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solution and sensitive to uncertainties and perturbation in problem data.
On the other hand, closed equations for the averages of flow quantities can-
not be obtained directly from the physics of fluid motion. Thus, modeling
in large eddy simulation (meaning the approximation of local, spacial aver-
ages in a turbulent flow) is typically based on guesswork (phenomenology),
calibration (data fitting model parameters) and (at best) approximation.

If u(x,t), p(x,t) are the velocity and pressure in an incompressible turbulent
flow, then u, p satisfy the Navier-Stokes equation

(I.1)  w+V-(vu)—vAu+Vp=fand Vu=0in Q for t > 0,

where () is the flow domain and f is the body force driving the flow. If
overbar denotes a local, spacial averaging operator that commutes with dif-
ferentiation, then, averaging (1.1) gives the following non-closed equations
for u, p:

(12) V-u=0andw +V-(vu)—vAu+Vp=f, in Qfort>0.

The famous closure problem which we study herein arises because w w # @ .
To isolate the turbulence closure problem from the difficult question of wall
laws for near wall turbulence, we study (1.2) subject to periodic boundary
conditions (and zero mean)

u(x + Lej,t) = u(x,t)
(1.3) { fotiode = [yu de = [y fdz =0

The closure problem is to replace the tensor wu with a tensor S(w, @) de-
pending only on @ (and not u). There are very many closure models proposed
in large eddy simulation (or LES) (see Sagaut [Sag01] and [Joh04] for exam-
ples) reflecting the centrality of closure in turbulence simulation. Calling w, ¢
the resulting approximations to @, p, we are led to considering the model.

(1.4) V-w:()andwt—l—V-S(w,w)—l/Aw—l-vq:ﬁ

With any reasonable averaging operator, the true averages, w,p are smoother
than wu, p. Thus, solutions of any derived model such as (1.4) should be more
regular than the Navier-Stokes equations. However, in spite of the intense
interest in closure models for turbulence, there are very few whose mathe-
matical development even parallels that of the NSE, e.g., [MP94], [Joh04],
[Sag01], [LL02].



In this report, we consider the simplest, accurate closure model. If u is
a constant flow then v = w. The simple closure model (that is exact on
constant flows) is thus

(1.5) uu=uu(=: S u))),
leading to
(1.6) V-w:()andwt—l—v-(m)—l/Aw—l—Vq:f

In some sense, (1.5) is the most basic (hence zeroth) model in LES. If
can arise by dropping the cross and Reynolds terms and keeping only the
Leonard/resolved term [Leo74]. It is the zeroth Stolz-Adams ADM model
[SA99], [Sag96]. Tt is the rational model [GLO0] truncated to O(§?) terms.

We shall show that the model (1.6) has the mathematical properties which
are expected of a model derived from the NSE by an averaging operation
and which are important for practical computations using (1.6).

The choice averaging operator in (1.6) is a differential filter, [FMO1], [DJ03],
[Ger86], [LL03]. Let § > 0 denote the averaging radius (typically related
to the finest computationally feasible mesh used in a simulation of (1.6)).
Given a periodic function ¢(x) € L*(2), define its average ¢ to be the unique
periodic solution of

Ad = —Adp+d=¢, in Q=(0,L)"
With this averaging, the model (1.5) has consistency O(§?):
Tu=uu-+ 0(52), for smooth wu.

We prove that the model has a unique, strong solution and that the smooth-
ness of this solution is limited only by the smoothness of the problem data

ug and f. These properties are essential for numerical simulations. We prove
that as 6 — 0, the solution of the model is w — u (the solution of the NSE)
in the appropriate sense. This property is critical for consistency of the
solution of the model with the true flow averages. We also give connections
of the model with the K — 41 theory of homogeneous isotropic turbulence.
Finally, we introduce the question of spurious vorticity/eddies generated by
the model and give one weakly positive result.
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The development of these mathematical properties is based upon a skew
symmetry property of the model’s nonlinearity and the energy estimate it
induces. To be specific, for sufficiently smooth functions which are periodic
and divergence free

/S)V-(W)-Awdx:/QV-(ww)-A_lAwdx:/QV-(ww)-wd:z;:().

Thus, (loosely speaking) multiplying the model by Aw and integrating over
the domain shows that w satisfies the very strong stability property

T J—
SupT{Ilw(t)ll2 + 8|V @)} + V/O IVwll* + 8*|| Awl*dt < C(v, T, f)
0<i<

where || - || is the usual L*(2) norm. This property is also shared by suitably
defined weak solutions of the model proven to exist in [LL03]. Exploiting
this strong stability property, we shall first prove existence and regularity of
strong solutions to the model.

