A SPLITTING METHOD USING DISCONTINUOUS GALERKIN FOR THE
TRANSIENT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

VIVETTE GIRAULT!, BEATRICE RIVIERE? AND MARY F. WHEELER?

Abstract. In this paper we solve the time-dependent incompressible Navier-Stokes equations by split-
ting the non-linearity and incompressibility, and using discontinuous or continuous finite element meth-
ods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the
pressure. We present some numerical experiments.

Résumé. Dans cet article nous résolvons les équations de Navier-Stokes instationnaires et incompress-
ibles en dissociant la nonlinearité de 'incompressibilité et en utilisant des éléments finis discontinus ou
continus en espace. Nous montrons une estimation de ’erreur optimale de la vitesse et sous-optimale
de la pression. Nous présentons des essais numériques.

INTRODUCTION

The Navier-Stokes equations characterize a variety of flows, which play an important role in many engineering
applications. For incompressible flows, the momentum and continuity equations are:

U — pAu+u-Vu+Vp=f, V-u=0,

where u is the fluid velocity, p the pressure, p > 0 the constant viscosity, and f a given external force. These
equations are completed by adequate boundary and initial conditions.

These equations are difficult to solve numerically because on one hand, they are nonlinear and on the other
hand, the velocity is coupled with the pressure. In this paper, we study a particular operator splitting technique
introduced by Blasco, Codina and Huerta [4] in 1997, for decoupling the convection and pressure terms. It is
convenient to describe the general idea of this splitting technique at the semi-discrete time level; given an
approximation U? of the velocity w(t/) at time ¢/ and an approximation 7 of f(t/*!), the computation of
the discrete velocity and pressure at time #/+! proceeds in two steps:

. . . . . . ~J+1 s e
1) Linearized convection step: solve for an intermediate velocity U ! satisfying
1 -+
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2) Incompressibility step: solve for U’T! and PI*! satisfying

!

(U]+1 _ U ~j+1

1 .
— ) — NA(UJ-FI -U

Al )+ VPIH =, (0.2)

V.Ut = 0. (0.3)

If the space discretization is well chosen, this splitting technique has the advantages that

1) the first step reduces to a system of scalar equations, that can be solved in parallel,

2) the discrete velocity obtained from the second step is locally conservative and

3) the boundary condition can be enforced at each step.

There are several strategies for space discretizations that benefit from part or all of these advantages. For
instance,

1) both steps can be solved by a symmetric or non-symmetric discontinuous Galerkin method;

2) the second step can be solved by a discontinuous Galerkin method while the first step can be solved by a
continuous finite element method in some appropriate region (possibly the entire region) and by a discontinuous
Galerkin method in other regions;

3) the domain can be subdivided into regions in which both steps are solved either by a discontinuous or by
a nonconforming finite element method.

The idea of decoupling the nonlinearity from the incompressibility condition dates back to the work of
Chorin [6] and Temam [25]. This method was known as the projection method and since then, it has been studied
and modified by several authors. The reader can find a good historical account in the introduction of [3] by
Blasco and Codina. Without being exhaustive, let us quote Fernandez-Cara and Beltram [10], Rannacher [22],
Turek [26], Guermond and Quartapelle [16], Quarteroni, Saleri and Veneziani [17], Almgren et al [2] and
Glowinski [14].

To our knowledge, there is very little in the literature on the analysis of discontinuous Galerkin methods for
Navier-Stokes equations. The Symmetric Interior Penalty Galerkin (SIPG) method (originally called interior
penalty method) and Non-symmetric Interior Penalty Galerkin (NITPG) method were first introduced for elliptic
problems by Wheeler [27] and Riviere, Wheeler and Girault [23]. The NIPG and SIPG methods for the steady-
state Navier-Stokes equations were first formulated and analyzed in Girault, Riviere and Wheeler [13]. In Kaya
and Riviére [18] both NIPG and SIPG methods coupled with a subgrid eddy viscosity method are applied to
the time-dependent Navier-Stokes problem. The method we propose, employs the STPG or NIPG methods, i.e.
the bilinear form that approximates the viscous term is either symmetric or non-symmetric. Qur numerical
experiments with both methods in Section 7 give accurate results.

The discontinuous Galerkin methods present several advantages: they are easily used on highly unstructured
meshes, they are locally conservative and they lend themselves well to domain decomposition. Furthermore, the
approach we propose satisfies a compatibility condition, which is important in air and water quality modeling
(see Remark 1.5). The coupling of the continuous regions with the discontinuous regions is useful in many
applications such as surface flow (see the application to shallow water in [9]), where the cost of using fully
discontinuous Galerkin methods can be reduced. However, in the forthcoming analysis, we shall see that we lose
optimality if the finite elements change when we pass from step 1 to step 2. In this respect, combining a simple
continuous finite element method with a discontinuous Galerkin method requires less degrees of freedom but is
less attractive than combining an appropriate nonconforming method with a discontinuous Galerkin method.
The nonconforming approach, which is locally conservative, appears to be a good compromise between strategies
1 and 2. Tt is interesting to note that none of the analysis below requires a quasi-uniform triangulation.
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Although this method and most of its analysis apply to 3D, for simplicity, we shall only approximate the
Navier-Stokes equations in 2D. The full problem is:

u—pAu+u-Vu+Vp = f, in Qx(0,7), (0.4)
Vou = 0, in Qx(0,7T), (0.5)

u = 0, on 990 x(0,7), (0.6)

u = wug, in Qx{0}, (0.7)

where 2 is a domain in IR? with Lipschitz-continuous boundary 8. As usual, we write formally:

2
8ui

2
ov
u-Vv—i:ZIuia—xi and V-u—i:zlawi.

It is well known that if f € L2(0,T; H~1(Q)?) and uo € H(div, ), then this problem has a unique solution
w € L2(0,T; HH(Q)?) N L=(0,T; L3 ()2), p € W10, T; L3()) and u, € L2(0,T;V") (see Lions [21],
Temam [24], Girault-Raviart [12]). Here, L?(f2) is the classical space of square-integrable functions with the
inner-product (f,9) = [,, fg , L3(Q) is the subspace of functions of L?(Q) with zero mean value:

L3(Q) ={veL*N): /Qv =0},

and H'(Q) denotes the classical Sobolev space:
HY(Q) = {v e L*(Q) : Vv € (L*(2))*}.

By definition, H}(Q) is the closure of D(Q) in H(Q), where D(f) is the space of infinitely differentiable
functions with compact support, H () is the dual of H}(Q), V is the space of functions of (H}(Q))? with
zero divergence:

V={ve (H}N)?: V-v=0}, (0.8)
and V' is its dual space. It is well known that Hg(f2) is characterized as the subspace of functions of H*(f2)
that vanish on 992. More generally, we shall use the spaces

Wh(Q) = {v e L"(Q) : Vv e (L"(Q))?},

equipped with the semi-norm
ol = ([ VoI,
Q
and norm for which it is a Banach space:

Iollwr @) = ([0lzr(@) + [0l @)/

These definitions are extended in the usual way to r = co. We shall also use
H*(Q) = {ve H'Y(N) : Vv e (H'(NQ))?},

with the semi-norm
|U|H2(Q) = |VU|H1(Q)
and the norm

loll =) = (||U||§11(Q) + |”|§12(Q))1/2
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We refer to Adams [1], Lions and Magenes [20] for these spaces and for extending them to fractional exponents.
As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time interval
(a,b) with values in a functional space, say Y (see [20]). More precisely, let || - ||y denote the norm of Y'; then
for any number r,1 < r < 00, we define

b
L™(a,b;Y) = {f measurable in (a,b) : / [|f@®)|ydt < oo}

equipped with the norm || f||zr(q,5v) = (fab lf ()| dt)'/", with the usual modification if r = co. It is a Banach
space if Y is a Banach space.

The outline of the paper is as follows. First, we present the discontinuous Galerkin method and the first
splitting technique. In Section 2 and 4, a priori estimates and suboptimal error estimates are derived. Section 3
contains L™ estimates. Improved (optimal) error estimates are proved in Section 5. The second and third
splitting methods are briefly presented in Section 6. The paper ends with numerical experiments in Section 7.

