CONSISTENCY AND FEASIBILITY OF APPROXIMATE
DECONVOLUTION MODELS OF TURBULENCE

W. LAYTON* AND R. LEWANDOWSKI

Abstract. We consider the time averaged consistency error in appraximate deconvolution LES
models. Oneresultis that thetime averaged consistency errar 7o of the zerothorder model converges
to zero uniformly in the kinetic viscosity and in the Reynolds number. We next give consistency
error bounds for the higher oder models, showing their cansistency errars 7 — 0 rapidly for the
averaging radius well within the inertial range. The errar in the higher order models also decreases
as the length scale L increases.
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1. Introduction. Direct numerical simulation of turbulent Aows of incompress-
ible, viscous Auids is often not computationally economical or even feasible. Thus,
various turbulence models are used for simulations seeking to predict Aow statistics
or averages. In LES (large eddy simulation) the evolution of local, spatial averages is
sought. Broadly, there are two types of LES models of turbulence: descriptive or phe-
nomenological models (e.g., eddy viscosity models) and predictive models (considered
herein). The accuracy of a model (meaning ||averagedN S Esolution— LESsolution||)
can be assessed in several experimental and analytical ways. One important approach
(for which there are currently few results) is to study analytically the model’s consis-
tency error (degned precisely below) as a function of the averaging radius ¢ and the
Reynolds number Re. The inherent di(Eculties are that (i) consistency error bounds
for ingnitely smooth functions hardy address essential features of turbulent AZows such
as irregularity and richness of scales, and (ii) worst case bounds for general weak so-
lutions of the Navier Stokes equations are so pessimistic as to yield little insight.
However, it is known that after time or ensemble averaging, turbulent velocity gelds
are often observed to have intermediate regularity as predicted by the Kolmogorov
theory (often called the K41 theory), see, for example, [F95],[BIL04],[P00], [SO1]. This
case is often referred to as homogeneous isotropic turbulence and various norms of
HEow quantities can be estimated in this case using the K41 theory, Plancherel’s The-
orem and spectral integration. We mentioned Lilly’s famous paper [L67] as an early
and important example.

In this report we consider this third way begun in [LLO04b]: consistency error
bounds are developed for time averaged, fully developed, homogeneous, isotropic tur-
bulence. Such bounds are inherently interesting and they also answer two important
related questions of accuracy and feasibility of LES. How small must § be with re-
spect to Re to have the average consistency error << O(1)? Can consistency error
<< O(1) be attained for the cutoce length-scale § within the inertial range?

Let the velocity u(z,t) = uj(z1,x2,23,t), (j = 1,2,3) and pressure p(z,t) =
p(x1, 2, x3,t) be a weak solution to the underlying Navier Stokes equations (NSE for
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short)
u+u-Vu—vAu+Vp=f, and V-u =0, in Q x (0,T), (1.1)

where v = pu/p is the kinematic viscosity, f is the body force, p is the pressure,
Q= (0, L)? is the Fow domain. The above Navier-Stokes equations are supplemented
by the initial condition, the usual pressure normalization condition

u(z,0) = uo(x), and /pdw =0, (1.2)
Q

and appropriate boundary conditions; our estimates are for the case of periodic bound-
ary conditions with zero mean imposed upon the velocity and all data

u(z; + L, t) = u(z,, ), and/u(x,t)dx =0, (1.3)
Q
where /uo(aj)daj =0, and /f(a:,t)da: =0, for0<t<T. (1.4)
Q Q

We study a model for spacial averages of the Auid velocity with the following dif-
ferential glter. Let § denote the averaging radius; given ¢, its average, denoted ¢,
is the solution of the following boundary value problem under L-periodic boundary
conditions:

)

4G = (305 +5=0, (1.5

Averaging the NSE shows that the true How averages satisfy the (non-closed) equa-
tions

U+ V- (Tu) —vAu+Vp=f, and V-1 = 0. (1.6)