Theorem 1.1 For any uy € (L*())* with zero mean and V -uy = 0, [ €
L*([0,T],(H™)?) the model (1.6) has a unique L-periodic weak solution

(1.7) (w,q) € [L*([0,T],(H?*)?) 0 L=([0, T, (H'))] x L*([0,T] x Q)
and the energy equality holds:

(lw@I* + & Vw(®)]]*) + /Ot v([IVw()]]* + 8| Aw ()| [*)dt!
= S(lmll? + PIVw ) + [ . wyr

DN | —

(1.8)

If up € C;‘Q(Q x(0,7)),V-ug=0and f € C;‘Q(Q x (0,T)), then that solution
is strong and smooth, (w,q) € [C*(Q x (0,7))]*

Remark 1.1 On the left-hand side of (1.8) for & fixed and the viscosity
v — 0, we retain a quite strong regularity property w € L*(0,T; H(Q)).
Using this observation, existence can also be proven for the Euler model that
arises by setting the viscosity coefficient v = 0 in (1.6). (This fact was
pointed out to the author W.L. by D. D. Holm and FE. Titi.)



Corollary 1.1 Consider the model (1.6) with v = 0 and 6 > 0. For any
ug € L*(Q), f € L*(Q x (0,T)), the Euler-LES model

Vew=0, and w,+V-(ww)+Vg=f

has a unique weak solution. That weak solution satisfies the energy equality:
1
(1.9) 5@ + &IV OF) =
1 t
= Sl + [ Vua( 1) + [ (fw)()d,

One of the most important criteria in evaluating a model is that it be
accurate. Yet, there are few analytical studies of ||w — @|| primarily be-
cause of deficiencies in the analytical tools available. We are not able herein
to give a complete and comprehensive, a priori proof of the model’s accuracy.
Nevertheless, we prove some partial results that confirm that the model has
properties expected of one derived by averaging from the NSE. For example,
we show in Section 3 that as § — 0 there is a subsequence §; with

w — u, a weak solution of the NSE, as ¢; — 0
and if that weak solution wu is unique
w—u as o —0.

This result addresses the issue of “consistency in the limit” [Lay0l] as § — 0
of the model. The model (1.6) and Camassa-Holm model ([FHT02]) have a

similar energy balance and both satisfy a limit-consistency result.

Let 7 denote the modeling consistency error tensor

T(u, u):=Uu—Tu
then it is straightforward to see that the true flow averages w satisfy
w4+ V- (@u)+Vp—vAu=[f+V- 7

and the error in the model e = W — w satisfies an equation driven only by the
averaged consistency error V - 7:

e+ V- -(@u—ww)+V(p—q)—vAe=V-T.
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Thus, ||e|| being small depends upon two factors: a small consistency error,
||7]| small, and a strong enough stability property that ||e|| is bounded by
some norm of 7. If the stability constants in this bound are to be independent
of §, then (with the analytic tools available at this time) an extra condition
ensuring global uniqueness of u is necessary. In Section 3, we prove such a
bound (which ensures the model is verifiable in the sense of [Lay01]). The
other criteria is that ||7|| is small as 6 — 0. This is often performed by
computational experiments, see the discussion in [Jim99]. Herein, we give in
Section 3, analytical bounds verifying that 7 — 0 (with rates) as 6 — 0 for
smooth enough solutions u of the NSE. One main open question is that the
natural norm on 7 for verifiability is stronger than the natural norm on 7 for
evaluating the model’s consistency error.

Lastly, we consider the question of spurious vorticity. Our result on this
question is positive but weak. We show that if V x ug =0 and V x f =0
then (correctly) V x w = 0 and that the zero vorticity state is stable: if
V X ug and V x f are both small then V x w is comparably small.