1. DISCONTINUOUS GALERKIN FOR BOTH STEPS

Problem (0.4)-(0.7) has the following weak formulation, valid a.e. on (0,7T):
Vo € Hy()?,  (w(t),v) + p(Vau(t), Vo) + (u(t) - Vu(t),v) = (p(t),V - v) = (£(t),), (1.1)
Vg € L§(Q), (V-u(t),q) =0, (1.2)
u(0) =up, in Q.
To discretize this problem, we introduce a regular family of triangulations of Q, &, consisting of triangles of

maximum diameter h. Let hp denote the diameter of a triangle E and pg the diameter of its inscribed circle.
By regular, we mean (see Ciarlet [5]) that there exists a parameter ¢ > 0, independent of h, such that

VE € &, h—E=CE§C (1.4)
PE

We shall use this assumption throughout this work. We denote by T'j, the set of all edges of &, i.e. the set of
all edges in the domain €. Let e denote a segment of I'y, shared by two triangles E* and E' of £,; we associate
with e a specific unit normal vector n, directed from E* to E' and we define formally the jump and average of
a function ¢ on e by:

9= @0l — @Il {8} = 56len)le + 5(lm0)e-

If e is adjacent to 02, then n. is the unit normal n exterior to 2 and the jump and the average of ¢ on e
coincide with the trace of ¢ on e. Then, we define the spaces of discontinuous functions

X = {vel?Q)?: VEec&, v|lge (W3 (E)?}, .
M = {qeLiQ): VEe&, qlpeWhH/3(E)}, (1.6)

and the broken norm, for any vector or tensor v:

Ivloe = (D I1vllZas)">

Ec&y
We associate with the spaces X and M the following norms

lollx = (IVollg.e + Jo(v,0)'2, (1.7)
llallar = llgllz2(),



where

To(w,w) =30 7 [ [u][o] (1.9)

ecl'y, €
Here |e| denotes the measure of e and o, is a jump coefficient bounded below by a sufficiently large constant
oo > 1 and bounded above by a constant o,,, both constants being independent of h, but dependent on the
method used. For the symmetric method, SIPG, each constant o, is adjusted in order to guarantee ellipticity
of the form a + Jy, see (1.21). For the non-symmetric method, NIPG, it is well-known that it suffices to take
each constant equal to one (for instance). However, we shall see in Section 2, that because of the splitting, each
constant o, has to be adjusted in order to prove stability of the algorithm. Nevertheless, our numerical results
in Section 7 tend to show that in the examples we have chosen, the error is not very sensitive to the choice of
0. when using NIPG.
On this triangulation, we define two finite-dimensional subspaces X C X and My C M:

X
My,

{vn € (L*(Q))*: VE €&, wne (IP1(E))}, (1.10)
{gn € L3(Q) : VE €&, qn € IPo(E)}. (1.11)

For simplicity, we derive the analysis for piecewise linear velocity and piecewise constant pressure. This is
consistent with the fact that we shall use a first-order discretization in time. We could consider a higher-
order approximations in space, but this would have to be matched by a higher-order approximation in time
or an appropriately small time step as demonstrated in the numerical examples in Section 7. To simplify the
discussion, we shall analyze in detail the standard discontinuous symmetric method SIPG and briefly sketch the
analysis for the non-symmetric method. In both methods, the incompressibility condition is enforced by means
of the bilinear form b: X x M - R

MM>=—ZLWW+Z P}lo] - e, (112)

Ecé&y, ecl'y, €

that is simply obtained by applying Green’s formula in each element to the left-hand side of (1.2). In particular
if pe H'(Q), then

Vo e X, bv,p)= / Vp-v. (1.13)
Q
Thus, we approximate the space V' defined in (0.8) by

V= {’Uh € Xy : Vqn € My, b(vh,qh) = 0}. (1.14)

Finally the nonlinear convection term u - Vu is approximated by the the following variant of Lesaint-Raviart
upwinding (see [19]) that was introduced in [13]:

va; ) EX) Z(;y ): ( V) -|-1 (v ) .

e cRE E;h(/Eu o 2/E uvw) (1.15)
1 int ext int ‘
—§eezrhl[u]-ne{v-w}+E;héE_|{u}-nE|(U — v W™,

where
OFE_ ={x € OE : {2z} -ng < 0},

the superscript z denotes the dependence of OE_ on z and the superscript int (resp. ext) refers to the trace of
the function on a side of E coming from the interior of E (resp. coming from the exterior of E on that side).
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When the side of E belongs to 91, then we take the exterior trace to be zero. Note that ¢ (u;v,w) can also
be written as

Fluv,w) = Y (/E(u-Vv)-wwL/BE_I{u}-nEl(vi“t—vext)-wint) —%b(u,v-w).

Ecén

Thus if v is continuous, we have

c(u; v, w) Z/uV’u w——b(uvw)

Ecé&y

The superscript z is dropped since the integral on 0E_ disappears. It is proven in [13] that for all u,v,w € X,
we have
u(u;vau0 :__EU(

c U;IU,U),

where

e (usw,v) == Y (/E(u-Vw)-'an%/E(V-u)w-v) —% /[u] n{v-w}

E€&y GE(Fh)\(aﬂ)

+ Z / H{u} - ng|(w™ — w™) - Z |u-ne|v - w.

Eeg, Y (OB-)\( ‘99) eeaQ e

(1.16)

This implies that for all u,v € X,
M) =3 3 [ sl +5 Y w - mslolP (1.17)
2 pez. 2 5z, JoEo)new)
where || - || denotes the Euclidean norm.

1.1. Approximation with SIPG
In SIPG, the diffusion operator is approximated by the bilinear form a : X x X — IR

a(u / Vu: Vv — Z /{Vu}ne- Z /{Vv}ne- . (1.18)

Ecé&y e€ly e€l'y

Considering this form a, it will be useful to introduce another mesh-dependent norm:

1/2
Vwe X, [v]= (IIUII% + ) lelll{vo} -nelliz(e)> -

eel'y,
Then, we have
Vu,v € X, |a(u,v)| < [uf [v]. (1.19)

Note that when v € X}, the equivalence of norms in finite-dimensional spaces implies that there exists a
constant C' independent of A such that

Vo€ X, (Y Iell{Vo} nellta) < ClVoloo: (1.20)

ecl'y
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As far as the ellipticity of the form a + Jy is concerned, it is established in [27] that, if the coefficients o, are
sufficiently large but independent of h, there exists a constant K > 0, also independent of A, such that

Yo, € Xp, a(vn,vn) + Jo(vn,vn) > Klval%- (1.21)

In the sequel, we shall always assume that (1.21) holds so that a + Jy is elliptic. As far as the inf-sup condition
is concerned, it is proven in [13] that the pair of spaces defined by (1.10), (1.11) satisfies a uniform discrete
inf-sup condition. More precisely, with the space

Xhz{UhEXh :Ve € Ty, /[fuh]:(]}7 (1_22)

we have the following result:

Lemma 1.1. There exists a constant * > 0, independent of h, such that

inf  sup —2UnPR) o g (1.23)
Ph€Mi g, X, lvallxlpalla
Discretization with respect to time is done on a uniform subdivision of the interval [0,T]. Let N > 2 be an
integer, At = % and t/ = jAt, 0< j < N. Since the approximation both in space and time are of order one,
we assume that h and At are of the same order, i.e. there exist constants vy and ; independent of h and At
such that
YAt < h <y At. (1.24)

. ~ i1
The discrete scheme consists of two steps. First, knowing U’ € V', find U al € X, solution of

1
At

~ j4+1 ~ j+1 wj+1

Vou € Xn, (0 U w) b (6@ wn) + 0@ o))+ U @907 v = (FH w). (125)

Second, find U*! € X, and P#+! € My, solution of

Von € Xy, (U - T on) + (a(Uﬂ+1 — U wp) + St — U’“,fuh)) + b(wp, P71 = 0,
(1.26)
Vg, € My, bU™ g¢) =0. (1.27)

At time ¢t = 0, U? is a suitable approximation of u that we specify later. The term }'J denotes an appropriate
approximation of f at time #7. To simplify the analysis, we choose

[
N i1 ’

but this is only a matter of convenience. As far as existence is concerned, given U7, (1.25) has a unique solution

owing to the ellipticity property (1.21) and the positivity (1.17) of ¢. Similarly, given U J+1, (1.26), (1.27)
has a unique solution owing to the ellipticity property (1.21) and the inf-sup condition (1.23). By summing
the two steps, the consistency of the scheme follows from the following lemma. We skip the proof, which is
straightforward.

Lemma 1.2. Formally, the solution (u,p) of (0.4)-(0.7) satisfies a.e. on (0,T):

Yo € Xp, (ug,vn) + p(a(u, vr) + Jo(u,vr)) + c(u; u,vp) + b(vi,p) = (f,vn). (1.28)



Now we recall some approximation properties of the spaces X, and M. For Xy, let Ry, € L(H'(Q)%; X4)
be the operator defined by

Yv € HY(Q)?, Ve € Ty, /(Rh'u —v)=0. (1.29)

e

It is easy to see that (1.29) defines a unique function Rpv € X}, (see [7]) and implies that

Vo € HY(Q)?, / V- (Rnv — ) =0, (1.30)
E
Vo € H}(Q)?, VeeTh, /[th] —o0. (1.31)
Thus, we have
Yo € H&(Q)Z, Vay € My, b(’U - Rh’U,qh) =0. (1.32)

Furthermore, since Ry, preserves the polynomials of /Py in each element, it satisfies the error bounds:
VE € &,,Vs € [1,2], Vr > 2,Vv € W (E)*, m = 0,1, [v — Ryv|wm.r () < Chy " |v|wer(p)- (1.33)

For My, let r, € L(L3(); M}y,) be defined in each E € &, by:

VE € &, /(rhq—q) =0.
E

Then
Vg€ H*(E), Vs€[0,1], [lg—rnqllr2m) < Chilalu-(m)- (1.34)

From (1.31) and (1.33) with s =m =1 and r = 2, we easily derive the next lemma.

Lemma 1.3. The operator Ry, satisfies the following stability property: there ezists a constant C' independent
of h such that,

Yu € H&(Q)2, [|Rhul|lx < C|u|H1(Q). (1.35)
We have the following consistency error for a:

Lemma 1.4. There ezists a constant C, independent of h, such that for all w in (H*(Q) N H(Q))? and all vy,
m Xh:

la(u — Rpu,vp)| < Chlu|gz(q)llvn|lx. (1.36)

Proof. In view of (1.19) and (1.20) it suffices to prove that

Vu € (H*(Q) N Hy(Q)?, [u— Ryul] < Chlulgz(o). (1.37)
This follows easily from (1.33). O
Remark 1.5. The proposed splitting technique satisfies the compatibility condition of zero accuracy described

in [8] where piecewise discontinuous linears are used in a discontinuous Galerkin transport scheme. In other
words, constants are reproduced when an approximate velocity defined by (1.26), (1.27) is used in transport.



