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Abstract

We formulate a subgrid eddy viscosity method for solving the steady-state incom-
pressible flow problem. The eddy viscosity does not act on the large flow structures.
Optimal error estimates are obtained for velocity and pressure. The numerical illustra-
tions agree completely with the theoretical expectations.

1 Introduction

We consider herein the approximate solution of the steady-state Navier Stokes problem
equation:

−ν∆u+ (u · ∇)u+ ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded polygonal domain in R
d, with d = 2 or d = 3, u : Ω → R

d the
fluid velocity, p : Ω → R the fluid pressure and f a prescribed body force. The kinematic
viscosity, which is inversely proportional to the Reynolds number Re, is denoted by ν > 0.

In this paper, we consider a subgrid eddy viscosity model as a numerical stabilization of
a convection dominated and underresolved flow. This approach adds an artificial viscosity
only on the fine scales, and is referred to as a subgrid eddy viscosity model. We consider the
classical finite element method for the spatial discretization. The resulting scheme involves
two grids coupled to each other through the artificial viscosity term.

The general idea of using two-grid discretization to increase the efficiency of numerical
methods was pioneered by J. Xu (see, e.g., Marion and Xu [17]) and developed by Girault
and Lions (see [6], [7]). This two-grid discretization idea and previous work [5] on stabiliza-
tions in viscoelasticity are combined with the physical ideas of eddy viscosity models. This
combination of ideas lead very naturally to the presented method.

The idea of the subgrid eddy viscosity model is inspired by earlier work of Guermond [9].
In [9], subgrid scales is augmented by bubble functions. The artificial viscosity is added
only on the fine scales of the problem. This concept is generalized by Layton [16] for
the stationary convection diffusion problem. In the work of Kaya and Layton [14], this
model has been connected with another consistent stabilization technique, also known as
variational multiscale method, introduced by Hughes [12]. The model has been analyzed
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for time-dependent Navier-Stokes equations by John and Kaya [13] for the continuous finite
element method and by Kaya and Rivière [15] for the discontinuous Galerkin method.

To motivate the method, we define the spaces X := (H1
0 (Ω))d and M := L2

0(Ω) =
{q ∈ L2(Ω) :

∫

Ω qdx = 0} and L := {L ∈ (L2(Ω))d×d,L = L
T } and consider a variational

formulation of (1.1): find u ∈ X, p ∈M and G ∈ L such that

a(u, v) + c(u, u, v) − b(v, p) + (νT D(u),D(v)) − (νT G,D(v)) = (f, v), ∀ v ∈ X,
b(u, q) = 0, ∀q ∈M

(G − D(u),L) = 0, ∀L ∈ L.
(1.2)

where (., .) denotes the L2 inner-product and the bilinear forms are defined below

a(v, w) : = (2νD(v),D(w)), ∀v, w ∈ X,
c(z, v, w) : = 1

2(z · ∇v, w) − 1
2(z · ∇w, v), ∀z, v, w ∈ X,

b(v, q) : = (q,∇ · v), ∀v ∈ X, ∀q ∈M.
(1.3)

Here, the stress tensor is defined by D(v) = 0.5(∇v + ∇vT ) and the parameter νT > 0 is
the eddy viscosity parameter. In the continuous case, this method reduces to the standard
Navier-Stokes equations. However, in the discrete case it leads to different discretizations.
In this paper, we consider multiscale finite element approximation of the Navier-Stokes
equation based on the formulations (1.2).

Our approach can be understood as an LES (Large Eddy Simulation) model but the
point herein is to study it as a numerical stabilization. To our knowledge, this is the first
paper presenting error estimates for velocity and pressure in L2 and numerical examples for
this subgrid eddy viscosity model.

The outline of the paper is as follows. In the next section, some notation and the
finite element scheme are presented. In Section 3, 4 and 5, error estimates are given for
velocity and pressure. The algorithm and numerical experiments are described in Section 6.
Conclusions follow.

2 Notation and Scheme

We first recall some standard notation: L2(Ω) denotes the space of square-integrable func-
tions over Ω with norm ‖·‖ and inner-product (·, ·); Hk(Ω) denotes the standard Sobolev
spaces with norm ‖·‖k and semi-norm | · |k (Adams [1]). H1

0 (Ω) denotes the subspace of
H1(Ω) of functions whose trace is zero on ∂Ω; it is a Banach space with norm | · |1. Finally,
the space H−1(Ω) is the dual space of H1(Ω) ∩H1

0 (Ω), and is equipped with the negative
norm

‖z‖−1 = sup
v∈H1(Ω)∩H1

0
(Ω)

|(z, v)|

‖v‖1

.