The zeroth order model arises from u ~ w4 O(6?), giving wu ~ T a + O(5?).
Calling w, ¢ the resulting approximations to u,p, we obtain the model studied in
[LLO03],[LLO04]:

wy + V- (Ww) —vAw+Vg=f, and V- w = 0. (1.7)

This zeroth order model’s consistency error 7 is given by:
To:=TTW—uu. (1.8)

The model’s error, T — w, satisges e(0,x2) =0,V - e =0 and
(U—w)i+V-@u—ww) —vA@—w)+V({Pp—q) =V -To (1.9)

which is driven only by the model’s consistency error 7¢. Since the model is stable
and stable to perturbations, [LLO04] , the accuracy of the model is governed by the
size of various norms of its consistency error tensor 7.

The above example is the simplest (hence zeroth order) model in many families
of LES models. We consider herein a family of Approximate Deconvolution Models
(or ADM’s) whose use in LES was pioneered by Stolz and Adams in a series of
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papers,[AS01], [AS99]. The size of the Nth models consistency error tensor directly
determines the model’s accuracy for these higher order model’s as well, [DE04].Given
the van Cittert, [BB98], approximate deconvolution operator Gy (N = 0,1,2,...)
satisfying

u = GNT + O(6*N*2), for smooth wu, (1.10)
the models studied by Adams and Stolz are given by
wi + V- (Gyw Gyw) —vAw+Vg+w' = f, and V-w = 0. (1.11)

The w'term is included to damp strongly the temporal growth of the Auctuating
component of w driven by noise, numerical errors, inexact boundary conditions and
so on. Herein, we drop the w’ terml, select the averaging operator to be the above
diceerential glter and (following Adams and Stolz) choose G to be the van Cittert
approximation, [BB9§],

N
Gy = ()N [T - A7 (1.12)
n=0
For example, the induced closure model’s corresponding to N = 0 and 1 are
Goli =T, s0 Tu ~ U u+ 0(6%), (1.13)
G\ =2u—T,s0 T w~ (2u—1) (2u—7a) + 0(6?). (1.14)

To present the results, let < - > denote time averaging (degned precisely in
section 2), d the averaging radius used in the LES model, L the global length scale,
Re the Reynolds number and U the characteristic velocity used to non-dimensionalize
the equations by U = time average of{ %Hu(x,t)”?m(m}%. The normal setting is
characteristic velocity U = O(1), L = O(1),and the Reynolds number, Re, large
because the kinetic viscosity, v, is small. There are other cases in which Re is large
due to L (such as geophysical Kows, [Lew97] ) or U (in wind tunnels for example).

1.1. The Zeroth Order Model. Consider grst the case of the zeroth order
model, (1.7) above. For the case N = 0 and for smooth wu, it is easy to show that
70 = O((£)?).Indeed, simple estimates give [|[u—a|]L2(0) < (%)2||Au||L2(Q), and thus
since 7 =u (u— u) + (T — u)u, it follows immediately that

1) L U2 5,0
l[Tollz1(0) < 2||“||L2(Q)(Z)2||Au||L2(Q)7and <|I7ollpi(y >< Ca? 7 Rei(f)2
(1.15)

While relevant in smooth regions of transitional Fows, this smoothness, Au € L?(Q) ,
needed does not describe the typical case of turbulent Hows. Next we show in Section
3 that

)
<|l7ollLr@) >< Re? L%U‘lz. (1.16)

These two estimates, (1.15) and (1.16) next, are not su(Eciently sharp to draw useful
conclusions at higher Reynolds numbers (see Section 4). For example, this estimate

IThe consistency error induced by adding the w’ termis smaller than that of the nonlinear term.
While it does aoeect the model’s dynamics, it does not aceect the overall consistency error estimate.
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suggests the zeroth order model is O(%) accurate only for % << Re 7. In our

third estimate, using the K-41 phenomenology and spectral integration, we show,

. . . . 1 . .
remarkably, the time averaged modeling consistency error is O((£)3) uniformly in
the Reynolds number Re and the kinematic viscosity v:

1)
<|Irollzi(@) >= 68LEU*(3)s. (1.17)

To illustrate the improvement of (1.7) over (1.6), supressing all parameters except
2 and Re, (1.6), and (1.7) together imply

P 1,0
<|IrollL1 () > len{(z)3,Re2(Z)}. (1.18)

The crossover point when (1.6) becomes sharper than (1.7) in (1.8) is when (%)% ~

Re? (£), or equivalently () ~ Re 1, ie., only when the How is fully resolved!

1.2. The General Approximate Deconvolution Model. In Section 3 the
above techniques are adapted to the general case. The pointwise error in deconvolution
by G was calculated explicitly via the Neumann lemma in Lemma 2.3 in Dunca
and Epshteyn [DE04],

u— GNT = (—1)N+1(%)2N+2AN+1@ (1.19)

The model’s consistency error, 7y, is given by
TN = GNUGNT —u u (1.20)

Adapting the ideas in the zeroth order case and using this last formula, in section 3
we give a grst estimate of the model’s consistency error 7y

% 2 3 1
2Gia? | U (0yon+apedned (1.21)

< ><
lTnllLr ) >< N+ D)E LN ST

A second sharper estimate is then proven; this estimate takes the general form:

<|lrxlli@ >< C(N,a, U, L)[Re%N*%(%)W“ + (%)N+%], (1.22)
where the precise dependence upon N, «, U, L is given in the derivation.

The impact of this and the previous estimates on practical issues in LES is con-
sidered in section 4. We shall see that these two estimates are strictly better than the
N = 0 case with respect to both dependence on L and the resolution required for an
accurate LES.

2. The K-41 formalism. The most important components of the K-41 theory
are the time (or ensemble) averaged energy dissipation rate, e, and the distribution
of the FEows kinetic energy across wave numbers, E(k). Let < - > denote long time
averaging

<@ > (x):= Tli—m— o(z,t)dt. (2.1)



Time averaging is the original approach to turbulence of Reynolds, [R95]. It satisges
the following Cauchy-Schwartz inequality

1 1
< ($)r2) > < <|l9ll720) >2< [Wl720) >2 - (2.2)

This follows, for example, by applying the usual C-S inequality on Qxz(0, T") followed by
taking limits or from the connection with the inner product on the space of Besicovitch
almost periodic functions, e.g., [Z85],[L84], [CB89].

Given the velocity geld of a particular Fow, u(x,t) , the (time averaged) energy
dissipation rate of that Aow is degned to be

1 [T )
€= IJLr{l)OT/() /QV|Vu(x7t)| dx dt. (2.3)

If u(k,t) denotes the Fourier transform of «(z,¢) where k is the wave-number vector
and k = |k| is its magnitude, then Plancherel’s Theorem implies that the kinetic
energy in u can be evaluated in physical space or in wave number space using the
Fourier transform @ of u

1, 1 ) L[
it = 5 [l nPde = 5 [ fatkoak (2.4

Time averaging and rewriting the last integral in spherical coordinates gives
L, o > 1L _— 2
< §||u||L2(Q) >= E(k)dk, where E(k) := §|< u>(k,t)|*do.  (2.5)
0 |k|=F

The case of homogeneous, isotropic turbulence includes the assumption that (after
time or ensemble averaging) u(k) depends only on k and thus not the angles 6 or .
Thus, in this case,

E(k) = 27k*| < u > (k)% (2.6)

Further, the K-41 theory states that at high enough Reynolds numbers there is a
range of wave numbers

]

0< kmin = Uv ' <k <eiv i = kpax < 00, (2.7)
known as the inertial range, beyond which the kinetic energy in u is negligible, and
in this range

E(k) = aeik™3, (2.8)

where «(~ 1.4) is the universal Kolmogorov constant, &k is the wave number and &

is the particular Fow’s energy dissipation rate. The energy dissipation rate ¢ is the
only parameter which diceers from one Fow to another. Outside the inertial range
we still have E(k) < aesk—3 sinceE(k) ~ 0 for k > kpax and E(k) < E(kmin) for

k < Emin. The expression (2.8) for E(k) is the fundamental assumption underlying

our consistency error estimates.