1.2. Approximation with NIPG
In NIPG, the form a is replaced by

a(u,v) Z / Vu: Vv — Z /{Vu}ne- Z /{Vv}ne- , (1.38)

Ecé&y, ecly ecly,

and for the moment, we take each constant o, > 1 arbitrary. All the other terms are unchanged and the
formulation of the discrete problem is given, with this new form a, by (1.25)-(1.27). Clearly, all the properties
listed above are preserved and (1.21) is improved since

Yon € Xp,  a(vp,vn) + Jo(vn,vn) = [losllk- (1.39)

2. A PRrIORI ESTIMATES
In this section, we prove that the scheme (1.25)-(1.27) is unconditionally stable. The proof uses the discrete
Poincaré inequality (3.14) in the particular case where r = 2.
1. Approximation with SIPG

Lemma 2.1. If the ellipticity (1.21) holds, the sequences U’ and o’ defined by (1.25)-(1.27) satisfy the
following a priori estimate:

N— N-1

—

. +1 +1 : +1
[0V By + 3 (107 =07 By 41677 = U)X At S [ 407} mallfo 1
j=0 j=0 Ecé&y

N-1 ) .
Yay [ U g0 e | 307+ ZHU I+ 3107 - O

=0 Ecg,, Y (0E-)N(69Q) j=1 j=1

202 &
<0l + 522 3 817 (2.1

where K is the constant of (1.21) and Cy is the constant of (3.14) with r = 2.

J+1

Proof. First taking v = U’ in (1.25) and using (1.17), we obtain:

X (|| T By — 107 3oy + 1107 — anim)) +u (@0 + 2@ T)
+ Z / {U} -ng |||[UJ+1]”2 Z / U ‘nE|||ﬁj+1||2 _ (}j+1’0j+1)‘ (2.2)
Eeg Eesh dE_)N(8%)
Next taking v = U’*! in (1.26) and using the symmetry of a and (1.27), we obtain
iz (107 By = 107 gy + 1074 = 07 0
+g (a(UJ“, Uity — @, 0 4 auitt - 07 Ui - Uj+1))
+§ <J0(Uj+1, Uith - @ o' + ot -0 it ﬁj+1)) -0 (2.3)
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Summing (2.2) and (2.3), and using the ellipticity (1.21), we obtain

1 j+1 i1 ,
AL (||UJ+1||L2 )—||Uf||L2(m+||Uf+1 O oy + 1107~ 0 )
3 j+1 2 4 j RS
43 [ O R S U7 mgl 07 (24)
EES EES (BE_)N(892)
+H j +1 FiH1 it
(||UJ+1||X+||UJ B+ 1T+ -0 3) < 17T

We now derive an estimate that is proportional to T and essentially inversely proportional to the viscosity. First
from (3.14), the right hand-side of (2.4) is bounded as follows, for any € > 0:

FiH1L it yES) 2+l . 1 C§ | wit+1
(F, )| < I1F* ||L2(Q)||U llr2(e) < Collf’ ||L2(Q)||U "lx < —IIU 1% + 2—2||fj 1720
Choose € = %, then (2.4) becomes
1 - ; A j+1 ;
i (7122 0y = 107 3y + ||Uf+1 2@ + 107 = U3
=S / U} - msl 0P+ 5 3 / U7 g0
EeE Eeé‘ E_)N(o%)
. i+1 . +1 C2 i+l
+150 (I07 1B + 107 B + 10741 - 0771 ) < S 1F
The result follows by multiplying by 2At and summing from j =0to j = N — 1. O
y plying by g J J

2.2. Approximation with NIPG

The scheme (1.25)-(1.27) is also unconditionally stable for NIPG provided each constant o, is sufficiently
large, but independent of h. More precisely, we assume that each o, is chosen so that:

e 1
weXn, 3 [1von? < SIvolia (2.5)

eEFh
Tt is easy to check that (2.5) holds provided that
Ve€Ty, o9<Loe<om,

for op > 1 and o4, both independent of e and h (but possibly different from the constants of SIPG). Then
Lemma 2.1 is replaced by
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Lemma 2.2. Assume that (2.5) holds. Then, the sequences U’ and U’ defined by (1.25)-(1.27), with the form
a defined by (1.88), satisfy the following a priori estimate:

N-1 N-—
; j+1 j+1 ; j+1
10N ey + 3 (107 =0 ey + 107" = U7 aga)) + Yary | o ni e
=0 j=0 Ee&y, -

N-1

+ > At
7=0

N
j+1 m
Z /(aE ) (BQ)|UJ nsll0 1 + 52 (||UJ||X+||U ||X)
_)n =

Ecén

< U720 + — ZAt”f 1Z2(q)» (2.6)

where Cy is the constant of (3.14) with r = 2.

Proof. Asin Lemma 2.1, we start with (2.2), but in (1.26) we cannot use the symmetry of a, so instead of (2.3),
we have:

. i+1 I+1
7 ’ ||L2(Q + Uit - T’

Jj+1

Bae)
.H-l
B + U7+ - ||X)

(Y (90 e = Y [(U e 07 =0 (27)

ecl'y e€l'y

57 (107 sy = 10

+£ (Il — 1o

and we must find an upper bound for this last factor of u. This term can be written:

3 /{VU’+1 USRS /{VUJ“} ne-[0771=Y / (v@* - UuitHin, - U

ecl'y ecl'y ecl'y
+3 / (VU Y, - [UH — 071
eel'y,
e J+1
<3 Ee@™ - v e + 3 3 0
eEFh eEFh
e ag ]+1
+3 2 VUl + 5 T IO -0 e
eGFh eth
. . 1 J+1 - ‘
< U B+ 107 — o

where we have used (2.5) in the last inequality. Then substituting this bound into (2.7) and adding (2.2), we
derive

1 j+1 ; ; j+1
oz (107 i) = 107 gy + 107 = Ul gy + 10741 = 07 1))
j+1 j+1
2 (GBI ) + 5 5 [ e e
E'Egh
1 j it o j+1 C3 33+ 2
> Um0 < S0 B+ S
2 (= Jor_n(en) 2

Finally, (2.6) is obtained by choosing € = £ and summing over j. O
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Remark 2.3. The estimate (2.6) is slightly better than (2.1) because it does not involve the factor K that is

likely to be smaller than one half. On the other hand, it does not give an estimate for Ej\;l AU - T ||%,
but we shall not use this term further on.

3. L" ESTIMATES

In the sequel, we shall require some estimates in L™ and interpolation estimates for the functions of Xy.
These are a refinement of the L" estimates proven in Lemma 6.2 of [13].

We first define a postprocessing technique: with any function uj in X5, we want to associate a function @y
in X, (see 1.22). To this end, given an interior edge e € T';, common to two elements E! and E? in &, such
that m, is outward to E!, we construct a piecewise IP; function ). as follows. Let b, denote the midpoint of e
and let A\, € IP1(FE) for all E € &, be defined by

Ae(be)m =1, Ae(b)lpz =0, A(be) =0 Ve' €Th, € #e.

Thus, A, vanishes over all triangles other than E} and
1
b =1, o /[Ae] -1, / N]=0, Ve'eTh ¢ #e.
e e’
If e € Ty, lies on 02 then we simply set

de(be) =1, Ae(ber) =0, Ve' €Ty, € #e.

Now, for any uy, € X, define @, € X, by:

Up = wp — | |/uh (31)

ecly,

Ve € Ty, /[uh] /uh ||/uh/[/\]

and hence @, € X,. The next two lemmas show that @, and wy are closely related.

Then,

Lemma 3.1. There exists a constant C, independent of h, such that

Yup € Xy, ||uh — 'ah”X < CJo(uh,uh)1/2. (3.2)

Proof. Tt suffices to consider a component of uy, denoted by wuy. Let us first study the gradient part of the
norm. By (1.4), we have for any E € &:

IV =@l < 3 0|l
e€OE

1
< C’1|E|1/2 Z B |1/2||[uh 2@ VAl 25y < Co Y |e|1/2”[uh]”L2(e)a
CEBE e€cOF

IVAcllz2(m)

where here and in the sequel, the hat superscript denotes the reference element and quantities related to the
reference element. Thus,
(Y IV(un = @n)ll72(m)""* < Cao(un,un)'/>. (33)
Ecé&y,
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Next, we consider the jump term. For any interior e € T'p,, the set of edges e’ € Ty, for which [A/]|le # 0 is a

subset of the union of e and the edges of 3(E! U E?), and if e C QN AE], it is a subset of AE!; we denote this
set by S.. Therefore,

_ 1 R
I[un — ]llz2(ey < Cale]* > |e,|—1/2”[uh]”L2(e’)||[)‘6’]||L2(é)-

e'€S.
Hence,
1
ez llun = anlllizn < Cs D ,|1 i llnlllzece,
e'eS.
and thus
Jo(up — @n,up — @r)'/? < CoJo(un, un)/?.

This completes the proof. O

Lemma 3.2. For any r € [2,00], there exists a constant C,. depending on r but not on h, such that
Yup € Xh, ||uh - ﬁh”Lr(Q) < Crhz/TJo('U,h, uh)1/2. (3.4)

Proof. Let E € &, and let 2 < r < 0o. As in the proof of (3.3), we write for any component uy, of w:

llun = @nllLr () < CL|EM™ Y B |1/2||[uh]||L2(e)

e€OFE
Then summing over all E and applying Jensen’s inequality (that is valid since r > 2), we obtain
lun — @nllz-y < Coh®/"Jo(un, un)/2.