2 Uniqueness, Regularity and Stability of the
Model.

2.1 Background

Let Wﬁl’p denote the space of all [0, L]>periodic functions with restriction on
the cell @ = [0,L]* in the Sobolev space W'*((Q). By the same way one
notes Hy = H" = Wﬁl’z, and for the sake of simplicity, L” instead of L} when
no confusion occurs, and L?([0,T] x @) for functions space periodic, or also
L% .. Recall that the averaging operator A is defined by

(2.1)  Ad:=—-Ad+d=¢, inQ, and ¢z + Le;) = ().

defining an operator A : Wﬁl’p — (Wﬁl’p/)’ = Wﬁ_l’p. One easily sees that A is
self-adjoint and has the regularity property

(2.2) Vr, Yoe H, ¢=A"1pec H

Let w be a solution of (1.6) subject to periodic boundary conditions with
zero mean and the initial condition with zero divergence and mean. One



notes

vz{ve(L§)3:(L2)3;v-v:/Qv:0}
It has been shown in [LL03] that when
(2.3) weV o fe 0,1, (H 1))
then (1.6) has a weak solution
w e LA[0, 7], (H7)7) 0 L=([0, 7], (H")*)

Throughout the section, we assume that (2.3) holds.

2.2 Uniqueness
We first prove the following uniqueness result.

Theorem 2.1 Assume that (2.3) holds. Then there exists at most one solu-
tion to (1.6).

Proof. Let (wq,¢1) and (ws, g2) be two solutions to (1.6). Write ¢ = wy—wy,
d0qg = g3 — q1. Thus ¢ is solution to the problem

&1+ V- (wagwy — wiwy) — vAe+ Vig=0,
(2.4)

subject to periodic boundary conditions with zero mean. Notice that by
using Schartz rule in the absence of boundaries one has in the sense of the
distributions

V- (U)QU)Q — wlwl) == A_IV . (U)QU)Q — wlwl).

Using A¢ as test function in (2.4) and integrating in space on a cell yields

d
o [0+ 8V + v [(IV6f + 8226 =

(2.5)
—/A_IV - (wawg — wywy). Ag

We focus our attention on the r.h.s of (2.5). By using self-adjointness of A
one has

/A_lv (wawg — wywy). Ag = /V - (wawg — wywy). @.
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Furthermore, using the incompressibilty constraint, one obtains after an easy
algebraic computation and an integration by parts,

/V . (U)QU)Q - wlwl). qb = — /(QbV)qb wi.
Finally,
d
26) 5 (6l + 896 +v [V + 820]) = [(6¥)6.wn.
By Cauchy-Schwarz inequality,

@916+ wi| < ol lollwerp IVl ap-

Since
wy,wy, ¢ € LX([0, 7], (H*)") N L([0, 7], (1')°) < L=([0, T, (L)),
(by using Sobolev embedding theorem) it follows that
[ [za ][0l e [V 8l l22)s < ClIV @I [(12)z

where (' is a constant which only depends on the data f and wg. Finally,
with C' = C'(§)

CIIValiE < C([ (16 + 81V o).

By putting all of this together, one sees that (2.6) implies that

(ol + 81w ap) < ([ (o + 81V 0L)

Since |p|* 4+ 62|V ¢|* vanishes when ¢ = 0, Gronwall’s Lemma implies that it
vanishes for almost every t. Hence, uniqueness follows and the theorem is
proven.

2.3 Regularity

The aim of this subsection is the proof of the following regularity result,
assuming that (2.3) holds.



Theorem 2.2 Lel k € N. Assume that ug € VOH" and f € L*([0,T], (H*1)?).
Then the solution (w,q) of problem (1.6) is such that

(2.7) { we L2([0,T], H*?) 0 ([0, 7], H*),

q € L*([0,T), H).

Corollary 2.1 When k > 2, w is continous in time and space. When [ and
ug are C*°, then (w,q) is C™ in space and time.

Proof. In the following, D* denotes any partial derivative of total order k.
The result is already proved when k& = 0. Let £ € N. Assume

(2.8) w € VN HNY and  f € L3O, T], (HF1)?).
We do the following recursive hypothesis:

forany ¢=0,.....k—1
(2.9)

and for any derivative operator of order ¢, D?,

Diw € L*([0,T], (H?*)*) N L*=([0,T], (H")?).

In addition to (2.9), one assumes that all the constants involved only depends
on the datas ug and f.

[t remains to prove that (2.9) implies
(2.10) D*w € L*([0,T], (H?)*) N L*([0, T, (H')?).

By taking the &' derivative of (1.6) and using the classical Schwartz rule,
one has in the sense of the distributions

V- DFw =0,

DFw; + ¥V - (D¥(ww)) — vAD*w + VD*q = D*f,
(2.11)
DFwi—y = D*wo = D™,

where boundary conditions remains periodic and still with zero mean and
the initial condition with zero divergence and mean. Taking AD*w as test
function in (2.11) and using the self-adjointness of the operator A yields

2;flt/(ww2 + 82V DFwl?) —|—1//(|VDkw|2—|—52|ADkw|)2

2.12
212 =< D*f, DFw > —/v - (D*(ww)). AD*w.

