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Abstract

This paper presents a high-order numerical method for solving the
pressure-saturation formulation of the two-phase flow problem. The
saturation and pressure of the wetting phase are approximated by
totally discontinuous polynomials of different order. The robustness
of the method is shown for homogeneous and heterogeneous porous
media.

1 Introduction

The geological structure of the subsurface is highly heterogeneous and for
example, contains different rock types, faults, channels and networks of frac-
tures. There is a need for reliable numerical methods that would model the
flow and transport of chemical species in heterogeneous porous media. In
the oil industry, most reservoir simulators employ finite differences. Though
these low order methods are popular and efficient for homogeneous media
and regular grids, they lose their stability on highly unstructured meshes
and extra care is needed if the properties of the media are highly discontin-
uous.

This paper presents a high order finite element method that naturally
handles unstructured meshes and heterogeneous porous media for solving
the two-phase flow problem. The incompressible flow of a wetting phase
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and a non-wetting phase is mathematically modelled by a system of nonlin-
ear partial differential equations derived from the conservation of mass and
momentum equations for each phase. The reader can refer to the book by
Helmig [4] for a review of different mathematical models.

In the proposed algorithm, the primary variables are the wetting phase
pressure and saturation. They are approximated by discontinuous polyno-
mials of varying degree. The flexibility of discontinuous Galerkin methods
has made these methods competitive for modeling flow and transport prob-
lems. Some of the advantages include the high order approximation, the
easy implementation on unstructured grids, the robustness of the method
for equations with discontinuous coefficients and the local mass conservation
property. The nonsymmetric formulation was introduced by Oden, Babuska
and Baumann [5]; it was analyzed by Riviere, Wheeler and Girault [7] for
elliptic problems and by Riviére and Wheeler [9] for transport problems. Ap-
plications of nonsymmetric discontinuous Galerkin methods to porous media
flow were investigated by Riviere [6], Riviere and Wheeler [8] and Bastian
[1].

The outline of the paper is as follows. Section 2 contains the description
of the model problem. The numerical scheme is introduced in Section 3. Nu-
merical results are given in Section 4, followed by some concluding remarks.

2 Model Problem

We consider the flow of a wetting phase (such as water) and a non-wetting
phase (such as oil) in a porous medium  C IR? over a time period (0, T). For
a given integer N > 0, let At = T/N, let t° = 0 and " = t° + nAt. Denote
sw (resp. pl) the water saturation (resp. pressure) at time ¢". Similarly, s
and p} denote the oil saturation and pressure at ¢". The model problem is:

given (p",s"), find (pit!, st!) such that

V(KO + VALY = =V (KA0IVsn), (1)
6 RV oy _ 0 X
Lgntl vy (K Lolw n ntly — 7 on gL (Cw ) (9
A =V (K Rl LIV = s = Ve (). ()

The coefficients in (1) and (2) are defined below:

e The permeability K is a symmetric positive definite tensor, obtained
from a macroscopic averaging of the microscopic features of the medium.
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Therefore, it is discontinuous in the space variable and can vary over
several orders of magnitude.

e \? and A}, are the mobilities of oil and water respectively at time ¢".
Mobilities are the ratios of relative permeabilities by the viscosities
Aa = kr, /1. The viscosities are assumed constant throughout the
domain, and the relative permeabilities are functions that depend on
the wetting phase saturation s,, in a non-linear fashion. In this work,
the commonly used Brooks-Corey model [2] is considered.

Frw(s) =570, kro(s) = (1—8)’(1—s"0 ).
This model introduces an additional parameter 6 € [0.2,3.0], charac-
terizing the inhomogeneity of the medium.

® p. = p, — Pu is the capillary pressure, that is the difference of the

pressures in the two phases. For the Brooks-Corey model, we have
1

pe(s) = pas™ ¥,
where py is the capillary pressure needed to displace the fluid from the

largest pore.

® 0., Puw, ¢ are the phase densities and the porosity respectively. They are
chosen constant in the numerical examples.

e u” is the total velocity at t" defined by u" = —K!p.(sl)VsE —
K\ + \1)Vpl.

The approximation of the oil saturation and pressure are derived from the
constitutive equations.

8n—|—1 =1— 8n—|—1 pn+1 — pc(8n+1) _{_pn+1'
Let v denotes the outward normal to 0f2. Assume the boundary of the

domain is divided into three disjoint open sets 02 = I'y UI'y UI'_ on which
the following boundary conditions apply:

_ Aoy
Putt =pge, (i — Ty PL(sh) Vsl v = spu™ v, on T_,
0 w
n+1 + )‘ZAZ //.n n+1
Dy = Pgirs A 4\ |pc(3w)|vsw V= Oa on F-l—a
o w
AN

K"+ AM)Vprtl .y =0, K

w o D) Vst v =0, on Ty,
4 w
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In the model (1)-(2), the nonlinearity has been removed by time-lagging
the coefficients. In the next section, a fully discrete system is obtained by
discretizing in space.