When r = oo, let E be any element where the maximum value of |up — @] is attained. Then,

I;lea%(|uh(m) - Uh | < C3 EzaE ‘ |1/2 ||[uh ||L2(€)7

and we recover again (3.4). O

Lemma 3.3. There exists a constant C, independent of h, such that
Yuy € Xh, Jo(’l_l,h,ﬂh)l/2 < C|||V’l_1,h|||L2(Q) (3.5)

Proof. Let uj, be a component of @, € X. For any e € T, as up|e has the same mean value, denoted by m.,
coming from E! and from E2, we can write (for simplicity, we assume that |é| = 1):

I[unlllz2cey = el ?[lan] g1 — tinl gollz2 ey = lel*21(in — me)| g1 — (an — me)| gollz2ce)

< [el'* (I @n = me)l g 2oy + 11 (n = me)| g2 lln2ce) -
Similarly, if e lies on 012, since the mean value m, = 0, we have
Ifun]llzz(ey < le| /2 ||, — Mel|L2(2)-
As the mean-value is preserved by the transformation that maps e onto €, we obtain

Hfunlllzzey < Culel2(I¥nl g, + ¥nll agim):
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Hence,
iz < ColVunlioe + [Vunlliary).
thus implying (3.5). O
Now we define a lifting function @(h) of up, as in [13]: w(h) € (HE())? is the only solution of

Yo € (HL(Q))?, /Qw(h):wz > /Ewh:w. (3.6)

Eeén
From (3.6) and (3.3), we immediately derive that
IVa(h)llz2 @) < IVarllzz@) < Cllunllx. (3.7)
Lemma 3.4. For any r € [2,00), there exists a constant C,, depending on r but not on h, such that

[|lwn, — ﬁ(h)|lLr(Q) < CThz/TJo(uh,uh)l/Z if r>4, (3.8)

llun — @(h)||Lr) < Crh?Jo(un, up)'/? if 2<r<A4. (3.9)

Proof. Again, we consider one component up, of up. Since we have (3.4), it suffices to prove that (3.8), (3.9)

hold for 4y, — @(h). The proof is similar, but sharper than that of Lemma 6.2 of [13]. We proceed by duality
and write with 1/#' +1/r = 1:

Jo(@n —a(h))g

llur, —u(h)||Lr(@) = sup i (3.10)
gerr (@) 9l
For a fixed g in L™ (Q), let ¢ € H}(Q) solve:
-A¢p =g, ¢loa=0. (3.11)
When r > 4, then 7' < 4/3 and it follows from [15] that ¢ € W™ (Q) with
¢llw2 @) < Cr(r)llgllLr (q)- (3.12)

When r < 4, then 7' > 4/3 and g belongs always to L*/3(2). Therefore we also have ¢ € W2*/3(Q) with

8llw2arai@) < Cr(4)llgllzars@) < Ca(P)llgll L (q)- (3.13)

From (3.11), we derive

[ @~ atg = - [ Ao~ an)
=> /Ew- (Van = Vah)) = > | Vé-ng(an—ah) =—->_ [ Vé-nlun],

Ecén Ecé&n oFE ecl'y, V€

owing to (3.6) and the regularity of ¢ and @(h). Thus, the zero mean-value of [4p] on each e implies that for
any constants c., we have:

/Q @ —atg=— 3 [(V6-n. - co)lan]

eely, v ¢
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Let E be a triangle adjacent to e and take ¢, = ¢ - n, where

c=%/EV¢.

Let 4 <7 < oo. Then 1 < 7' < 4/3 and the trace of V¢ on each edge e belongs to (L* (e))? with 1/s' = 2/r' —1
and 1 < s’ <2. Then, with & + 1 =1,

|/<V¢—c) el < Vo — ¢

L (o)1 [@n]llLe(e)-

On one hand, passing to the reference element, applying the trace theorem with this value of s’ and using the
definition of ¢, we have

Vo — ¢l

Lo'(e) < C3|€|1/8’|V¢’|W1m’(E) < Cule]'* hp| B[ [Vl 5y < Cs5| VOl (-
On the other hand, a local equivalence of norms gives:

1l@n]llze(e) < Colel"*[l[@n]llz2cey < Cole”* /2[|[an]ll2(e)-
Combining these two inequalities, we obtain

_ 1 _

| /C(qu — c) "N [uh]| < C7h2/T|V¢|W1,7J (E) W”[uh]”[lz(e)'
Then, summing over e, applying Jensen’s inequality and (3.12), we obtain for r > 4:
I/Q(ﬂh —a(h))g| < Csh®'" Jo(@n, @n)""*|lgll 1 0-

When 2 < r < 4, we apply the above result with the exponent ' = 4/3 and we use (3.13):

|/Q(ﬂh —a(h))g| < Coh'Jo(@n, @n)""*|lgll 1 (0-

This concludes the proof. O

Remark 3.5. Of course, by combining (3.7), (3.8) and (3.9) we recover the L" estimates of [13]: for any
r € [2,00), there exists a constant C,, depending on r but not on h, such that

Vup € Xp, |lunllzr@) < Crllunllx. (3.14)

Remark 3.6. When 2 < r < 4, we can improve (3.9) by restricting the angles of . In particular, if r = 2
and (Q is convex, we recover a full power of h:

llun — @(h)l|L20) < Chdo(un, un)'’>. (3.15)
This follows from the fact that (3.13) is replaced by:

18l z2) < Cllgllz2(q)-
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Remark 3.7. We easily derive from the above results that there exists a constant C,., that depends on 7 but
not on h, such that for all u in (H}(Q))? and all uy in X}, we have

llur — ullr @) < Crllun — ul|x-
Indeed, since @ = u, we associate w(h) to @ — u as in (3.6). Hence, Sobolev’s imbedding gives
lun = ullzr@) < llun —u —u(h)||z-(@) + Cila(h)|m(0)-
Then, we easily check that (3.4), (3.8) and (3.9) hold for u; —u and it suffices to bound |@(h)|g1(q). But
[w(h)|m1 (@) < IV (n —u)lL29)-

Then Lemma 3.1 gives the result.
Finally, when r = 4, we derive an analogue of the well-known interpolation inequality, that is valid in Hg (2):
1/2 1/2
Vo€ Hy(9),  [llzacey < 2/ loll ooy I V0l g (3.16)
Theorem 3.8. There exist constants C;, 1 < i < 3, independent of h, such that
Yun € Xn, lunllze@) < Cillunllfsg, llunll¥® + Cah'/* Jo(wn, wn)*lunll¥? + Csh'/ Jo(un, wn)'/2. (3.17)

When Q is converz, the above equation simplifies to

Yun € Xn,  llunllza@) < Crllunlligy lunlly® + Cabt/2Jo (wn, wn)/* llunll}* + Cht/2Jo (wn, un) /2.

Proof. Consider one component up, of wp. From (3.8) and (3.16) we infer
lunllzsoy < llun = @)l za) + @001 Ls@y < CrhM Jo(un, un) /2 + 24 [a(h)| oty IV AR I1510) -
Then (3.7) and (3.9) give

||uh||L4(Q) < Clhl/QJg(uh,uh)1/2 + Cg||uh||§(/2 <||uh||2/22(9) + C3h1/4J0(uh,uh)1/4) .

This implies (3.17). When {2 is convex, the result follows by applying (3.15) instead of (3.9). O

4. FIRST ERROR ESTIMATE FOR VELOCITY

In this section, we obtain a first error estimate for the velocity that is suboptimal in time, namely of the
order O(h + At'/?). An improved optimal estimate is obtained in Section 5.

We shall need the following estimates for the trilinar form c¢. The proof is similar to that of Lemma 6.4
of [13], but we write it here for the reader’s convenience.

Proposition 4.1. (i) Assume that u € W1 (Q)? for some r > 2. There exists a constant C that is independent
of h, such that for all v, € Vi, and wy, € Xy,

e(on; w,w1)| < Clulywsr ey ol xllonlx ). (4.1)
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(ii) If u € H?(Q)?, then for any z € X, vy € V, and w € X}, we have
|c* (vh; Rhts — w,w3)| < C(IRhu — ulwrr (o) + '/ ulm2()[vnll L2 1wl x- (4.2)
(#i) Finally, for any z € X, vy, up and wy, in X, we have

|c® (vn; un, wa)| < Cllonllxllunllxlwnllx. (4.3)

Proof. (i) Since u has no jumps, we can write:

1
C(’Uh;u,wh) = Z / (Uh, - V'U:) sWph — Eb('Uh,’U, - ’LUh).
Ecéy E

The first term is bounded by virtue of (3.14):

> /E(Uh -Vu) - wp < |lvsllzze) IVl @ llwill L @) < Crllvsllzze) lulw- @) llwnllx,
Ec&y

where 1/r+1/r' =1/2,7 > 2, r' > 2. To bound the second term, we use an argument of Girault and Lions [11].
Denote by c¢ the piecewise constant that is, in each element E, the scalar product of two constant vectors c¢; - ¢s.
In view of (1.14), we can write

b(vp,u-wp) =b(vp,u-wp —c1 - c2) = b(vg, (u—c1) - wp) + b(vg,e1 - (wy — ¢2)).