9



One first notes that
{ | < D, D w > | < {|D* fll-1ye || D wl |1y

2.13 1 v
1) < D i+ 2 [ 19D
2v 2

The second term of the r.h.s of (2.12) has to be estimated.
We show in the following that (2.9) implies

(2.14)

/OT/v.<m>.Apkw <c

where the constant C' involves only the datas f and wg. Inequality (2.14)
combined with (2.12) and (2.13) gives obviously (2.10).

First, by Schwartz rule,
V - (DF(ww)). AD*w = A™'V - (D¥(ww)). AD"w.

Then,
(2.15) /v - (DF(ww)). AD"w = /v (D" (ww)). DFw.

As one notes w = (wy, wsy, ws),
V- (DM(ww)). D*w = 9;( D" (wiw;)) D w,
(summation convention). Leibnitz formula reads
D*(wiw;) = C{D"w; D" "w;.
When combining this with the constraint V - D*~%w = 0, one has
V- (Dk(ww)). DFw = C,Z(aquwi)Dk_qijkwi.
Therefore, k being fixed,
(2.16) /v - (DF(ww)). AD*w = /(aquwi)pk—qwjpkwi.

In the sommation with respect to the ¢ index of the r.h.s of (2.16), one treats
the case ¢ > 1 and g = 0 one after each other.

10



Case ¢ > 1. By the recursive assumption (2.9),
D"ty € L([0,T), HY) < L=([0,7], L)
by using Sobolev imbedding theorem. Furthermore, always by (2.9), D*w; €
L*([0,T], HYYNL>=([0,T], L*). Classical interpolation inequalities using Holder
inequality (see [RL]) imply
D*w; € L*([0,T], H') n L>=([0,T), L*) C L*([0,T], L?).
Finally always by (2.9),
0;D"w; € L*([0,T], L7).

Putting all together and using Holder inequaltiy shows that for fixed ¢ > 1,
7 and 7,

(0; D%w;) D" w; D*w; € L*([0,T], L") c L]0, T], L").
Therefore,

T
(217) /0 /(@qui)Dk_qijkwi S C,

for a constant C' which only depends on the datas f and wy.

Case ¢ = 0. One has to consider the term ajwkaijkwi for fixed index.
On one hand, one still has w € L*([0,T], H*) N L>=([0,T], H'). Therefore,

8jwi S LOO([O, T], Lz).
On the other hand, by (2.9),

D*w,, DFw; € L*([0,T7], L°).

Therefore,

d;w;D*w; DFw; € LY[0,T], L) < L'([0,T), L'),
yielding
(2.18) /OT/ajwiD’“ij’fwi <,

for a constant C' which only depends on the datas f and wy.

11



When combining (2.17) and (2.18) to (2.16), one have proved (2.14) and the
proof is finished.

The regularity of the pressure term is deduced from classical considerations,

e.g., [AG94], [Tar78].

The corollary is a classical consequence of Theorem 2.2.

3 Accuracy of the Model.

3.1 Orientation

There are many questions that now arise. The first concern the consistancy
error; we show herein that the solution of (1.6),

V-w=0, w+V- (0w —vAw+Vg=F,

converges to a weak solution to the Navier-Stokes equations when ¢ goes
to zero (stated precisely in Theorem 3.1 below) proving that the model is
consistent in the limit as § — 0.

Let 7 denote the model’s consistency error
(3.1) T(u, u):=uu—uu,

where u is a solution of the Navier-Stokes equations obtained as limit of a
subsequence of the sequence (ws)sso.

We also prove in Theorem 3.2 that |[@—w|| 1 (0,7;12(q)) is bounded by ||7{|r2((0,1)x @)

We turn to estimates of ||7]| in the next section.

3.2 Limit Consistency of the Model.

Throughout the section, we assume that (2.3) holds. Let (ws, gs) the solution
of (1.6) for a fixed § > 0.

Theorem 3.1 There is a subsequence 6; — 0 as j — oo such that
(ws,,qs;) = (u,p) as ;=0

12



where
(32)  (u,p) € [L([0, 7], (L2*) 0 L2([0,T], (H")*)] x LF([0,T],L?)

is a weak solution of the Navier-Stokes equations. The sequence (ws;)jen
converges strongly to u in L%([O, T, L*) and weakly in L*([0,T]; (H")?) while
the sequence (qs,)jen converges weakly to p in the space L%([O,T], L?).

