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Abstract. The existence of localized activity patterns, or bumps, has been inves-
tigated in a variety of spatially distributed neuronal network models that contain both
excitatory and inhibitory coupling between cells. Here we show that a neuronal network
with purely excitatory synaptic coupling can exhibit localized activity. Bump formation
ensues from an initial transient synchrony of a localized group of cells, followed by the
emergence of desynchronized activity within the group. Transient synchrony is shown to
promote recruitment of cells into the bump, while desynchrony is shown to be good for
curtailing recruitment and sustaining oscillations of those cells already within the bump.
These arguments are based on the geometric structure of the phase space in which so-
lutions of the model equations evolve. We explain why bump formation and bump size
are very sensitive to initial conditions and changes in parameters in this type of purely
excitatory network, and we examine how short-term synaptic depression influences the
characteristics of bump formation.
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1 Introduction

Oscillatory activity in neuronal networks is widespread across brain regions. An im-
portant goal of current research in neuroscience is to measure the degree of correlation
between oscillations and behavior. In particular, sustained patterns of activity that are
localized in space have been recorded in several experimental settings. These patterns,
often referred to as bumps of activity, have been correlated with working memory tasks
(reviewed in [21, 2]) orientation or feature selectivity in the visual system (see e.g. [10]),
and activity in the head-direction system in mammals (reviewed in [20, 19]). Recently,
there has been renewed interest in modeling bumps in a variety of settings and numer-
ous theoretical models for bumps have been developed (some of which are reviewed, for
example, in [7, 21, 2]).

A standard ingredient in the generation of activity bumps in model networks is a
so-called Mexican hat synaptic architectural structure. In networks endowed with this
synaptic structure, neurons effectively send excitation to nearby neurons and inhibition
to far away neurons. This setup allows excitation to build locally, causing cells to fire. It
also allows inhibition at more distant locations to block the spread of excitation, thereby
keeping the activity localized in space. Other forms of synaptic architecture have been
used to achieve bumps in layered networks of neurons [17, 18]. The conductance-based
thalamic model in [17] consists of synaptically interconnected excitatory and inhibitory
cell populations, while the single rate equation studied in [18] is derived as a reduction
from the thalamic architecture. The synaptic connectivity in these models differs from
the Mexican hat structure in that direct connections between excitatory cells are absent.
Common to all of these models, however, has been the need for some amount of inhibitory
coupling to limit the spread of activity and thereby form the bump. Alternatively, in
recent work, Drover and Ermentrout [3] numerically demonstrate the existence of bumps
in networks of Type II neurons with purely excitatory synaptic coupling.

In this paper, we show that inhibition is not necessary for bump formation in net-
works of so-called Type I neurons, which can exhibit oscillations at arbitrarily low fre-
quencies, depending on the input they receive. We study networks composed of two
general kinds of Type I neurons, coupled with excitatory synapses into a ring. The
first has governing equations that are one-dimensional; a typical example is the “theta”
model [8, 4, 11]. The second has governing equations that are two-dimensional, typified
by the Morris-Lecar model [14, 16]. The networks that we consider can display quies-
cent states, where no cells are firing, and active states, with all cells firing. Prior work
has shown that starting with the network initially at rest, spatially localized, transient
inputs can lead to wave propagation in such networks [6, 15]. We show that appropriate
brief inputs to small numbers of cells can generate regions of sustained, localized activ-
ity, with only some subset of cells in the network firing and with active cells remaining
active indefinitely. Moreover, these networks exhibit multistability of bump solutions of
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different sizes.
We use a dynamical systems approach to understand how localized bumps of activity

form. We show how geometric phase plane techniques allow us to determine which cells
in a network become part of the bump and which stay out. In particular, we find that
transient synchrony among the population is important in recruiting cells to the bump,
while the eventual desynchrony of these same cells is important both for curtailing the
spread of excitation and for sustaining activity of those cells already within the bump.
In fact, too much synchrony in the network can cause it to stop oscillating. Ermentrout
[4] has shown that for networks of weakly coupled Type I spiking neurons, excitation is
desynchronizing. While we don’t restrict ourselves to weak coupling, a similar effect is
seen in our networks. In fact, it leads directly to one of the main points of this paper:
the delay in firing in response to excitation that can occur in Type I neurons can lead
to desynchronization, which can in turn decrease the flow of excitatory synaptic current
and stop the spread of activity. This yields an an inhibition-free way to achieve spatially
localized firing.

Our elucidation of the mechanisms underlying bump formation emphasizes the key
role of a geometric feature (the go curve), related to the stable manifold of a particular
critical point, in selecting whether or not each neuron in a network becomes active.
Through simulations and analysis, we find that bump formation is very sensitive to
initial conditions and changes in parameters, including amplitude, duration, and width
of the transient input that initiates activity. Thus, given a set of parameters, it is
difficult to predict whether a bump will form, and if so, what the eventual size of the
bump will be. These and other related effects can be clearly understood in terms of the
go curve and the sensitivity to small perturbations that results from this phase space
structure.

It might be postulated that an alternative means to limit the spread of activity in a
purely excitatory network, by curtailing synaptic excitation, could come from short-term
synaptic depression. It is not at all clear, however, whether synaptic depression that is
sufficiently strong to limit activity propagation is compatible with local sustainment of
activity. We show that synaptic depression, in general, does promote localized activity
in excitatory networks of Type I neurons. Further, depression changes the way that
transient inputs influence both bump formation and bump termination, with possible
functional implications.

The paper is divided up into several sections. In section 2, we show simulation results
from the Morris-Lecar model. This is followed in section 3 by an introduction to the
main geometric construct of this paper, the go curve, using the theta model. Here we
set up the basic framework that is needed to understand bump formation in general
networks of Type I cells, and the 1-dimensional nature of the theta model allows for
this to be done most clearly. In sections 4 and 5, we go on to analyze the more general
two-dimensional Morris-Lecar model, finishing with the inclusion of synaptic depression
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in section 5.5. We conclude in section 6 with a Discussion.

2 Numerical Examples: Gradual Recruitment and Bump

Formation

We simulated 20 coupled neurons aligned in a ring. The neurons were modeled using
the Morris-Lecar equations [14]. In the absence of input, the attractor for each cell was
a low-voltage critical point. Each neuron was synaptically connected to its three nearest
neighbors on both the left and right sides. Thus neuron 1, for example, was coupled to
neurons 2, 3 and 4 on one side and 18, 19 and 20 on the other. Each neuron was also
self-coupled. The self-coupling was not strong enough, however, to make an isolated
neuron bistable between resting and oscillatory modes. The equations we simulated are

v′i = −ICa − IK − IL − ḡsyn[vi − Esyn]
[

cosi + Σj=3
j=1cj [si−j + si+j]

]

+ Iext

w′
i = [w∞(vi) − wi]/τw(vi)

s′i = α[1 − si]H(vi − vthresh) − βsi,

(1)

for i = 1, . . . , 20, where sk = sk+20 for k < 1 and sk = sk−20 for k > 20. The function
H(v) = 1 if v ≥ 0 and is 0 otherwise.

The details of the other functions and parameters involved in equations (1) are
given in the Appendix. We point out in particular, however, that with the choice
of parameters used, equations (1) generated Type I behavior [16], meaning that each
individual cell without synaptic input experiences a saddle-node on an invariant circle,
or SNIC, bifurcation as Iext is varied [11, 16]. Further, c0 is sufficiently small that each
cell is not bistable; that is, self-coupling alone is not enough to sustain oscillations if an
isolated cell is transiently stimulated.