C 1 /U C ! /’LU
= — , = — h-
LBl e B e

l(w —e1) - w2y < llu — erllr@)llwallp 5y < Crhllwill g (g lulwir(g)- (4.4)

Let us choose in each E:

From the definition of r’, we have

Similarly,
ller - (wn — e2)llr2p) < llewllllwn — eallz2m) < Co2hl|ullp=(g)l|Vwh| L2(E)-
Hence, using locally an inverse inequality in each E, we have:
|/EV'vh(u"wh —c1 - e2)| < Csllvnllr2(m) (|u|Wl’T(E)”'wh||LT'(E) + ||u||L°°(E)||th||L2(E)) :
To estimate the edge terms in b, we consider one element E! adjacent to e and we apply the trace theorem:
(w = €1) - whlmrllr2e) < Calel2(|EL T2 ([(w — e1) - whllre(m) + [IV((w — €1) - wh)l z2(m))-
We apply (4.4) to the first term and for the second term we write

IV((w —e1) - wh)llr2er) < IVullpr e llwall e g1y + Csllullpe (g1 [[Vwll 2 ey -
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Hence, using a local equivalence of norms and denoting E.? = E} U E?, we obtain
|/e{(u —c1) - whpton] - ne| < Collvnllpz(mr) ([wlwrr g2 [[wall L (g12y + |6l e (m12)) | Vwr] L2 (822))-
The second edge term is easier since it only involves equivalent norms:
I/e{cl “(wh — e2)}vn] - me| < Crllullpe= ) IVwhllL2(e22)llonllL2s2)-

Then summing over all elements and edges, applying Holder’s inequality, (3.14) and Sobolev imbedding, we
obtain:
Vop € Vi, Ywp € Xp,  |b(vn,u-wh)| < Csllvnllrze) lulwir @ llwal x. (4.5)

(ii) To establish (4.2), observe that the above argument applies to Ryu — u instead of u for all except the
upwind term. Using the approximation properties of Ry, and (3.14), the upwind term is bounded by

Co Y~ lonllzao lwallzae) IRAu = ulll 2
ecl'y
< Co Y le[*|BI7 2 vnllzqe e BT [whll L e/ (B2 Raw — |26y + |V (Baw — )| L2s)
eel'y,

<Cn Y, hy vl o2 o) lwnll ey [ 2 sy < Crah2ul oy lvall L2 ) llwn | x.
Ecé&y

(iii) We skip the proof of (4.3) because it is straightforward. The proof of a sharper version is given in [13] when
vy, belongs to V. O

We denote the errors between the numerical solutions and the approximation by e/ = U? — Ryu’ and

& =0 - Rpu?, where u’ (-) stands for u(#7,-). The following lemma shows exactly where the loss of optimality
occurs. It is valid for both SIPG and NIPG.

Lemma 4.2. Assume that p € L?(0,T; H'(Q)). Then for each n > 0, there ezists a constant C that depends
on n but not on h, such that:

i+l

» 1. : ,
| y b, p)| < J11E7 — e[y + nAHleT X + (Ch* + ADIIVPITw 1i41;12(0)2)- (4.6)
J

Proof. Since /! € V', we can write
b(éj+lap) = b(éj+1 - ej+17p) + b(6j+1,p - Thp)‘

Now, (1.13) implies

tj+1
|/ bt — et p)| < [|&7F — || pag) A2Vl Lo i1, 12(0)2)
t

< et - ej+1||%2(9) + AVplIT2s p5+1;1200)2)-

N
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On the other hand, the approximation property (1.34) of rj implies
b(e”*,p—rap)| < Clle”H x| VpllL2(g)-

Therefore, for any n > 0,
tj+1
(et p—rap)| < ALl 1% + CR2(IVDIT 245 i+1,12(0)2) -

I
ti

This concludes the proof of (4.6). O

The next theorem establishes an a priori error estimate for SIPG.

Theorem 4.3. Assume that u € L>(0,T; H*(Q)?), u, € L2(0,T; H*(Q)?), p € L*(0,T; HX()), uo € V and
U° = Ryug. If the ellipticy (1.21) holds, there exists a constant C, independent of h and At, such that

N-1 N-1 N-1
. » . 1 » . . L
ey + 3 18— ey + 5 3 187 e ey + 3 A S [ U9} mallfe
=0 i=0 =0  Fee, JOB-
N-1 ) ) 1 N-1 i .
+Y ALY 5o U7 -np|ll&** + S Kn > At(lle % + e % + [l — &%)
j=0  Ec&, -)n j=0
< C(R* + A% + At).
(4.7)
Proof. 1) Error equations
Integrating (1.25) between #/ and #/*! and using (1.28), we derive:
j+1 +1 j+1 A +1
~ . ~ ~ J . ~
Voi, € X, (U”‘—tﬂnm)+uAﬂaaﬂ+,vw+ahaﬂ+,vny+/i WU on)
t

i+l $i+1 $i+1

c(u;u,vp) +/ b(vp,p).

:(uj+1_ujavh)+ﬂ/ .
ti

ti

mmmn+%mmm+/

ti
Now inserting the approximations Rpu/*! and Rpu’ and choosing v = &/, we obtain a first error equation
$+1 . $I+1

i . _ .
Y (Ui et it +/ c(ed;u, &l tt)

@1 — e, &) + pAt (a(@F, &) + Jo (@7, &) + /
2

t

it
= (W — Rputt — (u! — Rpud), &) + ,u/ (a(u — Ry, &) + Jo(u — Rpu’™t, &71h))

t
tj+1

+/ ch(Uj;u—Rhuj+1,éj+l)+/
.

tj+1 tj+1
c(u — Rpu?;u, &) + / b(E& ™, p).

t

t
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Applying (1.17), this implies

1. . » . L L
§(||e1+1||%2(9) — €7 ]72() + [1E7F! — € |[72q)) + pAt(a(@t,&7H) + Jo(&?+!,&7t))
tJ+ t.7+
WhensllE B+ [ X [ sl
/t E; / E;}L (8E_)N(89)
t]+1 tj+1
+/ c(ed;u,e’t) = / ((w — Rpu)g, &) (4.8)
I ¢
it
b [ (alu - B, 4 o~ Ryut, 1))
7
tj+1 i tj+1 tj+1
+/ U (Uf;u—Rhuﬂ'+1,éJ+1)+/ c(u—Rhuf;u,éJ+1)+/ b(&t, p).
9 7 I

Similarly, inserting Ryu’*! in (1.26), we get a second error equation:
Y, g g

— (& — &7 wp) + pla(eltt — &t vy) + Jo(elTt — &7 vy)) + b(vp, PP = 0.

Yoy, € Xh, At

Choosing vj, = e/, integrating between #/ and #/*! and using (1.27) and the symmetry of a, we derive
Lo 2 Sj1y2 Gl sitlg2 pPAL i i 1 i1
5(”6 Iz2c) — €7 lIz2) + I — & Iz2q)) + T(a(e ,€) + Jo(e”T, €M)

_a(éj-‘rl’éj-i-l) _ Jo(éj-‘rl’éj-i-l) + a(ej-i-l _ éj+1’ej+1 _ éj+1) + Jo(ej-‘rl _ éj+1’ej+1 _ éj+1)) =0.

(4.9)

Summing (4.8) and (4.9), we obtain a third error equation:

||ej+1||i2(9) - ||€j||2Lz(Q) +]jet - €j||%2(9) + ||t - éj+1||i2(9) + pAt(a(et, &) + Jo(e?t, e tY)

+a(@@T, &) + Jo (et &) + a(ef Tt — &I eIt — &) + Jo(efTt — & eI — &I t))

tj+1

D B CA RIS YYDy / TonglletP 2 [ eeliu et
Eeén Ecé, Y (0B )0(89) ti
it g+t
=2 / ((u — Rau)e, &+) +2u / (a(u — Ry, &7F1) + Jo(u — Rpuit! &™)
ti ti
i+t . i+t i+l

+2/ U (U%;u — Ryu? ™, &) +2/ c(u — Rpw?;u, &) +2/ b(e’tt, p).

ti ti i

(4.10)

By virtue of (4.1), for any € > 0, we have

tj+1
|2/ c(€’;u, &) < eAtf|eTHX + CllullTzgs i, w2 €0 17203
t

J
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in this proof, C' denotes various constants that depend on €, but not on h and At. Therefore, from (1.21), the
left-hand side of (4.10) is bounded below by

||€j+1||2L2(Q) - ||ej||%2(9) + et - ej||i2(9) + et - éj+l”%2(9) + At Z /BE {U7} - ngplll[&)7?
Ee&y -

+AE Y U7 - npllle” | + KpAt(le 1% + €75 + lle't — &%)
Bea, ) (0B_)n(59)

—eAt]|&7 1% = Clle? 72y 1l T2 s+, wrr @)2)- (4.11)
2) Upper bound of linear terms
We now bound the linear terms in the right-hand side of (4.10); first (1.33) gives

g+ (it

(( — Ryu)r, &) < CIIE 120 / Vel 2@

.
< CRAE &7 ooy el o ey < A&7 By + CRP e o oo sy (412)

We rewrite the second term as follows:
a(Rpuw/ ! —u, &) = a(Rp (W —u), &™) + a(Rpu — u, &’h).
Applying (1.19), (1.20) and (1.35) to the first term, it is bounded by
a(Rp(u*" —u),&*) < C||Ru(u’™" — w)|[x [ [|x < Cluw*! — ulm o)ll&”||x
<O = 0 2wyl 2 ws i@ 1€ | x -
Next, by Lemma 1.4,
|a(Rhu — u, &+Y)| < Chlulm ) ll&" || x-