3. Estimation of the consistency error. First note in all cases, the consis-
tency error depends upon estimates of u — Gnu because

v =GNnu GNT —uu=(Gnyu—u)Gnu+u(Gyu —u),N =0,1,2,---. (3.1)

Consider 7. By the time averaged Cauchy-Schwarz inequality, and stability bounds
for G we have

1 — 1
<l >< A+ IGNI) < llulliz @) >2 < [lu— GNTllL2 ) >* (3-2)

Thus, estimates for the consistency error in L!()) FEow from the above estimates of
|lu — GNTUl|12(q) and later estimates of < |Ju — GNEH%Q(Q) >3,

3.1. Estimates for the Zeroth Order Model. By multiplying (1.5) by ¢,
integrating by parts over 2 and using a CBS inequality on the right hand side, it
follows readily that the averaging process is stable and smoothing in the sense

_ R 1,4 —
131, 27 1193ll, and 5(2)2183]| <l6]] (33)

Denote the averaging error by ® = (¢ — ¢).Using the equation —(%)2A<I> + & =
—(%)A(b, the following error bounds for ® follow in much the same ways as the above
stability bounds

16— 3l < ¢ 1

Vel [[V(e =)l < 7%

(DA, and [l6 3| < (D2l 26]|
(3.4)

>
=~ =

Consider 7. By the time-averaged Cauchy-Schwartz inequality and the above sta-
bility bounds we have

1 _ 1
<lrollzi@) >< 2 < |lulf2g) >Z< lJu—llZ2(q) >* (3.5)

Estimates for 7 thus follow from estimates for ||u —@|[12(q) and < |[u — ﬂ||2L2(Q) >3,

It is possible to get a very quick estimate of < ||7¢||11(q) > by scaling, dimensional
analysis and using known PDE estimates as follows. Holder’s inequality and the above
simple estimate |[u — || 12(q) < (2)||Vul| give

)
< |lrollLi) >< zL%U(E)f% < V||Vul[3ag) >2< 2072 LEU(S)et. (3.6)

It is known for many turbulent Fows that the energy dissipation rate ¢ scales like
ClUTS. This estimate follows for homogeneous, isotropic turbulence from the K-41
formalism, [F95], and has been proven as an upper bound directly from the Navier
Stokes equations for quite general turbulent shear Fows, [CD92] ,[W97] . Using this
upper bound for ¢ gives the bound (1.16)

1 14
<|I7ollz1 () >< C1LEU? Re? 7 (3.7)

This bounds is very rough and pessimistic since it requires % << Re"? for accuracy,
see section 4. Remarkably, this estimate is improvable to one uniform in the Reynolds
number in the case of homogeneous, isotropic turbulence.
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The related (1.15) estimate is obtained by using instead

1 _ L 3,0 1
<|lrollpr@) ><2< ||u||2L2(Q) >2< ||U—U||2L2(Q) >2< 2UL2(3)2 < |[[Dul? >2 .
(3.8)

The term < ||Au||? >Zcan be estimated in the case of homogeneous, isotropic turbu-
lence using spectral integration as follows

ktna
< ||Aul)? >:/
ko

Using the estimate ¢ < C' %3 and rearranging the resulting RHS into terms involving
the Reynolds number gives

10

Fmax 7 2, 1 3
/ Kidk = 3aci (i DY, (3.9)
0

W

TKE(R)dk < ae

U_ 5.6
< ||Au|]? >3 < Ca%ﬁReZ(z)Q, (3.10)
which gives
U2 5
<|I7ollp1(@) >< Ca? =+ Rei(+)2 (3.11)
L2 L

This is an asymptotically higher power of % for moderate Reynolds numbers but it

yields the consistency condition % << Re™ ¥ which is worse than the preceding one.