The forms (1.3) defined in Section 1, have the following properties. The bilinear form
a(., .) is clearly coercive in X: there is a constant C1 > 0 such that

a(v, v) = 2ν‖D(v)‖2 ≥ C1ν‖∇v‖
2, ∀v ∈ X, (2.1)

owing to the Korn’s inequality (Duvaut and Lions [3]). Using Korn’s inequality, the trilinear
form c(·, ·, ·) satisfies the following bound (Temam [19]): there exists a constant K > 0 such
that

c(z, v, w) ≤ K‖D(z)‖‖D(v)‖‖D(w)‖, ∀z, v, w ∈ X. (2.2)
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We also recall the following property of c:

c(z, v, v) = 0, ∀z, v ∈ X. (2.3)

We now introduce the finite element discretization of (1.2). Let τ h and τH be two regular
triangulations of the domain Ω, such that h (resp. H) denotes the maximum diameter of
the elements in τh (resp. τH) and such that h < H. We will refer to the mesh obtained
from τh as the fine mesh and the mesh obtained from τH as the coarse mesh. Let (Xh,Mh)
be a pair of conforming finite element spaces satisfying the inf-sup condition: there exists
a constant β independent of h such that

inf
qh∈Mh

sup
vh∈Xh

b(vh, qh)

‖qh‖ ‖∇vh‖
≥ β > 0. (2.4)

Examples of such compatible spaces are the mini-element spaces (Arnold, Brezzi, Fortin
[2]), the Taylor-Hood spaces (Gunzburger [10]) and the continuous piecewise quadratics for
the velocity space and discontinuous piecewise constants for the pressure space (Fortin [4]).
We assume that the spaces Xh and Mh contain piecewise continuous polynomials of degree
k and k − 1 respectively. We assume that LH ⊂ L contains piecewise polynomials (not
necessarily continuous) of order k − 1. Let PLH : L→ LH be the L2 orthogonal projection
onto LH . Thus, we have

(PLH L,GH) = (L,GH), ∀G
H ∈ LH , ∀L ∈ L,

‖L − PLH L‖ ≤ CHk|L|k, ∀L ∈ L ∩ (Hk(Ω))d×d.
(2.5)

We will also use the fact that
‖I − PLH‖ ≤ 1. (2.6)

Furthermore, we suppose the spaces (Xh,Mh) satisfy the following approximation proper-
ties:

inf
vh∈Xh

{

‖u− vh‖ + h‖∇(u− vh)‖
}

≤ Chk+1|u|k+1, ∀u ∈ (Hk+1(Ω))d ∩X, (2.7)

inf
qh∈Mh

‖p− qh‖ ≤ Chk|p|k, ∀p ∈ Hk(Ω) ∩M. (2.8)

We propose the following finite element approximation of (1.2): find (uh, ph) ∈ (Xh,Mh)
satisfying

a(uh, vh) + c(uh, uh, vh) − b(vh, ph) + g(uh, vh) = (f, vh), ∀vh ∈ Xh,
b(uh, qh) = 0, ∀qh ∈Mh,

(2.9)

where the bilinear form g is

g(vh, wh) = (νT (I − PLH )D(vh), (I − PLH )D(wh)), ∀vh, wh ∈ Xh.

The eddy viscosity parameter νT > 0 is to be defined later.
We can formulate another problem in the space of discrete divergence-free functions,

denoted by V h:

V h :=
{

vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈Mh
}

. (2.10)
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Under the inf-sup condition (2.4), the formulation (2.9) is equivalent to the following prob-
lem [8]: find uh ∈ V h such that

a(uh, vh) + c(uh, uh, vh) + g(uh, vh) = (f, vh), ∀vh ∈ V h. (2.11)

Our analysis is based on the assumption that the following global uniqueness condition
holds:

K‖f‖−1 ≤ C1ν
2 (2.12)

where K is the constant of (2.2) and C1 is the constant of (2.1). Recall [8] that under this
condition (2.12), (1.2) has a unique solution (u, p) ∈ (X,M). It is easy to show that under
the condition (2.12) and the inf-sup condition (2.4), there exists a unique solution to (2.9).