Thus,
tj+1
| [ a(Raw/™ —u,&th)| < eAtl[e” % + CAL|lwillZogs i i )2y + CH2lullT2gs itr o (yey-  (4:13)
ti
Because of the regularity of u, the jump term satisfies:

Jo(Rputt —u,&@th) = Jo(Rpud™! —wftt &/ th),

Hence, by (1.37)
i+l
| y Jo(Rpuw Tt —u,&7th)| < ChAtluJ+1|H2(Q)||éJ+1||X < eAt||em% + ChZAt||u||2Lw(0,T;H2(Q)2). (4.14)
3) Upper bound of nonlinear terms
Now, we estimate the nonlinear terms. The first nonlinear term is split as follows:

J

VU Rpwi ™ —w, 6ty = U7 (e7; Rpw?™ — u, 6 + U7 (Rpud; Ry (uit! — ), &811)

+ U (Ryw?; Rpu — u, &), (4.15)
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By noting that the upwind term involving Ryu’*! —u is the same as the one involving Ryu/*! —u/*!, we can
apply Proposition 4.1 to the first term in (4.15) and obtain

1V (7; Rpuitt — u, &) Clle? |z2@y 17t || x (|Rhu? ™t — ulwrr (o) + B2 |ulm2(0))

<
< Cllullpe=(o,r;m2(2)2) € |2 [1E7 || x -

For the second term, by applying (4.3) and (1.35):
1V’ (Ruu?; Ri(ui*' — u), &) < (5" — )2 [l | g o el 2 o1, )2 187 (4.16)
The third term is bounded straightforwardly as follows
eV (R Ry — w, &) < Chlud| s o 2= o 167 .

Thus, combining all terms in (4.15):

it )
J . . o i p .
[ U (U Ryt — w,&h)| < eAtl|&i % + CAtull} (0,1, m2(0)2) 1€ 1 12(0)
tI

FOAL [l L oo 0,711 ()2) 1t T2 (45 541,101 ()2) + OBl Lo 0,711 (002 10| 2245 54111202y 2) - (4.17)

The other nonlinear term is rewritten as:

$it1 I+l I+l

/ c(Rpw! —uju, &) = / c(Rpu! —w/u,&tt) +/ c(uw —u;u, &)
ti 3

t

A slight variant of the argument in Proposition 4.1 gives
|c(Rhuj — ’U,j; u, éj+1)| S Ch2|uj|H2(Q)|U|W1,4(Q)||éj+1||x.

The second term reduces to:
j ~j4+1 j ~j+1 ¢ a’U, ~j+1
c(w —u;u, ) = E (W —u) -Vu- &7 =— E 5 -Vu-é
. =
Eee, ' B t peg, VE

t
ou -

< —_— 2 1,4 eitl 4 .

< /t:‘ ||67_||L (Q)|u|W’ (Q)||e Iz (Q)

Thus,
$+1
|/t, c(Rpu! — uyu, &) < CALY2(|&H || x (Atl|ull Lo 0,75 w18 )2) 16l L2015 15+, £2(0)2)
+OR? |w | 2 |l L2 i1, w19(0)2))
< eAt]|eTH % + CALC lullF oo 0,7, )2y el [T 215 pi1512(0)2)

+Ch4||u“2Lw(0,T;H2(Q)2)||u||%2 9 L, WL4A(Q)2) - (4.18)
( (2)?%)
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Combining the bounds (4.12), (4.13), (4.14), (4.17) and (4.18) and using the fact that u € L*°(0,7T; H>(Q)?),
the right-hand side of (4.10) is bounded by

eAt]|e" 1% + C(h* + Al o pir;mrr )2y + Ch2 Ul Tages o2 ()2
1

+OR At||ullF oo (0,1 12(0)2) + CAUIE [T llull oo 0,712 (2)2) + 2] y b+, p)l. (4.19)
J
The last term is estimated by Lemma 4.2. Then, for an appropriate choice of € and 7 in Lemma 4.2, we obtain:

. _ _ . 1, :
~it1 i+l
”eJ+1||2LZ(Q) _ “61”%2(9) +]jeitt — eJ||2L2(Q) + 5||eJ+1 _git ||%z(9)

1 . w . » , »
+§KuAt(||6’+1||§c e %+l — %) + At Y /GE {U’} - npl|[&*])1
Ec&y, -

+At Z / U7 - nplll&?t|” < CAt|€ |72 1wl o 0,7, m2(0)2) + C(h* + At)|wel|72 (s gi+1,m1.c2y2)
pee, J(@B_)N(09)

+Ch2||u||i2(tj’tj+l;H2(Q)2) + Ch2Atl|u”%m(0,T;H2(Q)2) + (Ch2 + 2At)||vp||2L2(tj’tj+1’L2(Q)2).
(4.20)

Since U® = Rpuo, we have ||e°||L2(Q) < Ch|uo|g1(q) and hence applying Gronwall’s lemma, we have:

N-1 N-1 N—-1
. . B 1 . . ) o
max /|0y + 3 16771~ lliaay + 5 3 61 — M aey + 3 At 3 [ U}l
J §=0 j=0 j=0 Eegy, ' 9F-

N-1 N-1
. » 1 . » . »
2 AtD, U7 mpl|&7 |+ 5K Y Al [ + 11874 %+l — & %)
=0 Ecg,, Y (0E-)N(69) §=0

< C1(h? + A + At)e®2NAL
whence (4.7). O

The following theorem establishes an error estimate for NIPG. We skip the proof which is a straightforward
combination of the proofs of Theorem 4.3 and Lemma, 2.2.

Theorem 4.4. We retain the assumptions of Theorem 4.3, but we replace (1.21) by (2.5). Then there exists a
constant C, independent of h and At, such that

N-—1 N—-1
. » . 1 » .
m?lx”e]”izm) + Z et — €J||2Lz(9) +3 Z et — eHl”%z(n)
J 7=0 7=0
N—1 ) ) ) )
+> (At Y / U7} - nplll[&@)1° + At Y U7 - np||& ) (4.21)
iz Bee, JoE_ Bee, J(0B_)n(89)
N-1 1 )
+g At (§||ej+1||§( + ||é’+1||§(> < C(h? 4+ At* + At).
7=0

These two theorems imply immediately the next result.
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Corollary 4.5. Under the assumptions of Theorem 4.3 for SIPG or Theorem 4.4 for NIPG, there exists a
constant C independent of h and At such that

max ||e’||x < C, max||é’||x < C. (4.22)
j J

5. FURTHER ERROR ESTIMATE FOR VELOCITY AND ESTIMATE FOR PRESSURE
The following theorem sharpens the results of Theorem 4.3 for SIPG.

Theorem 5.1. Under the assumptions of Theorem 4.3 and if uo € H?/%(Q)?, there exists a constant C' and a
constant § > 0 independent of h and At such that for all At < 6, we have

N-1 N-1
12 i+1 112 pK i+1(2 2 2
m]aXIIeJIIL2(Q) + ; €™ — €llze(e) + =5~ JX_:O Atlle’ |5 < C(h* + At?).

Proof. Now that we have a first estimate for e/ and &, we can sharpen the estimate for e’ by eliminating
&’*! from the error equation. This is achieved by summing the two equations (1.25) and (1.26) and integrating
between #/ and #/*!:

it
Yo, € Xy, (U —U7 vy) + u/ (a(U7F vp) + Jo(UTT vp))
7
i+ i+l ‘ - P (5.1)
+/ bwn, PIY) + / M Who"" o) = / (F o).
ti ti ti

Inserting Rpu? and Rpu/*!, using (1.27) and (1.28) and choosing the test function vy, in V', in order to
eliminate the discrete pressure, give:

tj+1 tj+1

(a(eHlavh) + Jo(ejﬂa’uh)) = / (ue, vp) + (Rhuj - Rhuj+1:"’h)

Yo, € Vi, (et —e’,vp) +,u/
t

t

1 it

+u/ (a(u — Rputt vp) + Jo(u — Rpu?™ vp)) + / c(u;u,vp)
g

t
tj+1 i i1 tj+1
_/ CU (Uja UJ >'Uh) + / b(’Uh,p - T'hp)-
” )

t

Taking v, = e/T! € V;, and applying (1.21), we obtain:

1 . . . . .
5l L) = llE7 72 () + 1€ = €[[L2q)) + nE Atlle”™ %

it it
< |(/ a(u — Ryu),e’t)| + yf / (a(u — Rpu™, e/™) + Jo(u — Rpu? ™t e71h)) | (5.2)
t td
it R - it
+H [ c(usu, e - / U (UJ;UJJr T+ [ b p—rap)l.
td t td
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The first three linear terms are bounded as in Theorem 4.3. For the pressure term, considering the definition
of the approximation operator rj, we have

b(eHl,P —rup) = =P —rup, V- €j+1) + Z {p- Thp}[ejH] "M < CJO(ej+1:ej+1)1/2h|p|H1(Q)-
ecl'y, V€

The difficulty is to bound the nonlinear terms; we split them as follows:

. j S . . . .
c(usu, &) — U (W07 e711) = c(u — Ryu?;u, et) — c(ef; u, eit?)