We performed our simulations using the software XPPAUT [5]. To achieve numerical
accuracy, we used the adaptive integrator CVODE with a time step of 0.025 units or
smaller. In our simulations, we transiently increased Iext to a small group of cells. We
observed the behavior of the entire network for a time period well beyond the initial
“shock”. We considered a localized activity pattern, or bump, to be stable if the number
of cells generating spikes remained invariant for 10000 time units. With a typical spike
frequency of about 70-80 spikes per 1000 time units, a simulation of 10000 time units
allowed ample opportunity for recruitment of additional cells.

Figure 1 shows what appear to be a stable bump of 7 cells and a stable bump of 13
cells. In both experiments shown, all cells started from rest and then cells 9, 10, and 11,
namely the central three cells in a 20 cell network, had Iext raised by 0.2 units for the
first 50 time units of the simulation. Under this stimulation, they fired at a relatively
high frequency, as can be seen at the top of both panels of Figure 1. After this initial
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period, the values of Iext for cells 9-11 were returned to baseline and no subsequent
manipulations were performed. Note from the left panel of Figure 1 that cells 7-13
were recruited to fire repetitively, while all other cells remained inactive, forming an
activity bump (while cells 5, 6, 14, and 15 do receive some depolarizing input, which
causes their v values to rise from baseline as seen in Figure 1, they do not fire.) Further,
the fact that the bump consists of 7 cells in this example is a coincidence, rather than
a consequence of the fact that each neuron receives synaptic connections from 7 cells
(including itself). Indeed, by varying parameters and/or shock conditions, we can obtain
bumps of arbitrary size ranging from 3 cells to some parameter-dependent upper bound.
In the right panel of Figure 1, recruitment of additional cells continues well beyond the
initial shock period, and eventually the network activity appears to stabilize in a 13-cell
activity bump. Our numerical simulations lacked sufficient accuracy over the long term
to distinguish whether this was truly a stable bump or just a metastable state in which
additional cells would fire after a long delay.

For larger values of the coupling strength parameters, all cells in the network even-
tually become active. Recruitment of cells into the active population occurs at varying
rates, depending on these parameters. For a fixed parameter set for which activity
spreads, activity does not spread with a constant speed. Instead, delays in the recruit-
ment of each new cell vary widely, as can be seen in Figure 2. We shall comment further
on the variability in recruitment delays in Section 5.4.

3 Theta neuron model

For analytical purposes, we first describe a one-dimensional Type I model known as the
theta neuron. In Figure 3, we show a simulation of a ring of 20 theta neurons which
exhibits a bump of 8 cells. The figure was produced by transiently shocking the 4 central
cells as shown in the figure. Using the theta model, we shall easily be able to describe
an important geometric construct known as the go curve, which we shall use throughout
the text. The dynamics of a theta neuron in the absence of synaptic input are governed
by the equation

θ′ = 1 − cos θ + b(1 + cos θ). (2)

The derivative in (2) is with respect to the variable t. The neuron is said to “fire” when
θ increases through the value (2n + 1)π for any integer n. For b < 0, there exist two
critical points of (2), given by θS = − cos−1(1+ b)/(1− b) and θU = cos−1(1+ b)/(1− b).
The first is stable, while the second is unstable. The phase circle for this neuron is
shown in Figure 4.

Now consider a ring of N neurons. Each neuron as before is connected to its three
nearest neighbors on either side. In particular neuron 1 gets input from neurons 2, 3
and 4 as well as N − 2, N − 1 and N . The total synaptic input to the ith neuron is
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given by gisyn
= ḡsyn

[

cosi + Σj=3
j=1cj[si−j + si+j]

]

, with adjustments at the boundaries

as in (1), where c1 > c2 > c3 ≥ 0 are distance dependent coupling strengths and c0 ≥ 0
is the strength of self-coupling. Note that the nonnegativity of the coupling constants
corresponds to excitatory coupling. The equations for each neuron are now

θ′i = 1 − cos θi + (1 + cos θi)(b + gisyn
)

g′isyn
= −βgisyn

s′j = −βsj, j = i − 3, . . . i + 3.

(3)

The synaptic variable sj is reset to one whenever the jth neuron fires. This has the
effect of resetting gisyn

to a higher value whenever any of the neurons i− 3 to i + 3 fire.
One effect of synaptic coupling is to change the values of θS and θU . When gisyn

< −b,
there continue to exist two critical points given by

θS(gisyn
) = − cos−1 1+b+gisyn

1−b−gisyn

θU(gisyn
) = cos−1 1+b+gisyn

1−b−gisyn
.

(4)

When gisyn
= −b, these two critical points merge at a saddle-node bifurcation and they

disappear for gisyn
> −b. This can very easily be depicted in a θi − gisyn

phase plane as
shown in Figure 5. The parabolic shaped curve P represents the critical points (4) as
functions of gisyn

. The vector field of (3) points down on P since θ ′
i = 0 and g′isyn

< 0
there. Notice that this curve intersects the horizontal axis at (θS , 0) and (θU , 0). The
unstable critical point (θU , 0) is a critical point of the first two equations of (3). In
fact, it is a saddle point with a one-dimensional unstable manifold, which lies along
the horizontal axis, and a one-dimensional stable manifold. One branch of this stable
manifold lies in the positive gisyn

part of the θi − gisyn
phase plane as shown in Figure 5.

This one-dimensional stable manifold traces out a curve which we call the go curve.
It is the unique trajectory which approaches (θU , 0) in the positive gisyn

part of the
θi − gisyn

phase plane. It is invariant under the flow of (3), meaning that trajectories
cannot cross over it. We call it the go curve because it separates the θi − gisyn

phase
plane into regions of initial conditions which are either attracted to the asymptotically
stable critical point at (θS , 0) (below the go curve) or are eventually pushed off this
phase plane through the right vertical boundary θ = 1.75 (above the go curve); see
Figure 5. Note, however, that the go curve is temporarily irrelevant whenever one or
more of the si are reset to the value one. Whenever any si is reset to 1, gisyn

is also
reset to a higher value. This causes the trajectory of neuron i to be shifted vertically
in the θi − gisyn

phase plane by an amount corresponding to the synaptic input. This
may cause the trajectory of neuron i to be reset above the go curve. If this occurs, then
neuron i will fire. If the neuron i is not reset above the go curve for any synaptic input,
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then it will not fire. Figure 6 shows an example of a cell which receives several synaptic
inputs before it is eventually reset above go curve, after which time it fires.

4 General two-dimensional model

4.1 Intrinsic properties

We now consider more general equations which encompass the Morris-Lecar equations
and develop a theory that explains the numerical results shown in section 2. For this
more general model, the dynamics of each cell are described by two first-order equations,
generically of the form

v′ = f(v, w) + Iext

w′ = [w∞(v) − w]/τw(v).
(5)

For simplicity, the time constant τw(v) is defined to be τL when v < vthresh and τR

otherwise. The v-nullcline, given by the set {(v, w) : f(v, w) + Iext = 0}, is assumed
to be a cubic-shaped curve. It has two local extrema, or knees, namely a left knee
(vLK , wLK) and a right knee (vRK , wRK) with vLK < vRK and wLK < wRK . The
w-nullcline, given by {(v, w) : w∞(v) − w = 0}, is assumed to be a sigmoidal shaped
curve. By rescaling f if necessary (e.g. adding 0.075 to f for the Morris-Lecar system
described in the Appendix), we can assume that when Iext = 0, these two nullclines
intersect at three points labeled (vl, wl), (vm, wm) and (vu, wu). The point (vl, wl) lies
on the left branch of the cubic, while the other two points lie on its middle branch.
These intersections represent critical or equilibrium points of the system; only (v l, wl) is
stable. See Figure 7.