3 Numerical Method

Let &, = {E}gr be a non degenerate triangular subdivision of 2, with max-
imum diameter h. Let I', be the union of the open sets that coincide with
interior edges of elements of &,. Let e denote a segment of I', shared by
two elements E* and E' of £,; we associate with e, once and for all, a unit
normal vector v, directed from E* to E' (k > 1) and we define formally the
jump and average of a function % on e by:

9] = @leole — @leler {8} = 5 @)l + 5@l

If e is adjacent to 0€2, then the jump and the average of ¢/ on e coincide with
the trace of i) on e and the normal vector v, coincides with the outward
normal v. For a given integer r > 0, the discontinuous finite element space
is

D, (&) = {v e L*(Q) :v|g € IP.(E) VE € &,}.

We approximate the water pressure and saturation by discontinuous polyno-
mials of total degrees 7, and 7, respectively. Let P and 5], be the numerical
solutions at time ¢". Assuming that (P72, S7) is known, the approximations
at the next time step (P!, S™*!) are obtained in three stages.

Stage 1: Computation of water pressure.

3 / KP4 A)VE . vo— S [0+ A VP b))
E

Ee€g), eclur ur_ Ve
+ > (KO, + A0V v [Pa =" [ KA(Sh)Ip.(Sp)|V Sy Vv
el U LUl — V€ Ece, B

- > K\ (S™)[pl(S™)| VS - v [v] + / (KA + A\)Vv - v)paie, Yo € Dy, (En).

ecT,UT UT_ V€ ol

Stage 2: Computation of water saturation.
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¢ n+1 / )\n)\n n n+1 / n+lyrn
Atsw z—i—Z )\n+/\n|pc(5 )|\ VSrH . vz — [ SMHUT bz

-y [ AST;V(S"WS"“ vibl+ Y [ix Aj?:ﬂpc(s")\w v S5

ecl'pUl' L ecl'p Ul 1

S E-L i V) v e v VI v es i ARLE
¢ )+ Au(S3) e€T Ul Ul _ (5z) +’\ (52)

— Z /{K)\"Vz ue}[P”]—/ snU" - vz, Vz €D, (E).
e€T, Ul Ul— I

where the approximation of the total velocity is
U™ = —Kp,(S5)VS) — K (Aul(SD) + Ao(S) V Py

Stage 3: Application of slope limiters if necessary. For triangular elements,
the slope limiter developped by Durlofsky, Engquist and Osher [3] is used.

The quantity S’Z}] is the upwind value of the water saturation with respect
to the normal component of the velocity U".

Ve =0E*NOE', k>1, S"=

w

St if {U™) v, >0,
St if {U"}-w, <0

It is easy to show that the numerical scheme is consistent with the math-
ematical model problem. An important property of our scheme is that it is
locally mass conservative. This is easily seen by fixing an element E and a
test function v equal to 1 on E and zero elsewhere. For simplicity, let us
assume that F is an interior element in ). The pressure equation solved at
stage 1 becomes:

{K(X\(S™) 4+ Ap(SM))VPI vy} +/ KM, ( S”)|pc(5")\VS” vg =0,
OF

which is an approximation of the local mass conservation of the total ve-
locity. The scheme naturally handles discontinuous permeability tensors, by
averaging the fluxes at the discontinuity points.
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4 Simulations

The numerical scheme is applied to the quarter-five spot waterflooding prob-
lem, which is a widely used benchmark problems for reservoir simulations.
The domain 2 is embedded in the square (0,300m)?. Water is injected
through injection wells and NAPL is produced at the production wells. The
wells are modeled with boundary conditions on the saturation and pressure,
prescribed at the well bore:

pw = 3.45¢°Pa, sy =04, on I'_
P = 2.4166P(L, on I[',

The entry pressure is p; = 5000Pa. The fluid properties are
pw = po = 1000kg/m?, u, = 0.002kg/(ms), p = 0.0005kg/(ms), & =0.2.

We first consider the case where the injection well is located at the bottom
left corner, and the production well located at the top right corner. On the
rest of the boundary I'y, zero Neumann boundary conditions are imposed.
The domain is subdivided into triangular elements and a description of the
problem and the coarse mesh are given in Fig. 1. There are 66 triangles in
the coarse mesh.

Production Well
r

+

=1

=71

Injection Vm

r

Figure 1: Configuration 1: Domain and boundary conditions (left) and coarse
mesh (right).
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Second, we assume that there are two injection wells located at the bottom
left and top right corners, and two production wells located at the bottom
right and top left corners. The domain and coarse mesh for this second case
are given in Fig. 2. There are 92 triangles in the coarse mesh.

=z

Production Well

Injection Well
L N
+ r

Injection V\m @ductlon Well
r

r r *
N

Figure 2: Configuration 2: Domain and boundary conditions (left) and coarse
mesh (right).

As further notation, we refer to the coarse mesh as mesh hy and to the
successively refined meshes as mesh h; for j > 0.