The sharper bound (1.17) is proven as follows. Under the K-41 formalism we can
write

) Kmax 1
<||u_a||L2(Q) >S/ (1—

i e BRIk (3.12)
0 L

3

where (0 <)ko(< kpin) is the smallest frequency, and kyq.(= 8%1/_4) the largest
frequency. Over the inertial range E(k) = ac3k~3 and outside it E(k) < as3k™3.
Thus, we can write

Kmax
< |lu—l[32q) >< 207 / k3 dk =: 1. (3.13)

W (7)7K2+1
The remainder of the work in (1.17) is direct estimation of the above integral. The

integral I requires diceerent treatments for small and large wave numbers. We shall
thus estimate the two cases separately

Lz Khigh
I:=1,,+ Ihigh,where Tiow = / ...dk,and I}”‘gh = / ...dk. (3.14)
ko Lx
For the low frequency components we have
(2)2k? § 9.9 Lr
—= < (=K for 0 <k < —, 3.15
O k= (3:15)
and thus
xi 5 xa 3 5
Tiow < 2(%)2%% /ko ks dk < Q(Z)2a5% /0 ks dk = iw%ag%(z)%. (3.16)

EN{



Consider the second integral; over the high frequency components

I, — 2(2)2% fime ﬂk*gdk (3.17)
high — T e (%)2]{,‘2—}—1 . .

5

i

With the obvious change of variables k' = %k, the integral becomes

Sk 1 Sk 1
T Fmax (k/) 3 , 5 2 /L max (k/) 3 ,
/ (k/)Q 1 k ( )3()[6 (k/)Q k ( 1 )

Wl
@l
Wl

)
I}“'gh = 2( (0%

7)

Replace the above integral with one over [r,00). This leads to the simpliged and
negligently less sharp upper estimate for Ij;gy, :

Tnigh < 3m 503 (=)5. (3.19)

=~

Adding these estimates we obtain

ol

I< 8.30[5%(

)3, (3.20)

S~

Using this bound for I in < ||7¢[|p1(q) >< 2U L2I7 gives the following estimate for
the model’s consistency error

<|I7ol|Li(q) >= 6.8UL%e3(+)3. (3.21)

SRS

Using the estimate for € < 01%3, (independent of Re and v), we obtain the claimed
estimate (1.17)

5.2
< JrollLia) >< 016.8U2L%(Z)5. (3.22)

This is remarkable in that it predicts the models consistency error to approach zero
uniformly in the Reynolds number.

3.2. The General Approximate Deconvolution Model. The analysis in
the case N = 1,2,3,- - - follows the zeroth order case using stability of G and the
estimates

<l >< A+ (|G ) < [Jul22 >2 < [Ju — Gnal2. >2, (3.23)
1)

u— GNT = (—1)N+1(Z)2N+2AN+1E (3.24)

Indeed, beginning with < ||u||2, >3 < UL%, we have
<llrnllzre) >< A+ IGNINULE < |lu— GNal[3q) > - (3.25)

First, note that by the spectral mapping theorem

N N
1
_ —1\n __ n __
[IGN]| = REZO Amax({ — A7) = ngzo(l — /\max) =N+ 1. (3.26)
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As in subsection 3.1, we use spectral integration to evaluate the deconvolution ap-

proximation’s error as follows
I =< ||U - GNUH%Q(Q) >= (Z)4N+4 < ||AN+1E||%2(Q) >= (327)
5 AN kmax  L2N+2
- ————E(k)dk. 3.28
(%) / rE (3.28)
Since E(k) < acik™3 we have
5 p [hmex AN42-3
I< ()" *aes / ————dk. 3.29
< (%) e (3.29)
Using the fact that the denominator of the integrand is bounded below by 1 gives the
simple estimate
I< (é)4N+4a€% ! (eTy~7)2N+3 (3.30)
=L 2N + % '
Ase <y Ufg , regrouping the RHS to write it in terms of the Reynolds number gives
the grst bound on 7
Cia 0 yn4a U? EN+1
< 2N+%(f) TINTD Re? . (3.31)
Thus, as < ||7n]|p10) >< (N + 1)UL2 1%, we have a simple bound
O Rein+s (3.32)

