk(k, V ) = 2k3V (k)V ′(k) is positive or negative. At V > 0
the radiation conditions say that the waves with kV ′(k) > 0 propagate in front of the
phase boundary, while the waves with kV ′(k) < 0 propagate behind.

The value of β affects the function V (k) noticeably only at long waves (small
k). Observe that V (0) is equal to the macroscopic sound speed c = (1 + β)1/2, that
V ′(0) = 0 and that

V ′′(0) = − 1 + 4β

12
√

1 + β
.

At −1/4 < β ≤ 0, the function V (k) has a maximum at k = 0 while at −1 < β < −1/4
it has a local minimum implying that sufficiently strong coupling (β < −1/4) creates
the possibility of the microscopic waves waves moving faster than the macroscopic
sound speed. The range of supersonic speeds increases as β → −1, and in the limiting
case β = −1 all propagating waves are macroscopically supersonic. It is interesting
that the critical value β = −1/4 also emerges in the strain-gradient approximation of
the energy (7.3), where it corresponds to the change of sign of the coefficient in front

12
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of the higher-order term [21, 35]. In this approximation the dispersion relation V (k)
is replaced by a parabola: for β > −1/4 (weak nonlocality) the parabola is directed
downward and the strain-gradient coefficient is negative while for β < −1/4 (strong
nonlocality) the parabola is upward and the strain-gradient contribution to the energy
is positive definite. The latter implies that subsonic waves are absent, and in order to
yield a nontrivial kinetic relation the corresponding quasicontinuum model must be
augmented by even higher-order terms [42].

The purely imaginary roots of (7.5) also appear in symmetric pairs and correspond
to non-oscillatory modes exponentially decreasing away from the front. By solving
L(ik2, V ) = 0 for V (k2) we obtain

V (k2) =

√

4 sinh2(k2/2) + β sinh2 k2

|k2|

This function is shown in Figure 7.2b. A straightforward computation shows that
V (0) = c, V ′(k2)|k2=0 = 0 and V ′′(k2)|k2=0 = (1 + 4β)/(12

√
1 + β). For −1 < β <

−1/4 the maximum of the curve V (k2) is reached at k = 0, which means that in the
case of strong coupling only macroscopically subsonic phase boundaries have mono-
tone contribution to the core structure. Both the value V (0) and the range of available
wave numbers decrease as β → −1, so that in the limit purely imaginary roots dis-
appear. In the case β = 0 the function V (k2) is convex everywhere, implying that
no imaginary roots contribute to the subsonic solution. This is compatible with the
fact that in the degenerate NN limit the static interface (V = 0) becomes atomically
sharp.

The complex roots contribute to the oscillatory structure of the core region. For
the given V the real (k1) and imaginary (k2) parts of the dispersion spectrum satisfy
the system of two equations: ReL(k, V ) = 0 and ImL(k, V ) = 0. The set of complex
roots contains infinitely many branches that come in symmetric quadruples. The first
quadrant of the complex plane is shown in Figure 7.3. Observe that the complex roots
can be divided into two sets: Q and P . The set Q (thick gray lines), has a purely
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dynamic nature, exists for all β and consists of branches bifurcating from the local
maxima of the real branch and (for β < −1/4) from an imaginary branch. These
roots contribute to the boundary layers around the front only at nonzero V . The
second set of complex roots, P , shown in Figure 7.3 by thick black lines contains
purely imaginary branches and bifurcates of complex roots intersecting the plane
V = 0. These branches contribute to the static solution: at V = 0 they can be given
explicitly given by

k = 2πn ± iλ, λ = 2arccosh

[

1
√

|β|

]

, (7.6)

where n is an integer [43]. As β tends to zero, the imaginary parts of P -roots approach
±∞; the eventual disappearance of these roots in the limit β → 0 is responsible for
the sharpening of the front in the NN approximation.