Before proving Theorem 3.1, we first prove the following two lemmas.

Lemma 3.1 Let (fs5)ss0 be a sequence in L%([O,T],LZ), (space periodic).
Assume that (fs)sso converges weakly to some f in the space L%([O,T],Lz)
when § goes to zero. Then the sequence (f5)sso converges weakly to f in the

space L%([O, T, L?)

Proof of Lemma 3.1. The sequence (f;)sso is obviously bounded in the
space L%([O, T], L*). Thus from this sequence one can extract a subsequence
(still denoted by (f;s)s>o0) which weakly converges to some g € L%([O, T, L?).
By taking ¢ € C*=([0,T] x @), space periodic, one obtains after two part
integrations in space in the equation satisfied by fs, Afs = fs,

(3.3) i [ [actir [ for=[ [or

T _ _

In (3.3), / /Aqbﬁ; remains bounded because of the bound of (f;)sso in the
0

space L%([O, T], L?*). Thus, one has

1im5/0T/A¢75 —0.

§—0

Passing to the limit in (3.3) for 6 — 0 yields

(3.4 [ Jea=[ [or

an equality which holds for each ¢ space periodic and smooth. Therefore
g = f. The possible weak limit being unique, all the sequence converges.

Lemma 3.2 The sequence (gs)sso is bounded in the space L%([O,T], L?).

13



Proof of Lemma 3.2. Taking the divergence of equation (1.6) yields
(3.5) —Ags =V - (V-wzw;) — V-,

with periodic conditions and mean value equal to zero, [, qs = 0. The en-
ergy estimate for w shows that the sequence (ws)sso is bounded in the space

Lee ([0, T, (L2)*)NL*([0, 17, (H')?) included in L=([0, T7, (L*)*)NL*([0, T1, L°).
Holder inequality implies

L>2([0, T, (L2)?) n L2([0,T), L®) C L=([0,T], L").

Consequently, the sequence (wsws)sso is bounded in L%([O,T], (L?*)?), from
which one deduces that

(3.6) The sequence (W;w;s )s>0 is bounded in L%([O, T],(L*)%)

One concludes from the classical elliptic theory and from (3.5) that (g¢s)sso
is bounded in

L3(]0,T), L?) + L*([0,T), L*) C L3([0,T], L?)
and the lemma is proved.
Remark 3.1 Note that it is easy deduced from the condiderations above that
(3.7) the sequence (Opws)sso is bounded in L%([O,T], (H™1)?).

Proof of Theorem 3.1. Because of the bound of the sequence (ws)sso in
L*([0,T],(H")?) one can extract a subsequence (still denoted (ws)s=o) which
converges weakly to some u € L*([0,T],(H")?) when ¢ goes to zero. Thanks
to Lemma 3.2, one can extract from the sequence (gs)s>o a subsequence (still
denoted by the same) which converges weakly to some p in L%([O, T, L*).

We shall show that (u,p) is a weak solution to the Navier-Stokes equations
by passing to the limit in each term of the equations. For this, let (v,q) be
('™ in space and time, space periodic. One has

/ngatw&v_/OT/TW'VU—I_V/OT/VUJ&VU
(3.8) —/0 /%V'U:/O < fo>,

T
/ /Vq.wg = 0.
0

14



Note at first that by a part integration one has

(3.9) OZ/OT/qv-wg:—/()T/Vq.w5—>—/0T/Vq.u:0.

Thus
(3.10) V-u=0.

The weak convergence of the sequence (¢gs)s>o in L%([O, T), L?) yields

‘ T T
(3.11) (151_1;%/0 /q(gv-v:/o /pv-v.

Estimate (3.7) makes sure that one can extract a subsequence from the se-
quence (Jyws)s>o which converges weakly in L%([O,T],(H_I)S) to some g¢.
When v has a compact support in time,

/OT/atwg.v = —/OT/wg.atv.

Consequently,

T T
lim/ /wg.atv = / /u.@tv = — < O, v >=— < g,v >,
0 0

§—0

the last brakets having to be considered in the sense of the distributions.
Then g = Jyu in the sense of the distributions. Then dyu € L%([O, T),(H™)?)

and one have .
(3.12) lim dyws.v :/ /8tu.v
5§—0 0

Finally one has obviously,

T T
(3.13) lim/ /ng.Vv :/ /VU.VU
5§—0.Jo 0

It remains to pass to the limit in the nonlinear term V - wsw;.