< >< (N +1
ITnllLio) >< (N + )(2N+§

The above estimate of I is improvable since I has diceerent asymptotics for low

and high wave-numbers. As in the zeroth order case, split
Lz Khigh
I := I + Ihigh,where Liow = / ...dk,and Ihigh = / ...dk. (333)
ko Lx

For the low frequencies we have
E2N+2-3 5
< ( )4N+4 Qe

2
3

/ TRNTSak (3.34)
0

) , (5
IOu)< —4N+4a6§/ RTTTT s
ow < (3) .
Thus,
J ;o w2N+3
Tiow < (=)2N+2+3 .3 . -
SR 3.3
For the high wave numbers we have
Y AN+4,  _2 Foma k2N+27%

Ihigh < (Z) oes ‘/% W ) (336)
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or,

5 2 2 5 1 _3 _2 _2
Ihighé(f)2N+2+3a53 [((f)“’/ 1)2N=5 — 723, (3.37)

4
AN — 1

Using the bound ¢ < 01%3 , collecting the two estimates for I := Ijow + Ipign and
writing the result in terms of the Reynolds number gives the sharper (and longer)
estimate

< llrnllzie >< 7(4JJVV+§)1 O by~ 1N+ L=V RtV (02N g 3g)
W
7T2N+% 7T2N7% 101 3,0 4
+(N 4+ 1)( — )2az2UL? (—)N*s. (3.39)
2N+3 4N -3 L

The dominant term in this estimate for large Re is clearly the grst one. This grst
term is, remarkably, a decreasing function of L and U for N > 2.

4. Conclusion: Feasibility of LES. For LES with deconvolution models to
be feasible for fully developed turbulence two competing restrictions on the averaging
radius must simultaneously be satisged. First, % must be well inside the inertial range,
2> e~1vi. Second, the models consistency error must be small: < ||7|| ><< 1.
We have seem that this gives an upper bound on %Whi(}h decreases as Re increases.
For LES to be useful, these two constraints must be satisged simultaneously.

To illustrate the competition between these two constraints, consider the zeroth
order model grst and suppress all constants except % and Re. Using the consistency
error bound (1.16) yields a narrow band of possible values of the averaging radius

1)
CR€%<<E<<OR€%. (4.1)
Thus, the extra analysis required is important for giving an accurate analytical assess-
. . . 1 .
ment of LES. Indeed, using instead the sharper estimate < ||7o|| >< C( %)5, predicts
success of the zeroth order model provided

3

CRe 7 << % << (-1 (4.2)

For the general higher order model (N = 1,2,- - -) the dominant term in the

consistency error is < ||7y|| >< C’Re%N_i(%)QN“. Thus, < ||7n]|] ><< 1 provided

—3N
% << Re v+ . The competing feasibility conditions are thus

_3 ) —3N+1 _3
CRe 4 << — << (CResv+2 =~ (CRe &.

7 (4.3)

Coupled with the observations that (i) (4.3) actually improves with increasing
N(>1) as L,U increase, and (ii) the accuracy of the model increases dramatically as
N increases, the overall analytic conclusion is that higher order models are preferable
to lower order models. This observation, while surprising from the point of view
of traditional error analysis, is consistent with the extensive experiments with the
models. At this point we do not know if the fact that (4.3) is more restrictive than
(4.2) is an essential feature of higher order models or is due to possibly improvable
mechanics of our analysis.
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