The term Iext represents an external applied current. Increasing Iext raises the cubic-
shaped v-nullcline in the v − w phase plane. The position of the critical points of the
system (5) change as Iext is changed. As Iext is smoothly increased, the critical point on
the left branch and the closer one along the middle branch meet at the local minimum
of the v-nullcline, forming a saddle-node on an invariant circle (SNIC) bifurcation. This
bifurcation gives rise to a periodic solution of the set of equations (5). This periodic
orbit encircles the one remaining critical point along the middle branch of the cubic-
shaped curve and represents an action potential of the neuron; see Figure 7. The action
potential is characterized by two parts: its active phase and its silent phase. The active
phase is defined to be any portion of the cell’s trajectory for which v > vthresh. For the
sake of simplicity, we shall assume that any active phase of any cell has time duration
tap. The silent phase is the portion of the trajectory for which v < vthresh. The majority
of this time is spent near the left branch of the v-nullcline. The larger τL is, the closer
the trajectory lies to this branch.
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4.2 Synaptic coupling between cells

We consider a network of N neurons aligned in a ring. Without loss of generality, take
Iext = 0 for each cell. As before, the firing of neuron i leads to excitatory synaptic
inputs through a variable si. The dynamics are somewhat different than in the theta
neuron model case, since for the current two-dimensional model, each neuron spends a
non-zero amount of time in the active state. We assume the excitation to be fast rising,
but slowly decaying, similar to an NMDA-mediated synapse. This is modeled by the
variable si, which obeys the equation

s′i = α[1 − si]H(vi − vthresh) − βsi. (6)

We shall assume for the analysis that the rise rate of the synapse is arbitrarily large,
α → ∞. This implies that as soon as vi ≥ vthresh, si is set to the value 1, as in the
theta neuron model. But now, si remains at this value for the active duration tap, until
vi < vthresh, after which s′i = −βsi, where β is the decay rate of the synapse. As before,
in our ring of N neurons, we assume that each neuron is coupled to its three neighboring
neurons to either side of itself. Each neuron is also self-coupled. The equations of interest
are

v′i = f(vi, wi) − ḡsyn[vi − Esyn]
[

c0si + Σj=3
j=1cjsi−j + si+j]

]

w′
i = [w∞(vi) − wi]/τw(vi)

(7)

and
s′i = −βsi if vi < vthresh (8)

OR

si = 1 if vi ≥ vthresh. (9)

Notice that at any moment in time when cell i and all of its six neighbors are below
vthresh, the equations governing cell i can be written more compactly. Indeed, if, as

before, we let gisyn
= ḡsyn

[

c0si + Σj=3
j=1c[si−j + si+j]

]

, then

v′i = f(vi, wi) − gisyn
[vi − Esyn]

w′
i = [w∞(vi) − wi]/τw(vi)

g′isyn
= −βgisyn

.
(10)

Let F (vi, wi, gisyn
) denote the right-hand side of the first equation of (10).

The effect of the excitatory synapse on the v-nullcline of an individual cell is to raise
it in the v−w phase plane. If gisyn

is increased a small amount from 0, then the critical
point on the left branch of the ensuing cubic will remain. If gisyn

is made large enough,
then the critical point on the left branch will be lost through a SNIC bifurcation, and
oscillations will ensue. This is analogous to the effect of raising Iext discussed in Section
4.1, except that the effect of excitatory synapses on cell vi depends on vi, through the
term (vi − Esyn) in equation (10).
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5 Geometry of Bumps

To determine how stable bumps can arise purely through excitatory coupling, we pri-
marily need to understand two things: one, how do cells either get recruited or fail
to get recruited into a bump, and two, how do the recruited cells sustain their oscilla-
tions. Once these aspects are clear, we will show how bumps are formed and discuss
characteristics of the bumps.

5.1 The go curve when w
′
i = 0

We shall begin by considering a simplified scenario in which we assume that for a certain
part of the cell’s trajectory its w value is fixed (i.e., w ′ = 0). This case will be very
similar to that which occurred for the theta neuron model. We will use the concept of
the go curve to illustrate the idea of recruitment of cells into a bump. We will then go
on to generalize these geometric constructs to the full w ′ 6= 0 flow, where we discuss
both recruitment into a bump and sustainment of oscillations.

5.1.1 The vi − gisyn
phase plane

Conceptually, the vi − gisyn
phase plane is similar to that of the θi − gisyn

phase plane
of section 3, Figure 5. There are some important differences, however, due to fact that
the intrinsic equations of each oscillator are now two-dimensional.

Consider cell i to be at rest at the critical point (vl, wl, 0), which is the stable critical
point of equations (10). A straightforward way to understand the effect of excitation on a
cell i is to consider a vi−gisyn

phase plane in a cross section of fixed wi, assuming w′
i = 0.

The upper part of Figure 8 gives a schematic representation of how the position of the
cubic v-nullcline changes in v−w space as gisyn

is increased. The dashed horizontal line
along the slice w = wl has been selected here for illustration. The nullcline associated
with gisyn

= 0 intersects this slice at exactly two points, while the nullcline associated
with gisyn

= g2 intersects this slice at exactly one point. Any nullcline associated with a
gisyn

= g1, where g1 ∈ (0, g2), intersects the slice in two points as pictured. If gisyn
> g2,

then there are no intersections. In the lower part of Figure 8, the points of intersection
for gisyn

∈ [0, g2] are pictured in the parabola-like curve labeled P in the vi − gisyn
phase

plane. The vector field of (10) points down on P since v ′
i = 0 there. This is qualitatively

the same as for the theta neuron model. Note that in Figure 5, the parabolic curve
represents the fixed points of (3) for different values of gisyn

. In the present case, the
parabolic curve represents the fixed points of the first equation of (10) for different values
of gisyn

when wi = wl is a fixed quantity. Note also that P is asymmetric, since the
v-nullclines are not symmetric about their minima.

When we visualize the vi − gisyn
phase plane, we naturally restrict to gisyn

≥ 0.
For convenience, we bound the vi-values that we consider in the vi − gisyn

phase plane.
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Specific choices of boundary values of vi are not important, however, as long as we
consider a sufficiently large neighborhood of P. For convenience, we will specify the
right boundary as vi = vthresh, and we will denote the left boundary as vi = vmin. The
left point of intersection of P with the segment {gisyn

= 0} in the lower part of Figure
8 is (vl, 0), which is the projection to the vi − gisyn

plane of the critical point (vl, wl, 0)
of the full system. The other intersection point is at (vcm

, 0), where vcm
is obtained as

the solution of f(vcm
, wl) = 0 and (vcm

, wl) lies along the middle branch of the cubic
v-nullcline in v − w space for gisyn

= 0.
In the vi − gisyn

phase plane, holding wi = wl fixed, we consider the flow given by
the vi and gisyn

-equations from (10). Under this flow, the point (vl, 0) is asymptotically
stable, while the point (vcm

, 0) is an unstable saddle point. Its unstable manifold lies
along the horizontal vi axis, and one branch of its stable manifold lies on the positive
gisyn

part of the vi − gisyn
phase plane as shown in Figure 9. As in Section 3, this

one-dimensional stable manifold traces out a curve which we label the go curve. It is
the unique trajectory which approaches (vcm

, 0) in the positive gisyn
part of the vi−gisyn

phase plane. It is invariant under the flow of (10) with w ′
i = 0, meaning that trajectories

cannot cross over it; see Figure 9. Note, as before, that the go curve is temporarily
irrelevant when one or more of the si satisfy equation (9) instead of equation (8). During
such periods, trajectories may switch sides of the go curve. This is precisely how a
synaptic input can cause a cell to fire (see below).