7.2. Strain and velocity profiles. Typical profiles of strain w(x) and velocity
v(x) computed for the NNN model from (4.3), (4.10) are shown in Figure 7.4 where
β = −0.2 and the first two resonance velocities are V1 = 0.2164 and V2 = 0.1282.
At V = 0.5 > V1 we obtain only one radiative mode propagating behind the phase
boundary; at V2 < V = 0.16 < V1 the solution exhibits two additional radiative
modes, one propagating behind and one in front of the phase boundary.

A closer inspection of the solutions at V < 0.266 reveals a violation of the con-
straints (3.4). For example, in the strain profile corresponding to V = 0.16 in Fig-
ure 7.4 the maximum strain w > wc is achieved at some point ξ > 0. Our numerical
computations suggest that the entire velocity interval (0, 0.266) around the resonances
may have to be excluded (at this particular β). Similar “velocity gaps” were also de-
tected in [16, 17, 20] for the semilinear Frenkel-Kontorova problem.

At larger β velocity gaps become narrower and steady interface propagation be-
comes possible in certain subcritical velocity intervals. For example, at β = −0.75
traveling wave solutions exist in the intervals: [0.24, 0.5] (between the first resonance
V1 = 0.2150 and the sonic speed c = 0.5); [0.142, 0.19] (between first and second
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resonances, V2 = 0.1279); [0.1, 0.11] (between V2 and V3 = 0.0912); [0.078, 0.08] (be-
tween V3 and V4 = 0.0708) and possibly in some shorter intervals at smaller V . Two
such solutions are shown in Figure 7.5. The first one corresponds to V = 0.16 which
is between the first and second resonances; unlike its counterpart at β = −0.2, this
solution is now admissible. The second admissible profile corresponds to the value of
velocity V = 0.105 located between second and third resonances. In this case there
are five radiative modes, two in front and three behind the phase boundary.

The growth of small-velocity intervals where steady interface propagation exists
is due to the presence of P -roots at nonzero β. As β becomes larger in absolute value,
these roots move closer to the real axis, widening the transition layer and suppressing
oscillations due to other complex roots. The effect of varying β on existence of small-
velocity solutions may thus be compared to the effect of viscosity in the Frenkel-
Kontorova model [6, 15]: both stronger nonlocality and larger viscosity reduce the
velocity gaps.

7.3. Kinetic relation. Using (6.6) and the known dispersion spectrum, we can
now explicitly evaluate the kinetic relation G(V ). A representative example is shown
in Figure 7.6. At resonance velocities the configurational force required to move the
interface tends to infinity which explains the appearance of the peaks. As we discussed
above, at sufficiently small β the entire region around the small-velocity resonances
has to be excluded since the corresponding solutions violate the constraints (3.4); see
Figure 7.7a. As β increases, some of the small-velocity solutions between the reso-
nances become admissible, as shown in Figure 7.7b-d.

Zero-velocity limit. To obtain solution at V = 0 we can use (5.2) with F ± = {±iλ},
15



where λ is defined in (7.6). After some algebraic manipulations, the family of lattice-
trapped equilibria (5.2) can be represented in the form

wn =















σ + 1

1 + β
− eλ(n+1/2)

2(1 + β) cosh(λ/2)
, n < 0

σ

1 + β
+

e−λ(n+1/2)

2(1 + β) cosh(λ/2)
, n ≥ 0,

(7.7)

where σ lies in the region (5.4). The solutions (7.7) coincide with equilibria obtained
by a different method in [39] where it was shown that they correspond to local minima
of the energy and are therefore metastable. The expression for the Peierls stress (5.5)
indicating the boundary of the metastability region can now be written explicitly as

σP =
1

2

√

1 + β.

Observe that at β = 0 the Peierls stress coincides with the spinodal stress σS = 1/2.
As β grows, the trapping region becomes narrower, and eventually disappears at
β = −1 (Peierls stress is zero). The upper boundary of the trapping region (5.4)
corresponds to the case when w0 = wc, which coincides with condition (3.3) satisfied
by the dynamic solutions at V > 0. This saddle-point configuration can be given
explicitly

wn = lim
V →0

w(n − V t) =















wc +
eλ/2 − eλ(n+1/2)

2(1 + β) cosh(λ/2)
, n < 0

wc +
e−λ(n+1/2) − e−λ/2

2(1 + β) cosh(λ/2)
, n ≥ 0.