+cU (U u = Ry, &) + U (U5 Ry (u — wi ), 1) = U (U7 711 1Y),
First, as in Theorem 4.3, we have

e — Ry, )] < Olle [lx(lull e o m3 ) (¢ — ) sl o5 51,1200
+h2|uj|Hz(Q)|u|W1,4(Q)).
Using Proposition 4.1, we have, for some r > 2
|c(e?;u, €t < Clulwiro)lle’™ || xl€? || L2o)-
In view of (1.16), we write
i i i

U’ (U%;u — Ry, eit!) = U (U7 €7 u — Ryu) =~V (ef; e+, u— Rpu) — ¥ (Rpu?; €/, u — Ryu).

For the first term, using the approximation properties of R and the fact that, according to Corollary 4.5, ||e?|| x
is bounded by a constant independent of j, A and At, we obtain

1V’ (75 €7t u — Ryu)| < Ch*|u| g2 () ||| x.
Similarly, the approximation properties of Ry imply that, for some r > 2,
eV’ (Rywd; e, u — Ryuw)| < Ch2 ey [ [woor (o 1€ | x
Next
ch (UJ';Rh(u —u/t), et = ch (e/; Rp(u — w/th), e/t + CUJ‘ (Rpw?; Ry (u — uit?), e *1).
For the first term, we use (4.3), (1.35) and Corollary 4.5:
1V (e; Ru(u — w3t 4)| < Clled || xluf*' — ula oy e [1x
< Clu™ — g g)lle Ix < CET = 1) 2 lugll Lo 441, )2 €7 [ x-
The second term is bounded like (4.16). Therefore
|CUj (Uj; Rp(u — Uj+1)a ej+1)| < C(tHl - t)1/2||ej+1”X||ut||L2(t5,tf+1;H1(Q)2)||u||L°°(0,T;H1(Q)2)-
Finally, applying (1.16), we write

J J J

(Ui, e 1, eitt) = U (Ui, e, 60+1) = —dU7 (e i1, &0ty — U7 (Ryud; ei 1, &9+1).
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For the first term, applying Theorem 3.8, Theorem 4.3, Corollary 4.5 and (1.24)

P . . »
V" (757, & )| < Clled || xle | x]|&7 4o
< Clle? || xlle? [x (Culle? || i 167 X2 + Coht /A g @+ &7+ ) AT+ |32 + Cant 2 a7, &011)12)
< C* At |e7| x [le" || x -
For the second term, the approximation properties of R; imply that
V" (Ryu?; @371, &) < Olle? || x| s 187 | 2o
< C”eﬁl||X|U]|W1s4(9)(||éﬁr1 - e]”L2(Q) + ”eJ”L?(Q)) < €||€J+1||§( + C(”éﬁl - eJ”%Q(Q) + ||€J||2L2(Q)),

considering that w € L (0, T; W%(Q)2). Thus, integrating all these terms over # and #/*! and summing over
Jj, the right-hand side of (5.2) is bounded by

N-1 N-1 N—-1
€Y Atflet % + C(h* + At?) + CAL Y [[&7T — €[5y +C Y Atll€7[132(g) + C* AL/ ZAtHeJHX
J=0 3=0 j=0 j=0

First, let us choose & such that C*§'/4 = %, ie

nK
2C*

6= (=), (5.3)

and note that C* does not depend on €. Next, take € = %. Then, (5.2) becomes

N-1

pK
maxlle’llm(g) + ) e = €|ffan) + - Z Atlle’ %
7=0
N-1
<|1€%l32(q) + C(h* + At?) + CAL Y (|7 — €l[[32g) + C Z Atl|e’]72(q) + nK Atk

Jj=0 7=0

N-1 )
<O+ AP) +C Y Atllel]13 (),

7=0

by applying Theorem 4.3 to the first sum in the right-hand side, the regularity of ug, the approximation
properties of Ry and (1.24). Then, the result follows from Gronwall’s lemma. O

Similarly, the next theorem sharpens the result of Theorem 4.4 for NIPG; its proof is almost identical to that
of Theorem 5.1, but (5.3) is replaced by

6= (5" (5.4)

Theorem 5.2. Under the assumptions of Theorem 4.4 and if ug € H3/2(Q)2, there exists a constant C' and a
constant § > 0, independent of h and At, such that for all At <6, we have

N-1 N—

I ,

max [|e’ N2y + D €7 = €]Faq) + 5 2 Atle’ Ik < O + Af?).
7=0 7=0

—
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Remark 5.3. We can improve the estimate for ||&7|| £2(Q) by using a bootstrap argument in Theorems 4.3 and
4.4. Indeed, in the case of SIPG, let the assumptions of Theorem 5.1 hold, and let us revisit the last term of
(4.19). Owing to the fact that e’ belongs to V', this term can be written (without the factor 2)
i+l i+l i+l
| b(éj+1,p)| = | b(éj+1 - ejap) + / b(ej7p - T'hp)|
i 3 3
it

< / (Vp, &+ — ed) + / (v - rip}e’] - no|

! ecl'y

< At||p||Loo(07T;H1(Q)) ||éj+1 — ej||L2(Q) + ChAt1/2J0(ej, ej)1/2||p||L2(tj’tj+1;H1(Q)).
To simplify, denote C = ||p|| e (0,7;m1 (2))- Then, either
&7+ — €| 2y < 2AtC, (5.5)

or
&7+ — €| 12 () > 2AtC. (5.6)
If (5.6) holds, then
it 1
[ @t p) < §||é]Jr1 — &[Tz + ChAE 2 Jo(e?, )2 |Ipl| L2is w111 (0
ti

and the first term of this bound is absorbed by the left-hand side of (4.20). Since all the remaining terms are
of the order O(h? + At?), then the end of the argument of Theorem 4.3 implies that 3, [|&7" — e *![3, o)

is O(h? + At?). Otherwise, if (5.6) does not hold, (5.5) holds and since we know from Theorem 5.1 that
max; ||e?[|12(q) = O(h + At), this implies that

max ||éj||L2(Q) = O(h + At). (5.7)
J

Hence, in all cases, (5.7) holds. The proof for NIPG is the same.

Now, we estimate the pressure. The bound we derive below is not optimal, considering the degree of the
polynomials used because the argument of Theorem 5.1 does not give a sharper estimate for ||é’||x. The only
result we have comes from Section 4; we only have

N
oAtk = oA, (5.8)
7j=1

whereas, an optimal error for the pressure requires
N
Z At||é7]|5% = O(At?). (5.9)
=1

Indeed, we shall see that the error estimate for the pressure requires an L? in space and time estimate for the
discrete derivative of U’. More precisely, we need to show that

N—-1
A& =€ ||L2(Q) O(A). (5.10)
=0

.
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But, we cannot prove this because it makes use of (5.9) in the treatment of the nonlinear term. As it is, we
only have the following suboptimal estimate, which is an easy consequence of Theorems 5.1 or 5.2:

N-1 +1
At|| ||L2(Q) O(Ab). (5.11)

j=0
With this, we prove the following bound for the pressure.

Theorem 5.4. Under the assumptions of Theorem 5.1 for SIPG or Theorem 5.2 for NIPG, there exists a
constant C' independent of h and At such that for all At < ¢ as defined in (5.3) for SIPG or (5.4) for NIPG,
we have

N
D At — P72y < C(R* + At). (5.12)
j=1

Proof. From (1.28) and (5.1), we have an error equation for p:

$+1 $I+1

/ b(’vhap - Pj+1) = (Uj+1 - Uj - (uj+1 - ’u‘j)avh) + /J// (a(Uj+1 - u, Uh) + JO(Uj+1 -u, Uh))
i I
tj+1

+/ (ch(Uj; IJ'HI,'uh) — c(u;u,vh)) , Yo, € Xy.
I

Inserting rpp’t!, Ryu/T! and Ryu’ and setting &/ = P9 — rp,p?, this becomes
it it
- / b(vp, &) = — / b(vn,p = rap’*t) + (€1 — €7, vp) + (Raw? ! — Rpu? — (wt! — ), wp)
tI i

i +1

u /t (a(evn) + Jo(&71, vn) + /

i

i+l . .
(V' @0 on) - c(usu,vn)
tj+1

+,u/ (a(Rpu?*t —u,vp) + Jo(Rpu'™ — u,vp)), Vo, € X
¢

J

From the inf-sup condition (1.23), it suffices to estimate the right-hand side in terms of ||lv||x for an arbitrary
vy € X . This estimate is obtained in much the same way as in the proof of Theorem 5.1 for all terms except
the one involving e/*1 — e/, All the other terms have an optimal upper bound. For e/t — e/, we simply write

(et — el vp)| < [|e7T — €|l 2y llvnllz) < Clle’™ — e[z IVVnllLze),

by (3.5). When summing over j, it is clear in view of (5.11) that the contribution to the error of this term is
only O(h? + At). O

6. COUPLING CONTINUOUS OR NONCONFORMING AND DISCONTINUOUS METHODS

In this section, we present two possible combinations of continuous IP;, nonconforming IP; and IP;-SIPG
or IP;-NIPG in this splitting algorithm. From the computational point of view, they are less costly than the
scheme presented in Section 1.

To simplify the presentation, we assume that €2 is a Lipschitz polygon partitioned into two Lipschitz polygonal
subdomains Q; and Q, with interface v, that each ; is subdivided by a regular family of triangulation &} that
match on «. In other words, we do not consider hanging nodes.
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In the first method that corresponds to the second strategy announced in the introduction, for step 1, we
use continuous IP; elements in ; and SIPG (resp. NIPG) in Q5 and for step 2, we use SIPG (resp. NIPG) in
the whole domain 2. Thus, setting

X; ={v, €CO():VE €&}, wp€P(E)?, v,=0 ondnoN},

defining Xi by

X2 ={v, € L}(N)?: VE€&, w,elP(E)?},
and setting .