Remark 2.1. We could also consider the following forms for the nonlinear term in (2.9):

c(z, v, w) = (z · ∇v, w) (convective form)

c(z, v, w) = −(z · ∇w, v) (conservation form)

In both cases, the analysis and error estimates remain the same.

Throughout the paper, C is a generic constant that does not depend on ν, νT , h and H,
unless specified otherwise.

3 Error Estimate for Velocity in H
1
0

In this section, we first prove a stability result for the approximation of velocity for (2.9).
We then prove an error estimate for the velocity in the energy norm.

Lemma 3.1. The finite element approximation of velocity for (2.9) is stable, i.e. there is
a constant C independent of ν, νT , H and h such that

ν‖D(uh)‖2 +
νT

2
‖(I − PLH )D(uh)‖2 ≤

C

ν
‖f‖2

−1. (3.1)

Proof. The result is easily obtained by setting vh = uh in (2.11) and using (2.3), Cauchy
Schwarz, Korn’s and Young’s inequalities.

Remark 3.1. Lemma 3.1 directly implies that

‖D(uh)‖ ≤
C

ν
‖f‖−1. (3.2)

Theorem 3.1. Suppose the global uniqueness condition (2.12) holds. Then,

ν‖D(u− uh)‖2 +
νT

2
‖(I − PLH )D(u− uh)‖2

≤ C inf
wh

∈V h

{ν‖D(u− wh)‖2 +
K2

ν
(‖∇u‖ + ‖∇uh‖)2‖D(u− wh)‖2

+νT ‖(I − PLH )D(u− wh)‖2 + νT ‖(I − PLH )D(u)‖2} + C inf
qh∈Mh

1

ν
‖p− qh‖2.

where C is independent of ν, νT , h and H.
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Proof. We first derive an error equation by noting that the true solution satisfies

a(u, vh) + c(u, u, vh) − b(vh, p) + g(u, vh) = (f, vh) + g(u, vh) ∀vh ∈ Xh, (3.3)

and by subtracting (2.9) to (3.3):

a(u− uh, vh) + c(u, u, vh) − c(uh, uh, vh) − b(vh, p− ph)

+g(u− uh, vh) = g(u, vh), ∀vh ∈ Xh. (3.4)

We now decompose the error u−uh = η−φh, with η = u−wh and φh = uh−wh, where wh

is any function in V h. Rearranging the terms of (3.4), choosing vh = φh ∈ V h, we obtain:

a(φh, φh) + g(φh, φh) = a(η, φh) + c(u, u, φh) − c(uh, uh, φh) + g(η, φh)

−b(φh, p− qh) + g(u, φh), ∀qh ∈Mh. (3.5)

To bound the linear terms in the right-hand side of (3.5), we simply use Cauchy Schwarz
inequality and Young’s inequality. To bound the nonlinear convective terms we rewrite
these terms as follows:

c(u, u, φh) − c(uh, uh, φh) = c(u, η, φh) + c(η, uh, φh) − c(φh, uh, φh).

Then we use the bound (2.2) and Young’s inequality. From (2.6), the last term in the
right-hand side of (3.5), which characterizes the inconsistency error, is bounded by

|g(u, φh)| ≤ νT ‖(I − PLH )D(u)‖‖(I − PLH )D(φh)‖. (3.6)

The final result is easily obtained by combining all the bounds above and by using the
triangle inequality

ν‖D(u− uh)‖2 +
νT

2
‖(I − PLH )D(u− uh)‖2

≤ C(ν‖D(u− wh)‖2 + νT ‖(I − PLH )D(u− wh)‖2

+ν‖D(φh)‖2 + νT ‖(I − PLH )D(φh)‖2).

By appropriately choosing the parameters νT , H and h, one can obtain an optimal error
estimate, as stated in the following corollary.

Corollary 3.1. Under the assumption of Theorem 3.1, and under the regularity assump-
tions u ∈ Hk+1(Ω)d ∩ X and p ∈ Hk(Ω) ∩M , there is a constant C independent of νT , h
and H such that:

ν‖D(u− uh)‖2 +
νT

2
‖(I − PLH )D(u− uh)‖2

≤ Ch2k|u|2k+1(ν +
1

ν
(1 +

1

ν
)2 + νT ) + Cνh2k|p|2k + CνTH

2k|u|2k+1.