We already now that the sequence (wsws)sso is bounded in L%([O, T],(L?*)?)
(see the proof of lemma 3.2). Thus, up to a subsequence, it converges weakly
to some VU in L%([O,T], (L*)?). Applying lemma 3.1, (wsws)s>0 converges
weakly to U in L%([O, T],(L?)?). We have to prove that ¥ = wu.

The bound of the sequence (ws)sso in L*([0,T],(H")?) combined with the
bound of (Gyws)s>o in L%([O, T],(H™")?) make sure that the sequence (ws)s>o

15



is compact in L%([O, T],(L?*)?), and the convergence is strong in L%([O, T],(L?*)%)
by using Aubin-Lions’s Lemma (one point that we had claim in the statement
of Theorem 3.1). By classical arguments using inverse Lebesgue’s Theorem,
e.g., [Tar78] one can extract a subsequence (always denoted by the same)
which converges a.e. in [0,T] x @ to w. Consequently, (wsws)sso converges
a.e to uu and this suffises to make sure that ¥ = wu. Then

T T
(3.14) lim/ /w5w5 Vv :/ /uu Vv
5§—0.Jo 0

When one puts together (3.8), (3.9), (3.11), (3.12), (3.13) and (3.14), one has

//&uv—/ /uqu—l—l// /VUVU
(3.15) /O/pv v:/o < fo>,
/OT/vq.u:o,

which implies that (u,p) is a weak solution to the Navier-Stokes equations.
The proof of Theorem 3.1 is complete.

3.3 Verifiability of the Model.

Theorem 3.2 Suppose the true solution of the NSE satisfies the reqularity
condition ||Vul|| € LY0,T). Let T :=u u — u u. Then U — w satisfies

¢
(3.16) ||(W—w)(t)||2+’//0 IV (@ —w)(s)|[*ds
R ¢
< Cvte” A(t)/ ||7|2ds
0
where A(t) := f§ ||Vul|*ds.

Remark: It is straightforward to weaken the assumption ||Vu|| € L*(0,T")
to the Serrin [Ser63] condition that v € L"(0,T; L°(Q)). The main problems
with the estimate (3.16), however, are (1) the multiplier eV AW g huge
for small v, and (2) the natural analytic norm for measuring the consistency
error is L*(Q x (0,T)). However, (as we shall see) giving analytic bounds on
|7]|z2(@x(0,y) depends (since 7 is quadratic in u) on & priori bounds on first
and second derivatives of u.
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3.4 Accuracy of the Model.

Proof of Theorem 3.2. As noted in the introduction e = w — w satisfies
(in the sense of its variational formulation), V- e =0,¢e(0) = 0 and

e+ V- -(uu—ww)+V(p—q)—vAe=V-T.

where 7 = @ W — u u. This is exactly the perturbation equation for the model
we study. Under the stated assumption on u,u is a strong solution of the
NSE and w is a strong solution of the model. Thus, this equation holds in
the strong sense. Taking the inner product with Ae and following the proof
of the model’s basic energy estimate gives

1d
5 77 Ulell® + 8 (1Vel*} + Al Vel[* + 8[| Acl[*}

+V-(uu—ww),e) < —(r,Ve)
Writing @ w — w w = we + eu and using (V - (we),e) = 0 and |(7, Ve)| <
2||Vel|* + 5=||7[|* we then have
d _
TAlell” + S[Vell} + vAlIVel* + %[ Ael’} < v7I7|" +
—(e- Vi, e) < vTH|r|P + ClV el P2 le] |2Vl .
Thus, using ab < ea*/® + C'e=b*, we obtain
d
TAllell" + Vel "} + AlIVel[* + %[ Ael "}
< CvHI7]l* + Co=?l vl el 1.
Gronwall’s inequality then implies
t
||€(t)||2+52||V€(t)||2+’//0 [[Vell* + 0%|| Ael|*ds
R t
< Cvlte”” A(t)/ ||7||%ds,
0

where A(t) = [y]|Va||* ds. Since we are searching for a result which is
uniform in ¢, the d-terms on the inequalities LHS are dropped and, on the

RHS, the stability bound
IVaEl| < [[Vul|

(see lemma 4.1 and estimate (4.2) below) is used with the assumption that

V|| € L40,T). O
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4 Consistency error estimates

Recall that

(4.1) T(u, u):=uu—uu,

In this section, we shall give bounds on [|7]|1(j0,71x0) @s ¢ — 0 in the gen-
eral case. An estimate of ||7||z2(0,r)x0) Will be provided under additional
regularity properties.