Xh={’l]h EL2(Q)2 : ’Uh|Q1 EX}” ’Uh|Q2 EX%},

we replace (1.25) by: knowing U’ € V, find o't e X, solution of

- 1 ) y i i "
von€ Xn, (@ =0 o) 4 (a@ T on) + (@ on)) + @07 on) = (7 on), (6.1)

At

and keep (1.26) and (1.27) unchanged. Since the forms a, Jy and c are consistent, we can denote them by the
same symbol in (6.1) although from a computational point of view, they simplify on Q;; in particular, there
are no jump terms and no upwind in ;. It is easy to see that the estimates in Section 4 remain valid for this
discretization. However the improved estimates of Section 5 do not appear to carry on here, because the spaces
X}, and X, are different. Thus, this scheme seems less accurate but it requires fewer degrees of freedom.

In the second method that corresponds to the third strategy announced in the introduction, we use the same
decomposition of 2 and the same spaces in both steps. In Q;, we replace the continuous IP; approximation of
u by a IPy nonconforming method. More precisely, let T’} denote the set of edges of £} that do not lie on the
interface v, let T2 = T', \ I'}, and define

XL = {on € L2012 : VE€EE!, wnlpePi(E)?, VeeTll /[vh]:o},

which is very similar to (1.22). The space X3 is defined as above and we set
Xhz{vh €L2(Q)2 : Uh,|Q1 EX}“ ’Uh|Q2 GX%}

It is easy to see that the bilinear form @ and the trilinar form ¢ apply to all three SIPG, NIPG and the IP;-
nonconforming method. On the other hand, the jump Jy is not required although it does not necessarily vanish
in the nonconforming method. Thus we replace (1.9) by

To(w,v) = 3 1% [ [l [o]

e€l'? |€

With this new space X, and new form Jy, the formulation of this scheme is given again by (1.25), (1.26) and
(1.27). As for the first method, the estimates of Section 4 are valid here. In addition, since the same space is
used in both steps, the estimates of Section 5 are also valid and therefore, as far as the velocity is concerned,
this second method has an optimal accurary. It requires less degrees of freedom than the SIPG or NIPG method
and it retains the property of local mass conservation.

7. NUMERICAL EXPERIMENTS

Let © =]0,1[x]0, 1] and consider the transient Navier-Stokes equations (0.4)-(0.7) with solution

u = (($4 — 2% + %) (4y® — 6y> + 2y)t, —(42® — 62 + 2z)(y* — 20 + y*)t), p=0. (7.1)
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We study here the numerical convergence of the scheme (1.25)-(1.27) introduced in Section 1, but instead of
restricting the discussion to IP; — IPg, we also compute the solution with P, — IP; (that also satisfies the
inf-sup condition, see [13]). The time step At is chosen accordingly so that it is of the order h for the case
IP, — IPy and of the order h2 for the case IP, — IP,. The domain is subdivided into an initial mesh consisting
of two elements. We then successively refine the mesh and compute the errors e, on the mesh of size h and
the numerical convergence rates by the ratio In(es/ep/2)/In(2). We present the numerical errors of the velocity
in the energy norm and in the L? norm and the numerical error of the pressure in the L? norm computed at
the final time of simulation. We choose a constant penalty parameter o, = 10 for STPG and we consider three
cases for NIPG: o, =0, 0, = 1 and o, = 10. We did explore the case of SIPG with o, = 1, but the results were
inconclusive. In the following tables, the number after the name SIPG or NIPG corresponds to the value of o,.

Table 1 shows the errors and convergence rates for the case where the velocities are approximated by piecewise
linears and the pressure by piecewise constants. As predicted by the theory, we observe that the error of » in
the Hj norm is O(h). The first interesting point in this table is that the error of p in the L? norm is O(h) and
that of u is O(h?), much better than what the theory predicts. The second interesting point is that the results
for NIPG are also optimal, even better in some cases than SIPG, and in this experiment are not sensitive to the
choices of o,. Let us recall that usually, the advantage of NIPG is that the penalty parameter o, does not have
to be adjusted and can be kept small, i.e. o, = 1. The third interesting point is that NIPG with o, = 0 (i.e.
without jumps) gives good results, except for the error of w in L?. This is surprising because there is no error
analysis for NIPG 0. Since this method is not adapted to the IP; discretization of time independent elliptic
problems, this good performance here may be due to the effect of the time derivative.

We repeated the experiments for the case where the velocities are approximated by piecewise quadratics and
the pressure by piecewise linears. The results are shown in Table 2. All methods converge optimally in energy
norm for velocity and in L? norm for pressure. SIPG 10 is also optimal in L? for the velocity, but the NIPG
methods are suboptimal and only of the order O(h2?). This is consistent with previous results with NIPG for
elliptic problems, namely optimal results in the L? norm are only observed when the degree of the polynomial
used is odd.



TABLE 1. Numerical errors and convergence rates, for IP; — IPq with At = 1072,
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u u u u D p
Method h Hj error H; rate L? error L? rate L? error L? rate
SIPG 10 1/2 5.113-1073 3.748 .10~ 1 1.432-107°
1/4 3.123-1073 0.711 1.736-10* 1.110 1.395-10~3 0.038
1/8 1.651-103 0.919 6.517-107° 1.414 1.250-10~3 0.159
1/16 8.208 -10~* 1.009 2.055-107° 1.665 8.797-1074 0.506
1/32 4.045-107* 1.021 5.725- 1076 1.844 5.163-10~* 0.769
1/64 2.006 - 10~* 1.012 1.502-10~¢ 1.930 2.767-10~* 0.899
NIPG 10 1/2 4.937-1073 3.549-10~* 8.497-10~*
1/4 2.968 - 1073 0.734 1.326-10~* 1.419 1.174-1073 -0.467
1/8 1.580-1073 0.909 4.091-1075 1.697 1.219-1073 -0.547
1/16 7.995-10* 0.983 1.151-107° 1.829 8.804-1074 0.470
1/32 3.995-10~4 1.001 3.037-10° 1.923 5.166 - 10~* 0.769
1/64 1.995-10* 1.002 7.781-10°7 1.964 2.767-10* 0.901
NIPG 1 1/2 5.569 - 103 6.990 - 101 5.649-10~1
1/4 3.129-1073 0.832 2.654 - 10~* 1.397 1.255-1073 -1.152
1/8 1.567-102 0.997 8.047-1075 1.721 6.290-10~4 0.997
1/16 7.698 - 10~* 1.025 2.193-107° 1.875 2.491-10~* 1.336
1/32 3.789-107* 1.023 5.647 - 1076 1.957 9.425-1075 1.402
1/64 1.876-10~* 1.014 1.422-10°¢ 1.989 3.777-1075 1.319
NIPG 0 1/2 6.396 - 103 1.041-10°° 9.736- 101
1/4 3.940-1073 0.699 4.829-1074 1.107 1.630-1073 -0.743
1/8 2.134-1073 0.885 1.975-10~* 1.290 7.075-10~* 1.204
1/16 1.095-1073 0.962 8.738-10° 1.177 3.013-10* 1.232
1/32 5.516 - 1074 0.989 4.178-1075 1.064 1.381-10~* 1.125
1/64 2.763-10* 0.997 2.058 1075 1.022 6.715-10° 1.040
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TABLE 2. Numerical errors and convergence rates, for P, — IP; with At = 1072,

u u u u D p
Method h Hj error H; rate L? error L? rate L? error L? rate
SIPG 10 1/2 2.920-10~ % 1.265-107° 8.253-107°
1/4 8.922-107° 1.711 1.948-10°¢ 2.699 2.745-107° 1.588
1/8 2.309-107° 1.950 2.522-1077 2.950 7.741- 1076 1.826
1/16 5.693 - 1076 2.020 3.104-10°8 3.022 2.150 - 10~© 1.848
1/32 1.399-10—¢ 3.025 3.813-107° 3.025 5.756 - 10~7 1.901
NIPG 10 1/2 2.519-10°1 1.233-10 ° 6.761-10°
1/4 7.355-107° 1.776 1.823-107¢ 2.758 3.896 - 1075 0.795
1/8 1.953-107° 1.913 2.554- 1077 2.835 8.512-1076 2.194
1/16 4.940-1076 1.983 3.917-1078 2.705 1.869-10~¢ 2.186
1/32 1.236-10° 2.00 7.563-10°° 2.373 4.399-10°7 2.088
NIPG 1 1/2 2.654 1071 1.407-107° 2.274-107*
1/4 7.941-107° 1.741 2.398 - 1076 2.553 5.230-107° 2.121
1/8 2.117-107° 1.907 3.646 - 1077 2.717 1.130-107° 2.210
1/16 5.340 - 10© 1.987 6.086 - 10~ 2.583 2.378 - 10~© 2.249
1/32 1.331-10—¢ 2.003 1.261-10—% 2.270 5.189- 107 2.197
NIPG 0 1/2 2.712-107% 1.513-107° 2.567 - 10~ *
1/4 8.473-107° 1.678 2.783- 1076 2.443 6.396 - 1075 2.005
1/8 2.287-107° 1.889 4.314-1077 2.690 1.425-107° 2.165
1/16 5.766 - 10~° 1.988 7.344-1078 2.554 3.033-107 2.233
1/32 1.434-107¢ 2.008 1.546- 108 2.247 6.703- 1077 2.178
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