(7.8)

Using this solution, we can also obtain the limiting value of the configurational force
corresponding to the Peierls depinning limit (static-dynamic bifurcation)

G(0) =
1

2
(w− + w+) − wc =

1

2
√

1 + β
. (7.9)

Observe that although the Peierls stress tends to zero when β → −1, the correspond-
ing value of the configurational force G(0) tends to infinity, which is an artifact of our
oversimplified model and is due to the divergence of the macroscopic transformational
strain in this limit.

Sonic limit. The qualitative behavior of the function G(V ) in the limit V → c
depends on β. If −1/4 < β ≤ 0, and V . c, the wave spectrum contains a single
wave number k which approaches zero as V → c. Expanding the expression for the
configurational force (6.6) at small k we obtain

G ∼ 6

(1 + 4β)k2
,

which implies that G(V ) → ∞ as V → c (see Figures 7.6 and 7.7a). The picture is
qualitatively different when −1 < β < −1/4. In this case as V approaches c from
below, the limit of the corresponding real wave number k is nonzero ks, and therefore
configurational force G(V ) remains finite (see Figure 7.7b-d).

Going back to the general case of arbitrary V < c, we observe that there is an
infinite number of critical values of β at which the sonic speed c coincides with one
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of the resonance velocity. For example, at β = −0.9539 we have c = V1 = 0.2147
implying that for β ≤ −0.9539 the subsonic region lies below the first resonance (see
Figure 7.6f). Although the total domain of existence of the traveling wave solutions
shrinks as β → −1 the domain of admissible traveling waves between the resonances
expands. Our numerical calculations for the case q = 3 (NNNN model) show qualita-
tively similar behavior of the kinetic curves, suggesting that the present model may
be already capturing the main effects of nonlocality.

8. Conclusions. We used a simple discrete model to derive an explicit kinetic
relation in one-dimensional theory of martensitic phase transitions. The macroscopic
dissipation was interpreted as the energy of the lattice waves emitted by a moving
interface, and we showed that discrete and continuum assessments of the dissipa-
tion are compatible. The present study complements previous analyses of the local
model with NN interactions by including an arbitrary number of harmonic long-range
interactions.

We showed that the local model is degenerate and analyzed in detail the non-
local model accounting for next-to-nearest neighbor (NNN) interaction. By varying
the strength of the NNN interactions we could pass from the essentially discrete case
to the almost continuum case. We showed that nonlocality affects the size of lat-
tice trapping: as NNN bonds become stronger, the trapping region reduces in size in
terms of stresses. However, it increases in terms of driving forces, which emphasizes
an important difference between the real and configurational forces. In addition to
enlarging the domain of existence of steady state regimes with high-frequency radi-
ation in both directions, sufficiently strong coupling significantly alters the mobility
curves near the sonic speeds. Contrary to the simplest local theory, strongly nonlocal
model produces multivalued kinetic relations with several admissible branches and
rich variety of configurations of emitted lattice waves. Although we have not studied
stability of the constructed traveling waves, the fact that the dissipation potential
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associated with these dynamic regimes is locally convex suggests that they may be
infinitesimally stable.

The present work was motivated by recent studies of crack and dislocation dy-
namics (e.g. [16, 17]), where a two-well version of the discrete Frenkel-Kontorova
(FK) model was used to compute the macroscopic rate of dissipation. The formal
difference between the semilinear FK model and the quasilinear model presented in
this paper is that now nonlinearity concerns discrete derivatives. While the two prob-
lems are equivalent in statics and in overdamped dynamic limit [39, 40], the fully
inertial models are different. An additional level of complexity in the quasilinear set-
ting is associated with the presence of the limiting characteristic velocity, nonzero
macroscopic particle velocity and the necessity to satisfy the discrete analogs of the
Rankine-Hugoniot jump conditions.
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