The intersection of the sigmoidal w-nullcline and the left branch of the cubic v-
nullcline for system (10) changes as a function of gisyn

. Note that the maximal amount
of excitation any cell can receive is gmax = ḡsyn[co + 2c1 + 2c2 + 2c3]. Let wmax be the
w-value of the minimum of the cubic associated with gmax, i.e. it is the minimum of the
two solutions to F (v, w, gmax) = 0 and ∂F (v, w, gmax)/∂v = 0. Recall that the vi − gisyn

phase plane above was defined in the horizontal slice wi = wl. We may define similar
vi−gisyn

phase planes for different fixed wi values whenever wi ∈ [wl, wmax], making the
assumption wl < wmax. The vi-axis would correspond to an absence of synaptic input
for that fixed wi value being considered. For example, if wi = w̄ ∈ (wl, wmax), then
the parabola P intersects this axis at two points which satisfy F (v, w̄, 0) = 0. The left
and right boundaries of the vi − gisyn

phase plane remain as previously, independent of
the choice of wi. We will exploit this to look at the (v, gisyn

) phase plane for various w
values when we allow w to vary below.

5.1.2 Recruitment versus non-recruitment: w′
i = 0

We now consider a single cell i that can potentially receive synaptic input from its
neighboring cells. Let cell i start at t = 0 at rest at the stable critical point (vl, 0) in the
vi − gisyn

phase plane for the slice w = wl. The effect of excitation is to instantaneously
change its location in the vi − gisyn

phase plane, moving it vertically by an amount
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determined by the synaptic input size. For the sake of argument, suppose cell i receives
a single dose of excitation at t = 0 from cell i − 1. Then cell i is reset at t = 0+ to
the position (vl, ḡsync1). For the length of time of an action potential of the presynaptic
cell, tap, gisyn

does not change, but vi does. Starting from t = t+ap, the evolution of gisyn

is given by equation (10), such that the go curve becomes relevant. If (vi(tap), ḡsync1)
lies below the go curve, then with no further synaptic input, cell i will return to rest
at (vl, 0) and will not be recruited. Alternatively, if the new position lies above the go

curve, then even with no further synaptic input, cell i will escape the vi − gisyn
phase

plane through the boundary v = vthresh and fire an action potential. In this case, cell i
will have been recruited into the bump pattern. Both of these cases are illustrated by
the trajectories shown in Figure 9. Note that if cell i does receive additional input after
crossing above the go curve, this cannot prevent cell i from firing, since ḡsyn and all ci

are positive and v′i > 0 above the go curve.
When cell i receives more than one synaptic input from its neighboring cells, the rule

for recruitment or non-recruitment remains the same. Namely, cell i will be recruited
into the bump pattern if and only if the summed synaptic input gisyn

allows cell i to be
reset such that it lies above the go curve when gisyn

resumes following the dynamics of
(10). Note that all recruitment is one-sided. Only the synaptic inputs from cells i − 1,
i − 2 and i − 3 are relevant, since cells i + 1, i + 2 and i + 3 have yet to be recruited
into the bump and thus si+1 = si+2 = si+3 = 0. The timing of synaptic inputs to cell i
is an important factor in determining if it will be recruited. Suppose that cell i receives
synchronized synaptic input gisyn

= ḡsyn[c1 + c2 + c3] from its three left neighbors. The
strengths ḡsyn, c1, c2 and c3 are chosen so that this amount of synchronized input resets
cell i above the go curve after time tap. Thus cell i will be recruited; see Figure 10
position A. If, however, the input from the neighbors is desynchronized, say cell i − 2
fires at t = 0, but i− 3 and i− 1 fire at time t = t1 > 0, then cell i may fail to fire. The
input at t = 0 will now be gisyn

= ḡsync2, and let’s suppose for the sake of argument
that this resets cell i below the go curve; see position B of Figure 10. Now cell i evolves
in the vi − gisyn

phase plane with gisyn
decreasing with rate β. Note that trajectories

move away from the go curve as t evolves, since the go curve is the stable manifold of
the saddle point (vcm

, 0). The next synaptic input occurs at t = t1 and resets gisyn
to

ḡsyn[c1 + c2 exp(−βt1) + c3]. Thus if the time t1 is too large, then the reset level may
again fall below the go curve, again failing to recruit cell i; an example of this is seen
in Figure 10 when the trajectory at position C is reset to position D. However, if t1 is
small, then the reset level may be above the go curve, causing recruitment; an example
of this occurs in Figure 10 when the trajectory at position E is reset to position F.

In short, tightly synchronized synaptic input promotes recruitment. This is not
surprising, but a key point is that the timing of inputs affects the amount of input
required for recruitment to occur. This dependence can be seen directly by calculating
the reset level of gisyn

and checking its relationship to the go curve. It can also be inferred
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from the fact that trajectories move away from the go curve. Thus, when inputs to cell
i are more spaced out in time, they must be larger to push cell i above the go curve.

5.2 The go surface when w
′
i 6= 0

We now turn our attention to the more realistic case in which we do not assume that
w′

i = 0 in the vi − gisyn
phase plane. As a consequence, instead of having a one-

dimensional go curve, we must now construct a two-dimensional go surface. Beyond this
change, the idea behind recruitment remains as in the prior sections; cell i is recruited
if and only if a synaptic input resets its position to lie on the appropriate side of the
go surface. We will show how this can be studied in a three-dimensional vi − wi − gisyn

phase space and also show how the flow can be projected down to an appropriate two-
dimensional vi − gisyn

phase plane.

5.2.1 The vi − wi − gisyn
phase portrait

The point (vm, wm, 0) is a critical point for the set of equations (10). By linearizing,
it is easy to see that this point has a two-dimensional stable manifold W s and a one-
dimensional unstable manifold W u. The two-dimensional stable manifold, as shown
in Figure 11, divides the phase space defined by M = {(vi, wi, gisyn

) : wi ≥ 0, gisyn
≥

0, vmin ≤ vi ≤ vthresh} into two parts; in Figure 11, one part lies to the left of W s and the
other lies to the right of W s. Moreover, W s is invariant under the flow of (10), implying
that trajectories cannot cross it in vi−wi−gisyn

phase space. As before, trajectories can
be reset to the opposite side by synaptic inputs, however, since instantaneous increases
in gisyn

are not governed by equation (10). Therefore under appropriate conditions, W s

separates trajectories in phase space which are either attracted to the asymptotically
stable critical point (vl, wl, 0), and thus are blocked from leaving M , from those which
eventually leave M through the boundary vi = vthresh. We will thus call W s a go surface.
The two-dimensional go surface W s is a natural generalization of the one-dimensional
go curve that we had considered in prior sections. It is important to note that since the
synaptic input is excitatory, increases in s can reset trajectories from the blocked side
of the go surface to the side of the go surface from which they can escape, but not vice
versa.