In particular,

‖D(u− uh)‖ = O(hk) if







k = 1 (νT , H) = (h, h1/2),

k = 2 (νT , H) = (h, h1/2) or (νT , H) = (h2, h1/2)

k = 3 (νT , H) = (h, h5/6) or (νT , H) = (h2, h2/3).
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Corollary 3.2. Suppose we use the mini-element spaces i.e., continuous polynomial of
degree k plus bubbles functions for Xh and piecewise continuous polynomial of degree k− 1
for Mh. If νT = hα and H = hβ with α + 2β ≥ 2k, then the error in the energy norm is
bounded as

‖D(u− uh)‖ ≤ Chk.

For instance, one may choose νT = h2k−1 and H = h1/2.

4 Error Estimate for Pressure

This section is devoted to the estimation of the discrete pressure.

Theorem 4.1. Suppose that the hypotheses of Theorem 3.1 hold. Then the pressure error
satisfies

‖p− ph‖ ≤ C((ν + 1)‖D(u− uh)‖ + ‖D(u− uh)‖2 + νT ‖(I − PLH )D(u− uh)‖

+νT ‖(I − PLH )D(u)‖) + C inf
qh∈Mh

‖p− qh‖,

where C is independent of ν, νT , h and H.

Proof. The proof follows the approach given by Rannacher and Heywood [11]. Denoting
the error in velocity e = u− uh and introducing an approximation p̃ ∈ Mh of the pressure
in the error equation (3.4), we obtain:

b(vh, ph − p̃) = b(vh, p− p̃) − a(e, vh) − (c(u, u, vh) − c(uh, uh, vh))

−g(e, vh) + g(u, vh), ∀vh ∈ Xh. (4.1)

To bound the linear terms in the right-hand side of (4.1), we apply Cauchy Schwarz in-
equality, and Korn’s inequality and (2.6). The inconsistency term g(u, vh) is bounded as in
(3.6). In view of Lemma 2.2 and Korn’s inequality, the nonlinear terms are bounded as:

|c(u, u, vh) − c(uh, uh, vh)| = | − c(e, e, vh) + c(e, u, vh) + c(u, e, vh)|

≤ C(‖D(e)‖ +K‖∇u‖)‖D(e)‖‖∇vh‖.

Combining all the bounds, then we have

|b(ph − p̃, vh)| ≤ C{‖p− p̃‖ + ν‖D(e)‖ + (‖D(e)‖ + ‖∇u‖)‖D(e)‖

+νT ‖(I − PLH )D(e)‖ + νT ‖(I − PLH )D(u))‖}‖∇vh‖. (4.2)

On the other hand, the inf-sup condition (2.4) implies that there exists a nontrivial vh ∈ Xh,
such that

(ph − p̃,∇ · vh) ≥ β‖∇vh‖‖ph − p̃‖. (4.3)

In view of (4.3), we have

‖p− ph‖ ≤ ‖p− p̃‖ + β−1 |b(v, p
h − p̃)|

‖∇vh‖
. (4.4)

We conclude our proof by inserting (4.2) into (4.4):

‖p− ph‖ ≤ C‖p− p̃‖ + C(ν‖D(e)‖ + ‖D(e)‖2 + ‖D(e)‖‖∇u‖

+νT ‖(I − PLH )D(e)‖ + νT ‖(I − PLH )D(u)‖). (4.5)
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Corollary 4.1. The statement of Theorem 3.1, the approximation results (2.7) and (2.8),
and Corollary 3.1 imply that

‖p− ph‖ ≤ C(hk + νTH
k + ν

1/2
T (νT + 1)(hk +Hk) + νTh

k)

where C is independent of νT , h and H.
Therefore, if νT = hα, H = hβ and α+2β ≥ 2k, the error in the pressure is bounded by

‖p− ph‖ ≤ Chk.

For instance, one can choose for k = 1, (νT , H) = (h, h1/2) or for k = 2, (νT , H) =
(h2, h1/2).