First, classical results on singular perturbations are needed. They are recalled
in the next subsection.

4.1 Some singular perturbations results

Lemma4.1 Let p € L2, 1 < p < oo. Then
(4.2) 145 ez < llellee
Moreover, when p > 1, (A;'p)sso converges towards ¢ strongly in LE.

This is a direct consequence of classical stability results in elliptic theory.
For completeness, we give a short proof below, condensed from [Lew04].

Proof. Put 3 = A;'¢. Recall that
(4.3) —SPAp+p =9

Take () = p|plP~* as test function in (4.3) when p > 1, (with the modi-
fication that if p = 1 we take (%) = sgn(®) and use some technical tools)
and integrate by part. This yields

(4.4) 5 [v@el+ [l = [eu(@)
Because ¢ is a non decreasing function, we can deduce from (4.4) that
(4.5) [1er < [ev®)

Inequality (4.2) is directly deduced from (4.5) when p = 1. Assume now that
p > 1. Then (4.5) yields

(4.6) [1ep < 1ol
18



We use Holder inequality in the r.h.s of (4.6). Then (4.6) becomes

(4.7) 121172 < llellzlf@lfs
yielding (4.2).

The next result is easily proven as well, see e.g., [Lio68].

Lemma 4.2 Let p € L2. Then

(4.8) |7 — ‘P||L2<\/—||V‘P||L2

4.2 L' Consistency erreur

Throughout this subsection, one assumes that f € L*([0,T],(H;')?). Let u
be any solution to the Navier-Stokes equation. Recall that

(4.9) T(u, u):=TTW—u u,
Introduce
2 LT
(4.10) W) = [ fus(e)Pde + [ 11l
Q v Jo

Lemma 4.3 The following holds
(411) ||T||L1 ([0,T],(L1)® < \/_(ST2I/ 2W(T)

Proof.  Because u is a solution to the Navier-Stokes equation then the
classical energy estimate holds for all t < T',

(4.12) /|ut:1; 2d:1;—|—1// / Vu(t, o) |2 dedt’ < W(T).

Next write
= (u+u)(u—u).
Thus, by using (4.2), one has

Tt qo,m, 2y < 2l1ullrz o102y | [T =l 22 o,11,22)%)

Therefore, (4.11) is a consequence of (4.8) combined to (4.12).
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4.3 L’ Consistency erreur

Because estimate (3.16) involves L? norm of 7, we are lead to seek for an
estimate of this quantity. As already mentionned in Theorem 3.2, a regularity
assumption on the velocity is needed to derive estimate (3.16). Due to the
nature of the filter, an other regularity assumption has to be introduced.
This regularity is known in the 2D case, but not in the 3D case. We stay
here in the 3D case.

However, we stress that such kind of estimates can be found in [Sag01] and
references therein, in the 1D case and for C'* fields. Our result comple-
ments these since it considers solutions with the (limited) regularity typical

of solutions of the NSE.
Proposition 4.1 Let u be a solution to the NSE. Assume that
(4.13) u € (LX[0,7] x @) n L0, TT, (H?)?)

Then one has

(414) ||T||L2([O,T],(L2)9) < C(S,

where C = C(||u||(L4([07T]XQ))3, ||u||L1([07T]7(H2)3).

Proof. Observe first that by Cauchy-Scharz inequality and (4.2),
(4.15) 7|22 (0,10, 022)0) < 2Mutllza 7 — u[ps -

Next, it is known that

(4.16) 7= ullug < Ol =l 19 @ - wl,

Because we are in a periodic case, then (4.8) applies to the quantity ||V (u —

u)||%2 Then (4.14) is deduced from (4.15) combined to (4.16) and (4.8), a

time integration and the use of Holder inequality.

5 Vortex Structures of the Model.

In underresolved simulation of fluid flow at higher Reynolds numbers vortices
often appear that seem to be spurious. Are these the result of backscatter
in the true flow equations, so that the extra vortices are physically correct
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for a small physical perturbation? Are they non-physical vortices excited
by truncation error terms? Are they non-physical vortices that appear as
solutions of a turbulence model used that do not reflect appropriate averages
of the true flow’s eddies? Studies of the second question have been pioneered
by Brown and Minon [BM95] and Drikakis and Smolarkiewicz [DSO01]. Our
aim here is to begin considering the third question in an (admittedly quite
simplified) setting which admits analytical attack.