5.2.2 Recruitment versus non-recruitment: w′
i 6= 0

Suppose cell i is at rest at (vl, wl, 0) at t = 0 and receives synaptic input from cell
i − 1 at this time. Its position is then immediately reset to (vl, wl, c1ḡsyn). At t = tap,
cell i − 1 falls below vthresh and its excitation to cell i begins to decay. If the position
(vi(tap), wi(tap), c1ḡsyn) lies to the left of the go surface W s, then cell i will not be
recruited into the activity pattern. If it lies to the right of W s, then it will be recruited.
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By projecting out wi, it is possible to decide whether a cell is recruited or not by
studying an appropriate two-dimensional vi − gisyn

phase plane. In particular, if cell i
received a synaptic input at t = 0, then we consider the intersection of W s with the
plane wi = wi(tap). This intersection of two two-dimensional manifolds creates a one-
dimensional go curve. The go curve is then projected down onto a vi−gisyn

phase plane.
Note that unlike the go curve in the case when w′

i = 0, the go curve here, in general,
is not invariant under the flow of (10). As a result, trajectories can also cross over
the shown go curve. The reason for the the lack of invariance is that on the projected
vi − gisyn

phase plane, wi changes since w′
i 6= 0. The go curve shown is for a specific

value of wi = wi(tap) and only separates recruited from non-recruited trajectories in the
vi − gisyn

phase plane at the single moment in time t = tap. Thus cell i is recruited if it
lies above this go curve at t = tap. For any t > tap, a new go curve could be obtained as
the intersection of W s with wi = wi(t). However, because the go surface W s is invariant
under the flow of (10), if cell i lies to the left (right) of W s at t = t+ap, then it remains to
the left (right) for all t > tap in the absence of new inputs, although subsequent inputs
may push cells from the left side of W s across to the right side of W s. Projected down
to the vi − gisyn

phase plane, the invariance of W s implies that once a trajectory is reset
to lie above the relevant go curve, the trajectory will remain above every relevant go

curve until it reaches v = vthresh, and if a trajectory is below the relevant go curve, then
it will remain below every relevant go curve until it receives additional input.

When cell i receives more than one synaptic input, there are now several go curves

to consider. For the sake of argument, suppose cell i − 1 and i − 2 fire at times t1

and t2, respectively, where t1 < t2. We construct two different go curves by finding
the intersection of W s with wi(t1 + tap) and its intersection with wi(t2 + tap). Each
go curve serves to separate the vi − gisyn

phase plane at exactly one moment in time,
namely t = t1 + tap or t = t2 + tap respectively. At either of those times, if the trajectory
lies above the relevant go curve, then cell i will be recruited. Figure 12 shows results
from a simulation of 20 cells aligned in a one-dimensional chain (non-periodic boundary
conditions) in which cells 1-3 are transiently shocked and a stable 6-bump develops.
The trajectory of cell 6, which is synaptically connected to its six neighbors and which
is eventually recruited into the bump, is shown. At t = 0, cell 6 is at rest near the
location (−0.305, 0). Its trajectory over time is shown as the bold solid curve. Notice
that it receives several synaptic inputs of different sizes during the time shown (ten
to be precise), each characterized by a rapid increase in the gisyn

value. A go curve

associated with each input is constructed as described before. In Figure 12, we show
the go curves associated with the 8th, 9th, and 10th inputs which are constructed to
occur at t8 + tap, t9 + tap, and t10 + tap, respectively. Notice that the position of the
trajectory at (vi(t8 + tap), gisyn

(t8 + tap)) lies below the go curve associated with the
8th input (labeled “first” in the blown up figure on the right). Thus, had there been
no further synaptic input, cell 6 would not have been recruited. However, note that at
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t = t9, and also at t = t9 + tap, the trajectory lies above the 9th go curve (“second”).
Thus, we see that the 9th input causes the cell to be recruited. Of course, the trajectory
also lies above the corresponding dash-dotted go curve at t = t10 + tap, as it will for
all relevant go curves for all subsequent time until it escapes the vi − gisyn

phase plane
through the right boundary. Indeed, in Figure 13, we see that if the 10th synaptic input
is artificially blocked, then cell 6 is still recruited. It is interesting to note that the input
that actually pushed the cell over the go curve was relatively very small. This illustrates
how cooperativity of inputs can lead to recruitment of cells and how exceedingly small
inputs can have a large effect on a cell’s activity pattern.

5.2.3 The role of the synaptic decay rate in recruitment

Consider again the case w′
i = 0. For fixed w, linearization of the equations

v′ = f(v, w) − gisyn
(v − Esyn)

g′isyn
= −βgisyn

,

about the saddle point (vcm
, 0) yields the matrix

(

∂f
∂v

−(vcm
− Esyn)

0 −β

)

where ∂f/∂v > 0. The eigenvector vs corresponding to the stable eigenvalue −β is a
multiple of (vcm

− Esyn, ∂f/∂v + β).
As the synaptic decay rate β becomes larger, the positive term ∂f/∂v + β becomes

larger. Since vcm
− Esyn < 0, corresponding to excitatory input, the slope of the eigen-

vector vs becomes more negative, i.e. the go curve becomes more vertical. Thus, given
β1 < β2, the go curve associated with β1 lies below that associated with β2. Therefore
greater synaptic excitation is needed to achieve recruitment for larger β.

A similar calculation gives the same result when w ′
i 6= 0. Thus, slow synaptic decay

promotes recruitment of cells into the active group. In the next subsection, we shall
see that there is a second, more direct way in which slow synaptic decay contributes to
sustainment of activity.

5.2.4 Sustainment

We now discuss how a cell remains in the bump pattern once it has been recruited. The
criterion for sustainment of activity is similar to that for recruitment. Suppose that
cell i has fired at t = 0 and has returned to the silent phase at some later time. Next,
suppose that at t = t1 > 0, wi(t1) ∈ [wl, wmax] and cell i receives synaptic input because
one of its neighboring cells just fired. At the end of the neighbor’s action potential,
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we consider the vi − gisyn
phase plane in the horizontal slice w = wi(t1 + tap) and ask

whether or not cell i has been reset above the go curve of that phase plane or not. If it
has, it will fire again and its oscillation will be sustained for at least one more cycle.

Clearly, self-coupling boosts the synaptic input to cells that have already fired, rel-
ative to those that have not, contributing significantly to sustainment. Two additional
features also promote sustainment of oscillations beyond what has already been dis-
cussed for recruitment, namely the desynchronized arrival, and subsequent slow decay,
of the excitatory synaptic input. We discussed above how slow synaptic decay affects the
slope of the go curve, and hence the recruitment of cells. For activity to be sustained,
the decay rate β of each synapse must also be chosen small enough relative to the inverse
of the time constant τL so that once cell i fires, it will have enough residual excitation
left from the prior cycle to be reset above the go curve of the relevant vi − gisyn

phase
plane when it again receives synaptic input. The role of this residual input is simply to
keep cells closer to a relevant go curve than without the input. Thus, additional synap-
tic inputs may be able to fire cells due to the residual excitation in situations where
the additional inputs alone could not fire the cells. In particular, we note that residual
excitation is not strong enough to allow a cell to fire a second time in the absence of
additional synaptic input.

It is also important for sustainment of activity that all cells in the bump are not
actually synchronized, as noted in other studies [9, 13, 17]. Suppose that the stable
critical point on the left branch of the cubic v-nullcline persists for any relevant value
of gisyn

. Thus, if all cells fire together, then after their action potentials end, they will
not be able to fire again. Since they are synchronized, there cannot be any other cells
available to provide excitation at a later time. Thus, some amount of desynchronization
within the bump is necessary to sustain oscillations. In fact, in our network, a perfectly
synchronous bump solution does not exist.