5 Error Estimate for Velocity in L
2

We now give an error estimate in L2 for the velocity by using the duality argument [8]. We
first consider the linearized adjoint problem of the Navier-Stokes equations: given ξ ∈ L2(Ω),
find (φ, χ) ∈ (X,Q) with

a(φ, v) + c(u, v, φ) + c(v, u, φ) + g(φ, v) − b(v, χ) + b(φ, q) = (ξ, v), ∀(v, q) ∈ (X,Q).
(5.1)

Since (u, p) is a nonsingular solution of (1.1) and the boundary ∂Ω is smooth enough, there
exists a unique (φ, χ), ([8]) solution to (5.1). We also assume that the linearized adjoint
problem is H2(Ω) regular. This means that for any ξ ∈ L2(Ω) there exists a unique pair
(φ, χ) in (X ∩H2(Ω)d) × (M ∩H1(Ω)) such that the following inequality holds

‖φ‖2 + ‖χ‖1 ≤ C‖ξ‖. (5.2)

We now state the L2 error estimate.

Theorem 5.1. Assume that the assumptions of Theorem 3.1 and Theorem 4.1 hold and the
solution of the dual problem (5.1) satisfies the stability estimate (5.2). Then, there exists a
constant C such that

‖u− uh‖ ≤ Chk+1(1 + ν
1/2
T + νT + ν

3/2
T ) + CνTH

k+1 + ChHkν
1/2
T (1 + ν

1/2
T + νT ),

where C is independent of νT , h,H.

Proof. Subtracting (3.3) from (2.9), and denoting e = u − uh, gives the following error
equation:

a(e, vh) + c(u, u, vh) − c(uh, uh, vh) − b(vh, p− ph)

−b(e, qh + g(e, vh) − g(u, vh) = 0, ∀vh ∈ Xh, ∀qh ∈Mh. (5.3)

On the other hand, consider the dual problem (5.1) with ξ = e, choose v = e, q = ph − p
and subtract (5.3) to the resulting equation

‖e‖2 ≤ |a(φ− vh, e)| + |c(u, e, φ) + c(e, u, φ) − c(u, u, vh) + c(uh, uh, vh)|

+|b(e, χ− qh)| − |b(φ− vh, p− ph)| + |g(φ− vh, e) + g(u, vh)|

≤ C(ν‖D(e)‖ + ‖p− ph‖ + νT ‖(I − PLH )D(e)‖)‖D(φ− vh)‖

+C‖χ− qh‖‖D(e)‖ + νT ‖(I − PLH )D(u)‖‖(I − PLH )D(vh)‖

+|c(u, e, φ) + c(e, u, φ) − c(u, u, vh) + c(uh, uh, vh)|, (5.4)
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owing to Cauchy-Schwarz, Korn’s inequality and (2.6). We then choose (vh, qh) = (φ̃, χ̃)
where φ̃, χ̃ are the best approximation of (φ, χ) in (Xh,Mh). Using the approximation
properties we have:

‖φ− φ̃‖1 ≤ Ch‖φ‖2,

‖χ− χ̃‖ ≤ Ch‖χ‖1.

The equation (5.4) becomes

‖e‖2 ≤ Ch(ν‖D(e)‖ + ‖p− ph‖ + νT ‖(I − PLH )D(e)‖)‖φ‖2

+Ch‖χ‖1‖D(e)‖ + νT ‖(I − PLH )D(u)‖‖(I − PLH )D(φ̃)‖

+|c(u, e, φ) + c(e, u, φ) − c(u, u, φ̃) + c(uh, uh, φ̃)|. (5.5)

The consistency error term in the right-hand side of (5.5) is bounded by using (2.5):

νT ‖(I − PLH )D(u)‖‖(I − PLH )D(φ̃)‖ ≤ νTH
k|u|k+1H‖D(φ̃)‖1

≤ CνTH
k+1|u|k+1‖φ̃‖2

≤ CνTH
k+1|u|k+1(‖φ̃− φ‖2 + ‖φ‖2)

≤ CνTH
k+1|u|k+1‖φ‖2.

We now consider the nonlinear terms in (5.5). Adding and subtracting uh, gives

c(u, e, φ) + c(e, u, φ) − c(u, u, φ̃) + c(uh, uh, φ̃) = c(e, e, φ) + c(u, e, φ− φ̃)

+c(e, u, φ− φ̃) + c(e, e, φ̃− φ).

Using the Lemma 2.2 and Korn’s inequality, we have

|c(u, e, φ) + c(e, u, φ) − c(u, u, φ̃) + c(uh, uh, φ̃)|

≤ C‖D(e)‖2‖φ‖1 + C‖∇u‖‖D(e)‖‖φ− φ̃‖1 + C‖D(e)‖2‖φ− φ̃‖1

≤ C(‖D(e)‖ + h)‖D(e)‖‖φ‖2.