Taking the curl of the model we obtain an equation for the vorticity predicted
by the model. If the model is appropriate, V x w should be a non-spurious
approximation of the true vorticity V xu. The question is: does the model so-
derived for w make non-physical predictions of V x u? Since such questions
center on the relationship between V x u and V x w we first note that
equations for the vorticity predicted by the model are easily derived. Indeed,
taking the curl of the LES model shows that V x w =: w satisfies, w(0) =
V % ugp and

(5.1) wi+w-Vot+w -Vu—vAw=V x f, if Q C R”,
and
(5.2) wi+w-Vw—rvAw=V x f, if Q C R~

First, we consider the simplest (and easiest) case: we show that if V x ug =
V x f =0 then w = 0, i.e., no spurious vorticity is generated by the model
of the nonlinear interaction.

Proposition 5.1 Let f and ug be smooth. If V X ug = 0,V x f = 0 then
w=Vxw=0.

Proof: First we note that by the estimates of the previous sections, w (and
hence w) is smooth. Adapting the proof of the energy estimate of the model,
take the inner product of (4.1) with Aw. This gives, after integrations by
parts,

%{HMH2 + 8%Vl [} + oAl Vel* + 8% Aw]*}

—(w - Vw, Aw) — (w - Vw, Aw)

—(w+ Vw,w) < [[Vwl| [[Ve]*,

Since ||Vwl|| € L>(0,T), the result follows by Gronwall’s inequality. O

Naturally, it is more important that small perturbations remain small. This
fact also follows by essentially the same energy argument.

[| Do +—
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Proposition 5.2 Let ug, [ be smooth and suppose
IV xuoll e, IV % fllzoeiom < e
Then ||V x w|| satisfies in 3d:

2

€,

1 i t
U@ + 5[V} +/0 v|[Vo|[* + 6*v]| Aw|f*ds < [(1 +5)et

where A(t) = fo 1+ [|Vw||(s)ds < oo, and, in 2d:

1 t
SO + %[V} +/0 V[Vl + 8[| Aw|[*ds < (1 +t)c".

Proof: First we note that, by integration by parts,

[l (0)]1* + %[V w(0)]* = (w(0),w(0) — 6*Aw(0))
= (w(0), Aw(0)) = (V X ug, A V X ug) =
= (V x ug, V x ug) < ||V x ugl|*.

By the same argument as in Proposition 4.1 we have, in 3d,

1 d
5 Ul + PV} + IVl + 6% Aw}

—(w-Vw,w)+ (V x fw)
1 1
< (5 + IVwlDIIl® + IV > FIF

[l o

Thus, by Gronwall’s inequality
%{Ilw(t)ll2 + 8% | Vw(1)][*} + /Ot || Vew]|* + 8% Awl[*}ds
< AD||V x u|* + %eA“) /Ot IV x f]|*ds
<M1+ %t)e%

where A(t) = [§ 3 +||Vwl|(s)ds (< o).

In 2-d, the same argument can be used but the term (w - Vw,w) does not
appear on the RHS. Thus, the 2-d estimate does not display exponential
growth. O
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Remark: An Open Problem. There is one more case for which the ques-
tion can be formulated mathematically. In 2-d, the true vorticity equation
is:

(Vxu)+u-V(Vxu)—vAV xu)=V x f.

This equation satisfies a maximum principle. Thus, when V x ug and V x f
have one sign, V x u must also have one sign. Thus, it is reasonable to
ask the question: if the initial condition and the body force exert only a
counterclockwise rotation force on the flow, does the LES model (correctly)
predict that only a counterclockwise rotation of the flow results?

The above proofs can be attempted to be combined with generalized maxi-
mum principle arguments. Unfortunately, the obvious combination fails (for
a subtle reason we describe below). The mathematical treatment of this last
question is an open problem.

To understand the point of failure, define w_ := —max{—w,0}. Taking
the inner product of (4.2) with Aw_ (and ignoring boundary terms) gives
(following the above proofs)

1d
5 77 Ul 1P 4 (I Ve [} + v Ve[

+v8*(Aw, Aw_) = (V x f,w_) <0.

Unfortunately, (Aw, Aw_) does not have one sign. A calculation of (Aw, Aw_)
from the definition of Aw_ as a distribution in H~(£2) gives

(Aw, Aw_) :/Q|Aw_|2d:1;—/asupp(w_)(Aw)(s)Vw_ Ci(s)ds.

The last term on the RHS can have any sign. Thus, direct proof fails.
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