5.3 Bump formation

Bump formation requires three elements: recruitment, cessation of recruitment, and
sustainment. The work of the previous subsections highlights two competing effects of
synchrony (or alternatively desynchrony). Synchronization of synaptic inputs promotes
recruitment, but too much synchrony opposes sustainment. Thus, in order to have
stable, localized activity, there must exist a balance of these two effects. Further, to
create bumps from localized transient inputs, the work of the above subsections suggests
that initial tight synchronization of cells, followed by their gradual desynchronization,
would be helpful. We now turn to why synchrony breaks down and recruitment ends in
our network.

In the left simulation shown in Figure 1, we raised Iext to cells 9, 10 and 11 for
a duration of 50 time units, thereby instigating rhythmic activity and allowing these
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cells to oscillate at high frequency. These oscillations are tightly synchronized because
the cells all converge to the same zero-input rest state, namely (vl, wl, 0), before being
shocked, and any desynchronizing effects from synaptic coupling are weak relative to
the common input Iext during the shock.

The synchrony of this core group of cells caused neighboring cells (7,8, 12 and 13) to
be recruited into the bump pattern; see Figure 1. The initial close synchrony of cells 9,
10 and 11 is fairly quickly destroyed, however, once the shock ends. In fact, there is no
synchronous periodic solution for the set of parameters that we have chosen. Thus, the
cells are able to continue oscillating precisely because they desynchronize, as discussed
in Section 5.2.4 on sustainment,

The reason the cells lose synchrony has to to do with the manner in which they
are reset to the opposite side of the go surface. Recall that the go surface is the stable
manifold W s of the point (vm, wm, 0). Any trajectory which lies on W s will remain there
unless an additional input resets it off of W s. Moreover, due to its attractive properties,
any point that lies arbitrarily close but to the right of W s can take an arbitrarily long
time to leave a neighborhood of W s and cross vthresh. This fact induces a sensitive
dependence on initial conditions. Namely, cells that start close together in phase space
may cross vthresh at dramatically different times. This, in turn, may mean that their
trajectories are very far apart in phase space at later times. This has the effect of
desynchronizing cells.

The loss of synchrony is not only important in maintaining oscillations within the
network, it is also crucial to why excitation does not spread throughout the entire cell
assembly. We have chosen the parameters ḡsyn, c1, c2 and c3 small enough so that if cell
i is near rest and receives synaptic input from only one of its neighbors, then it cannot
be recruited into the bump. To see this, note that the largest single input a cell can
receive has size ḡsync1 = .022 in most simulations, and see for example Figure 9, which
shows that inputs need to have magnitude greater than .04 to push a cell over the go

curve from near rest. The case with w′ 6= 0 gives a similar result. This parameter setting
implies that even if cell i is recruited into the bump, there is no guarantee that cell i+1
will also be recruited. As a bump progresses, and subsequent cells are recruited, the
cells that are firing gradually desynchronize. This means that the inputs to potential
recruits outside of the bump are spreading out in time, and when subsequent cells are
recruited by passing through the go surface, they may end up closer to the go surface

than their predecessors had been when they were recruited. As a result, new recruits
may experience more delay between crossing the go surface and actually firing, and this
further desynchronizes the population of active cells. Eventually, the inputs to non-firing
cells become sufficiently desynchronized that they fail to recruit any additional cells.
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5.4 Implications of the go surface

The bumps that we have discussed are non-robust in the sense that small changes in
parameters can change bump size. This follows from the realization that cells that join
the bump and cells that do not are differentiated by their relations to the go surface.
Indeed, the cells just outside the bump come very close to the go surface due to the
inputs that they receive (see Figure 14). Small increases in these inputs could push
them across.

We emphasize that whether an input or combination of inputs succeeds in recruiting
a cell cannot be predicted simply from its magnitude. Figure 15 shows gisyn

versus
time from the same trajectories shown in Figure 14. ¿From Figure 14, note that the
input that pushes the recruited cell over the go curve raises gisyn

for that cell from about
.0125 to about .027. This is the first part of the second large peak in the dashed curve in
Figure 15, which appears to be tangent to the dotted line at gisyn

≈ .027. The synaptic
conductance gisyn

for the non-recruited cell exceeds this value several times even in the
short simulation shown in these figures, yet it fails to cross the go surface.

A more functionally advantageous consequence of this sensitivity to synaptic coupling
strengths is that it is possible to form bumps of a range of sizes, for fixed parameter
values, by shocking a small group of cells with transient inputs of varying durations.
Suppose parameters are set so that each cell requires fairly synchronized firing of all of
the cells that send it synaptic input in order to initially fire. During the shock period,
the transient external inputs cause the cells that receive them to fire at frequencies in
excess of the firing rates that they would normally exhibit. This leads to strong synaptic
inputs to their neighbors, recruiting them easily into the bump and causing them to fire
faster than otherwise expected. Thus, the influence of the shock becomes cyclical: cells
fire faster, generating stronger synaptic outputs, which causes subsequent cells to fire
faster, and so on. The net effect is to promote the spread of activity throughout the
network.

Once the shock is turned off, the cells within the bump immediately begin to slow
down and desynchronize [4]. For large ranges of parameter values, this causes bump
propagation to end once the shock is removed. The cells already in the bump, however,
receive self-coupling, in addition to the synaptic inputs from other cells. This is enough
to allow their firing to persist, in light of the effects of desynchronization, mediated by
the go surface, discussed in earlier sections. Thus, a range of bump sizes can be achieved
by variation of shock duration.

Depending on parameters, however, there may be an upper limit on how far activity
will spread, even when the shock is on. Each newly recruited cell is recruited with a
smaller synaptic input than the cell before it. This means that the input that resets the
new recruit above the go surface leaves it closer to the go surface, causing a longer delay
before firing, as discussed above. This causes activity away from the shocked region to
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become progressively more desynchronized. Eventually, the inputs to some cells outside
the bump may be too desynchronized to recruit them. In fact, for the parameters used
in Figure 1, a bump of 9 cells forms if the shock of Iext = 0.2 is maintained for any
duration of time greater than about 100 time units.

Besides the generation of different bump sizes from different shock protocols, an
additional implication of the go surface is that even when activity spreads throughout
an entire network of cells, there can be quite variable delays between the recruitment
times of adjacent cells, as seen in Figure 2. Suppose that the coupling strengths are
sufficiently strong such that if cell i at (vl, wl, 0) receives precisely synchronized inputs
from cells i − 3, i − 2, and i − 1, then it will cross the go surface and eventually fire.
The complex fluctuations of relative firing times of cells in the bump, which derive from
the positions of the cells relative to the go surface, can allow sufficient synchrony to
transiently develop to recruit a cell from the outside edge of the bump, sometimes with
a long delay since the previous recruitment. When cell i is recruited after a long delay,
typically the input that pushes it across the go surface leaves it very close to the go

surface. This means that cell i experiences a long delay from the firing times of its
neighbors, which reset it across the go surface, until its own firing. We have found that
variable delays after go surface crossing contribute to a high variability both in the firing
times of cells within a bump and in the intervals between successive recruitments when
activity propagates.