Combining all bounds and using the stability property (5.2) give:

‖e‖ ≤ C(ν + νT )‖D(e)‖ + C‖p− ph‖ + CνTH
k+1|u|k+1 + C‖D(e)‖(h+ ‖D(e)‖)

The final result is obtained by using Corollary 3.1 and Corollary 4.1.

Corollary 5.1. Suppose we use the mini-element spaces described in Corollary 3.2. If one
chooses (νT , H) = (h, h1/2) in the case k = 1 and (νT , H) = (h2k, h1/k) in the case k ≥ 2,
we obtain h1/2) the optimal error:

‖u− uh‖ ≤ Chk+1.

6 Numerical Experiments

We first describe the algorithm used for handling the nonlinearity and the subgrid eddy
viscosity term. We then present two numerical examples: one with a known analytical
solution that allows for a numerical study of the convergence rates; and one benchmark
problem. In both cases, the mini-element spaces (k = 1) are used.
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6.1 Algorithm

To solve the nonlinear system a Newton method is used. Given (um−1, pm−1), we find
(um, pm) satisfying

a(um, vh) +
1

2
c(um−1, um, vh) +

1

2
c(um, um−1, vh) −

1

2
c(um−1, vh, um)

−
1

2
c(um, vh, um−1) − b(vh, pm)

= (f, vh) +
1

2
c(um−1, um−1, vh) −

1

2
c(um−1, vh, um−1) − g(um−1, vh), ∀vh ∈ Xh, (6.1)

b(um, qh) = 0, ∀qh ∈Mh.

This algorithm leads to a linear system of the form Ax = b with A nonsymmetric. To
solve this linear system we use the iterative conjugate gradient squared method of [18]. The
stopping criteria of this Newton method is based on the absolute residual.

We now show that the extra stabilization term g(um−1, vh) requires a modification of
the right-hand side of the linear system, that can be computed locally.

First, from (2.5), we can write

g(um−1, vh) = νT (D(um−1),D(vh)) − νT (PLH D(um−1),D(vh)).

In this decomposition, adding the first term is straight-forward, as it is similar to the
diffusive term a(um−1, vh). The difficulty is to incorporate the second term, since it cou-

ples coarse and fine meshes. Denoting a basis of Xh by {φh
j }

Nh

j=1, we want to compute

(PLH D(um−1),D(φh
j )), for all j. Denoting a basis of LH by {ψH

j }NH

j=1, we can write

PLH D(um−1) =
NH

∑

j=1

βjψ
H
j , (6.2)

where the βj ’s are unknown coefficients, uniquely defined. Thus, we have

(PLH D(um−1),D(φh
i ))i = (

NH

∑

j=1

βjψ
H
j ,D(φh

i ))i = R









β1

β2

...
βNH









,

where R is the matrix that couples the fine and large scales: Rij = (ψH
j ,D(φh

i )). To
determine the unknown coefficients βj ’s, it suffices to take the inner product to both sides
of (6.2) with ψH

i :









β1

β2

...
βNH









= S−1(PLH D(um−1), ψH
i ) = S−1(D(um−1), ψH

i ), (6.3)

where S = (ψH
j , ψ

H
i ) is the mass matrix associated to LH . Thus, we have so far

(PLH D(um−1),D(φh
i ))i = RS−1(D(um−1), ψH

i )i. (6.4)
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To conclude, we decompose D(um−1) as

D(um−1) =
Nh

∑

j=1

αm−1
j φh

j ,

and substitute this into (6.4):

(PLH D(um−1),D(φh
i ))i = RS−1RT









αm−1
1

αm−1
2

...

αm−1
Nh









.

Since the αm−1
j ’s are known, it suffices to compute R and S. We note that if one chooses

discontinuous piecewise polynomial basis functions for LH , the matrix S is the block diag-
onal and then computing RS−1RT can be done locally on each element in the coarse mesh
τH .

6.2 Convergence Rates

We consider the equation (1.1) on the domain Ω = [0, 1]× [0, 1], with a body force obtained
such that the true solution is given by u = (u1, u2),

u1 = 2x2(x− 1)2y(y − 1)(2y − 1), u2 = −y2(y − 1)22x(x− 1)(2x− 1),

p = y.