4.1 The homogeneous porous medium

The permeability field is simply K = kI with k = l.e='m?2. We first
consider the case where there is no capillary pressure for the configuration
1. The Brooks-Corey parameter 6 is taken to be 2.0 for the phase mobilities.
The water saturation and pressure on the coarse mesh hy are given on Fig. 3
at 100 and 200 days. The saturation is approximated by piecewise constants
and the pressure by piecewise quadratics. In this case, no slope limiter is used.
Convergence of the numerical solution is shown on Fig. 4 where we refined the
mesh successively. Note that the saturation fronts are quite sharp, and only
extends over a layer of one to two elements wide. Fig. 5 shows the pressure
contours in a three-dimensional perspective. The gradient of pressure drives
the flow from the injection well to the production well.



DG for Two-Phase Flow 8

3.41E+06

i 3.33E+06
3 3.25E+06
3.17E+06

3.41E+06

3.33E+06
N 3.25E+06
3.17E+06
3.09E+06
3.01E+06
2.93E+06
2.85E+06
2.77E+06
2.69E+06
2.61E+06
2.53E+06
2.45E+06

3.09E+06
3.01E+06
2.93E+06
2.85E+06
2.77E+06
2.69E+06
2.61E+06
2.53E+06
2.45E+06

Figure 3: Saturation and pressure contours at 100 days (left column) and
200 days (right column), on coarse mesh hy.

Second, we add the capillary pressure terms. The Brooks-Corey param-
eter f is taken to be 3.0. The water saturation and pressure on meshes hg
are given on Fig. 6 at different times. They are approximated by piecewise
linears and piecewise quadratics respectively. The contours on the refined
mesh h; are shown in Fig. 7

We next compare the simulations obtained by changing the Brooks-Corey
parameter to # = 0.5. The wetting phase is displaced more slowly than for
large 6 (see Fig. 8).

We then consider the configuration 2, and repeat the numerical exper-
iments for # = 3.0. The saturation and pressure on the coarse mesh are
shown in Fig. 9. The saturation is shown at 25 and 50 days on the mesh h,.
The saturation fronts are sharp. The contours are symmetric because of the
homogeneity of the medium and the symmetry of the boundary conditions.
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Figure 4: Saturation and pressure contours at 100 days on mesh h; (left
column) and mesh hy (right column).

After 100 days, the wetting phase has flooded the entire domain.

4.2 The heterogeneous porous medium

In this example, the underlying rock has inclusions of permeability that is 100
times lower than the rock matrix (see Fig. 11). The inclusions are in blue, the
rock matrix in red. Here, the capillary pressure is included, and the Brooks-
Corey parameter is # = 3.0. Piecewise linears are used for the saturation, and
piecewise quadratics are used for the pressure. For the first configuration,
the saturation and pressure contours are obtained on the meshes Ay and h;y
at 100 days (see Fig. 12). The saturation fronts are sharp and the wetting
phase avoids the regions of low permeability, as expected, even on the coarse
mesh. There is very little numerical diffusion.
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Next, for the second configuration, Fig. 13 shows the saturation con-
tours obtained on meshes hgy, h; and hy at 50 and 100 days. As before, one
concludes that the saturation fronts are quite sharp. The regions of low per-
meability play the role of barriers for the flooding of the wetting phase. In
all these examples, the water saturation decreases from its injected value to
its initial value over a layer of one to two elements. For completeness, the
pressure contours are shown on meshes hy and hy at 100 days (see Fig. 14).

5 Conclusions

We presented a numerical method that employed discontinuous polynomial
approximations, for solving the wetting phase pressure-saturation formula-
tion of the two-phase flow. We applied the method to the quarter-five spot
flooding, where the method numerically converged. We showed the robust-
ness of the method on coarse unstructured meshes and for heterogeneous
media.
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Figure 5: Three-dimensional view of pressure contours at 100 days on meshes

ho (left) and hy (right).
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Figure 6: Configuration 1. Saturation and pressure contours at 100 days (left

column) and 200 days (right column), on mesh hy.
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Figure 7: Configuration 1. Saturation (left) and pressure (right) contours at

100 days on mesh h;.
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Figure 8: Configuration 1. Saturation contours at 100 days (left) and 400
days (right) on mesh hy.
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Figure 9: Configuration 2. Saturation contours at 25 (top left), 50 (top right)
and 100 (bottom left) days on mesh hy. Pressure contour at 50 days (bottom
right).
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Figure 10: Configuration 2. Saturation contours at 25 (left) and 50 (right)
days on mesh hs.

Figure 11: Discontinuous permeability field: configuration 1 (left) and con-
figuration 2 (right).
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Figure 12: Configuration 1. Heterogeneous medium. Saturation and pressure
contours at 100 days on meshes hg (left column) and Ay (right column).
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Figure 13: Configuration 2. Heterogeneous medium. Saturation contours at
50 (left column) and 100 (right column) days on mesh hy and mesh hq, hy
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Figure 14: Configuration 2. Heterogeneous medium. Three-dimensional and
two-dimensional views of pressure contours at 100 days on mesh hgy (left
column) and mesh hy (right column).