5.5 Effects of synaptic depression

In this section, we discuss some of the effects that short-term synaptic depression can
have on our network. Synapses that display short-term synaptic plasticity are ubiquitous
in the central nervous system. Thus it is of interest to know what general effects such
synapses may have on the activity patterns of the networks being considered in this
study. For synapses that exhibit short-term synaptic plasticity, the synaptic strength is
a function of usage. For the depressing synapses that we focus on here, if the synapse is
used often because the frequency of the pre-synaptic cell is high, then synaptic strength
decreases. Alternatively, if the synapse is used with lower frequency, then the synapse
can act with a higher strength. The equations we use to model a depressing synapse are
similar to those in [1]. We use variables di to keep track of the extent of depression of
each synapse, where di is governed by

d′i = ([1 − di]/τγ)H(vthresh − vi) − (di/τη)H(vi − vthresh). (11)

The time constants τγ and τη are the time constants of recovery and depression of the
synapse, respectively. Notice that the more time cell i spends in the active state relative
to the time it spends in the silent state, the more the synapse depresses and the weaker
it becomes. The effect of the variable di is incorporated into the equations (7-9) by
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exerting an affect on the variable si. In particular, without depression, whenever cell i
became active, si was reset to 1. Now, with depression, whenever cell i becomes active,
si is reset to the current value of di; that is, si = di(tspike). The value di(tspike) will
change depending on how much time cell i spends below and above vthresh.

We conducted several simulations with depressing synapses. There are two primary
effects of synaptic depression that we want to highlight. The first is that depression
can act as a band pass filter for incoming signals triggering a bump. In the left panel
of Figure 16, we transiently increased Iext to cells 9-11 to 0.5 for 50 msec. As can be
seen, some neighboring cells are recruited, but very quickly, the activity dies out. When
Iext < 0.02, it was too low to cause cells 9-11 to oscillate (simulations not shown).
Alternatively, in the right panel of Figure 16, we transiently raised Iext to 0.07 for 50
msec and a bump of 7 cells formed. Thus, intermediate strength inputs trigger bump
formation. The network filters out overly weak or strong inputs, allowing intermediate
strength inputs to have an effect. It is not hard to understand why large inputs do not
trigger a bump. With large inputs, the frequency at which cells 9-11 are driven is too
high and their synapses depress too quickly. This results in low synaptic strength and
the inability to recruit new neighbors or to sustain the activity of those cells already
recruited. We note that a network without depression can act only as a high pass filter.

Another effect, which is related to the first, is that synaptic depression allows local-
ized transient excitatory inputs to curtail oscillations. In particular, oscillations can be
terminated by inputs that are not too different from the inputs that can initially trigger
a bump. In Figure 17, we generated a bump by raising Iext to cells 9-11 to 0.1 for 50
msec. Then at t=200, we again raised Iext to these same cells to 0.125 for 50 msec.
As can be seen, this caused activity in the network to end because the strength of the
synapses associated with cells 9-11 depressed so much that the cells could not sustain
the oscillations of their neighbors. Thus, localized excitatory inputs can act almost as
a toggle switch, at times turning “on” the network, and other times turning “off” the
network. Note that in a network without depression, the effect of the second dose of
excitation would be to cause the bump to recruit more cells.

In Figure 18, we show an example with self-coupling set to zero (c0 = 0) in which
the entire network is oscillating. The oscillations are ended by briefly raising Iext to cells
9-11 for 50 msec as before. This result demonstrates that small and localized transient
inputs can dramatically change the character of solutions in excitatory networks that
exhibit depression. In other studies [9, 13, 17], inputs to the entire network that are
synchronizing have been shown to act as a shut off mechanism. Here we note that the
mechanism for shut off is a local application of excitation, which induces depression.
Depression leads to a decrease in synaptic current and finally a global end to network
activity. Without depression, no such phenomena could occur.
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6 Discussion

For bumps to arise, a mechanism is required to sustain activity and a mechanism is
needed to keep it localized. The standard means for achieving these constraints has been
the imposition of a Mexican hat synaptic architecture, featuring local excitation and
long-range inhibition. This work illustrates an alternative to the Mexican hat and thus
broadens our understanding of what ingredients are truly necessary for bumps to exist.
More specifically, previous studies had already shown how activity can be sustained
without local excitatory connections [17, 18], given a thalamic coupling pattern, which
still features long-range inhibition to block the spread of activity. The existence of bumps
in a purely excitatory model neuronal network presented here indicates that long-range
inhibition is not necessary to keep activity localized, as also recently noted by Drover
and Ermentrout [3].

The work in [3] is closely related to ours in the sense that both studies show how
to create localized activity patterns in purely excitatory networks. There are some
fundamental differences in the systems considered and the techniques used in these two
studies, however. In their paper, Drover and Ermentrout concentrate on Type II neurons
and analyze temporally periodic, spatially uniform (non-localized) solutions, as well as
traveling waves, using a normal form associated with a sub-critical Hopf Bifurcation.
They also simulate localized activity, and to achieve this, they require the cells in their
underlying network to be bistable between an oscillatory and rest state. In our network,
intrinsic neuronal dynamics are Type I rather than Type II, which affects the transition
to spiking. Notably, we do not require bistability in the intrinsic description of each
cell. Indeed, we choose parameters such that in the absence of input, each cell is at rest.
The temporal dynamics of synaptic coupling also play a key role in the bump formation
that we have investigated. Specifically, the persistence of bumps in our model results
from a combination of desynchrony within the bump and the slow decay of synaptic
excitation. The desynchrony provides a way to lower the effective amount of excitation
any cell outside of the bump can receive. The slow decay of excitation serves to provide
residual excitation to each cell within the bump, placing each cell closer to the go curve

or go surface, and thus in a better position to remain in the bump. An important aspect
of our work is the establishment of a geometric criterion, via the go curve/go surface,
which determines whether cells are recruited into the bump or not. An advantage of
this approach is that it sheds light on the importance of the timing of synaptic inputs to
individual cells and how timing affects the network’s ability to create localized activity
patterns.

In our model, we included the term c0 to represent self-coupling. We found that it
was much easier to form bumps when c0 > 0. The reason for this is straightforward:
self-coupling gives cells that have already fired a boost toward firing again due to the
additional residual excitation that it provides during their time in the silent phase.
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We note that the self-coupling term could be replaced by any depolarization-activated
inward current, such as a high-threshold calcium current (e.g. ICaL) [12].

In previous models of bumps with or without Mexican hat synaptic connectivity,
transient excitatory input that induced synchronization would terminate network ac-
tivity [9, 13, 17]. In the excitatory network that we have studied, in the absence of
synaptic depression, excitatory inputs always promote activity. With depression, how-
ever, depending on the size or frequency of the input, network activity may grow or
may be reduced. In fact, even localized excitatory inputs can terminate widespread
network activity (Figure 18), allowing for equally efficient generation and termination of
bumps (Figure 17). Thus, networks that include depressing synapses can readily trans-
late different types of inputs into different network outputs. Therefore such networks
can effectively be targeted by upstream neurons to perform tasks associated with rate
or temporal coding. For example, as shown in Figure 16, only inputs of intermediate
strengths activate a bump. Intermediate strength inputs could result from upstream
neurons firing at intermediate frequencies (rate code) or from an appropriate number of
upstream neurons fired closely enough in time to initiate an intermediate strength input
(temporal code).