The fluid viscosity is ν = 10−2, which gives a Reynolds number of the order 102. From
Corollary 3.2, we choose νT = h and H such that H2 ≤ h. The theoretical analysis then
predicts a convergence rate of O(h) for the velocity in the energy norm, O(h2) for the velocity
in the L2 norm, and O(h) for the pressure. The domain is subdivided into triangles. First,
the coarse mesh is chosen such that H = 1/2 and the fine mesh is a refinement of the coarse
mesh, so that h = 1/4 (here, h = H2). Other pairs of meshes are obtained by successive
uniform refinements (see Figure 1 for the case H = 1/8 and h = 1/16). We choose for basis
functions of LH , discontinuous piecewise constants and two quadratics defined the reference
elements. If F denote the affine mapping from the reference element to the physical element,
we have:

LH = {L : L|E = F L̂, ∀ L̂ ∈ L̂H , ∀E ∈ τH},

L̂H = span

{(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

0 1
1 0

)

,

(

∂b
∂x

1
2

∂b
∂y

1
2

∂b
∂y 0

)

,

(

0 1
2

∂b
∂x

1
2

∂b
∂x

∂b
∂y

)

}

,

where b denotes the bubble function defined as

b(x, y) = 27xy(1 − x− y).

Table 1 gives the errors and convergence rates for u−uh and p−ph in different norms. These
numerical results confirm the theoretical error estimates: the convergence rates are optimal.
Figure 2 shows both computed solution and exact solution for the case (H,h) = (1/8, 1/16).
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Figure 1: H = 1/8 with one refinement h = 1/16

Table 1: Numerical errors and degrees of freedom.
meshes Nh L2 Rate H1

0 Rate L2 pressure Rate

H=1/2, h=1/4 218 0.0069 0.0509 4.3269e-04

H=1/4, h=1/8 882 0.0017 2.0211 0.0241 1.0786 2.4448e-04 0.8236

H=1/8, h=1/16 3554 3.9446e-04 2.1076 0.0108 1.1580 9.6978e-05 1.3340

H=1/16, h=1/32 14274 8.1066e-05 2.2827 0.0046 1.2313 3.3879e-05 1.5173

H=1/32, h=1/64 57218 1.6313e-05 2.3131 0.0020 1.2016 1.1026e-05 1.6195
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Figure 2: Comparison between the true solution and computed solution (H,h) =
(1/8, 1/16).
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Figure 3: Velocity streamlines for Re = 1.

6.3 Driven Cavity Problem

The second problem is the driven cavity problem, in which fluid is enclosed in a square box,
with an imposed velocity of unity in the horizontal direction on the top boundary, and a
no slip condition on the remaining walls.

We consider the flow for different Reynolds number for fixed mesh where H = 1/8,
h = 1/16. The same basis functions L̂H are chosen as Section 6.1.The computational
results for a set of different Reynolds numbers (Re= 1, 100, 2500) are shown below. In
these numerical tests, we observe the effect of Reynolds number on the flow pattern. For
the low Reynolds number (Re= 1), the flow has only one vortex located above the center
(Figure 3). When Re= 100, the flow pattern starts to form reverse circulation cells in lower
corners (Figure 4). In addition, for Re= 2500, we compare the velocity streamline behavior
for Navier-Stokes equation, subgrid eddy viscosity and artificial viscosity model. Figure 5
shows that the main eddy of artificial eddy viscosity model is too small and its center is too
close to the upper lid. On the other hand, with the higher Reynolds number the subgrid
eddy viscosity model reproduce the main eddy well and steady flow pattern becomes more
complex with reverse circulation cells in both lower corners.
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Figure 4: Velocity streamlines for Re = 100.

7 Concluding Remarks

In this article, we presented and analyzed a two-grid method for solving the steady-state
Navier-Stokes equations. This method has the advantage of adding diffusion only on the
large scales. Numerical tests showed that the new stabilization technique is robust and
efficient way of solving Navier-Stokes equations for a wide range of Reynolds numbers. The
simulation of this model applied to the time dependent Navier-Stokes is currently under
investigation.

Acknowledgements. The authors would like to thank Professor Vince Ervin from
Clemson University for his advice and for providing them with a software solving the
Navier-Stokes equations, and Professor William Layton from University of Pittsburgh for
his constructive comments.
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Figure 5: Velocity streamlines for Re = 2500 for Navier-Stokes Equation, Subgrid Eddy
Viscosity Model, Artificial Viscosity Model, from left to right (H,h) = (1/8, 1/16).
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