In closing, we note that a commonly used experimental means for assessing the role
of some component in a complex system is to eliminate that component and observe
the changes that result. Here, we carried out a computational and analytical version of
this approach, with regard to the role of inhibition in the generation and sustainment
of localized activity in a network of bursting Type I cells. The non-robustness of the
resulting structures, which our analysis demonstrates to be a fundamental property of
such solutions to the model equations, suggests that the presence of some inhibition may
very well be crucial in networks in which there is a need to generate activity patterns of
precise sizes in the presence of noise. In networks where more transient, less precisely
tuned manifestations of localized activity suffice, the presence of inhibition may be less
important, at least if the neurons themselves exhibit the right (Type I) dynamics. In
particular, the thresholding properties of such dynamics desynchronize cells coupled with
synaptic excitation [4], which can curtail the spread of activity in a network without
inhibition.

7 Appendix

The system (1) used for simulations includes the intrinsic currents ICa = gCam∞(v)(v−
ECa), IK = gKw(v−EK), and IL = gL(v−EL). In this model, parameters and variables
are scaled such that the physiologically relevant range of voltages is a subset of the
interval [−0.5, 0.5]. Also, the synaptic equation is modified to take the form s ′ = α[1 −
s]H(v−vthresh)−βsH(vthresh−v), so that s really does approach 1 when v > vthresh, as
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discussed in Section 4, even for finite α. The voltage-dependent functions in the system
are m∞(v) = .5(1+tanh((v + .01)/.15)), w∞(v) = .5(1+tanh((v− .05)/.15)), 1/τw(v) =
(0.6−0.3H(v + .4)) cosh((v− .05)/.3), where H(v) = 1 if v ≥ 0 and H(v) = 0 otherwise.
The parameter values used in all simulations, unless other specified, are listed in the
following table. Note that only the relative sizes of these parameters are important, and
thus we omit units.

parameter value parameter value parameter value

gCa 1.1 ECa 1.0 Iext 0.075

gK 2.0 EK -0.7

gL 0.5 EL -0.5

ḡsyn 1.0 Esyn 0.5 c0 0.02

c1 0.022 c2 0.006 c3 0.001

α 5 β 0.072 vthresh 0.2

For Figures 16-18, the same parameters as above were used except for the following:
β = 0.08, c1 = 0.026, c2 = .0015, τγ = 10.5, τη = 1, ḡsyn = 1.2.
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Figure Captions

Figure 1. Stable bumps. LEFT: The grayscale encodes the v values of cells in a 20 cell
network with parameters from the Appendix. Time evolves from top to bottom,
with different cells’ voltage traces appearing in different vertical columns in the
plot. Time steps of .0025 time units were used, and values of v were only plotted
once every 25 time steps. Although we only show the first 1250 time units, this
bump remained stable for 10000 simulation time units. RIGHT: This plot is similar
to the one on the left except that c0 = 0.025, c1 = 0.0253, c2 = 0.003, c3 = 0.001
and the bump may be metastable.

Figure 2. Gradual recruitment with variable delays. Protocols for simulation and
plotting were similar to Figure 1. LEFT: c0 = 0.025, c1 = 0.0253, c2 = 0.003, c3 =
0.001, and a shock of Iext = 2.0 was applied to cells 9-11 for 100 time units.
RIGHT: c0 = 0.02, c1 = 0.025, c2 = 0.003, c3 = 0.002 and a shock of Iext = 0.2 was
applied to cells 9-11 for 50 time units. In both cases, activity continued to spread
gradually after the times shown here.

Figure 3. A bump of 8 cells in a ring of 20 theta neurons. This bump persists
indefinitely. Note that the greyscale encodes the synaptic variable s associated
with each cell, which remains at 0 for inactive cells.

Figure 4. The phase circle for the theta model (2) with b < 0. The arrowheads show
the direction of flow generated by equation (2) on the circle.

Figure 5. The θ − gisyn phase plane. The solid curve P consists of critical points of
(3) with β = 0, given by equations (4), for different values of gisyn. Note that the
critical points coalesce at gisyn = −b = 1/3 (dotted line). The points (θS , 0), (θU , 0)
are actual critical points of the (θ, gisyn) system from (3) for any β. The dashed
curve is a branch of the stable manifold of (θU , 0). The thin solid curves show
trajectories starting from (−1.5, 0.2), (−1.5, 0.4), (−1.5, 0.6), respectively. Initially,
dθ/dt > 0 along these curves.

Figure 6. Recruitment in the θ − gisyn phase plane. The trajectory of a cell that
eventually is recruited into the bump is shown (solid). It receives many synap-
tic inputs, each characterized by a rapid increase in the gisyn

value, before it is
eventually reset above the go curve (dotted).

Figure 7. Nullclines for system (5). LEFT: With Iext = 0, the v- and w-nullclines
intersect in three points, labeled with asterisks. RIGHT: Increasing Iext raises
the v-nullcline, eliminates two intersections of the nullclines, and allows for the
existence of a periodic orbit (with direction of flow indicated by the arrows).
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Figure 8. The parabola P in (v, gisyn
)-space, defined from the intersections of the slice

w = wl with different v-nullclines corresponding to different values of g = gisyn

(here denoted by g).

Figure 9. The flow in (v, gisyn
)-space with w = 0.02, w′ = 0, and g′isyn

= −βgisyn
. This

numerically generated figure shows the parabola P (densely dotted curve), the go

curve (dashed curve) corresponding to a branch of the stable manifold of the saddle
point (vcm

, 0), and several trajectories. The trajectories were obtained from the
flow from initial conditions (v, gisyn

) = (−0.4, 0.01), . . . , (−0.4, 0.06). Note that
dv/dt > 0 along these curves, as long as they remain above P. A trajectory from
one of these initial points escapes from the silent phase if and only if the initial
condition lies above the go curve.

Figure 10. The flow (with w′ = 0) from various labeled points in (v, gisyn
)-space.

Dotted lines denote jumps due to instantaneous synaptic inputs. Solid curves
denote trajectories ensuing after jumps. Here we have taken tap = 0, such that
g′isyn

< 0 at all times outside of jumps, to simplify the illustration. See text for
definition of points A-F.

Figure 11. Phase space for system (10). The critical point (vm, wm, 0) has a 2-
dimensional stable manifold, which we denote W s. By definition, this is invari-
ant under the flow of (10). For any fixed w, this flow can be projected to the
(v, gisyn

)-plane, and the corresponding go curve for this projection is given by the
intersection of W s with the plane of constant w. As an example, one such curve
is shown (dashed line) for w = wRK , the w-value at the right (upper) knee of the
v-nullcline with gisyn

= 0.

Figure 12. Crossing the go curve determines escape from the silent phase. LEFT:
The trajectory of a cell in the (v, gisyn

)-plane, before and during its recruitment
into a bump. The stars (*) along the trajectory demarcate equal time intervals of
1 time unit each. RIGHT: A blow up of the part of the trajectory that determines
recruitment. The dashed, dotted, and dash-dotted curves are go curves that are
relevant for three different inputs; see text.

Figure 13. Once a cell crosses the go curve, no subsequent synaptic input is required
for the cell to fire. Bold arrows indicate direction of flow. The bold trajectory is
the same one shown in Figure 12, although we have now included a segment of
the trajectory corresponding to return from the silent phase from the active phase
(marked with the leftward arrow) to illustrate that both trajectories shown really
do make it to the active phase. The dash-dotted bold trajectory shows the result
of the same simulation but with all subsequent inputs to the cell blocked, starting
from a moment just after the cell crosses the go curve associated with t = t9 + tap.
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In particular, the cell does not feel the tenth input, which arrives when the cell’s
position in the plane corresponds to the arrow labeled “shut off”. The cell is still
able to escape from the silent phase.

Figure 14. Trajectories of a recruited cell (dashed) and its non-recruited neighbor
(solid) projected into the (v, gisyn

)-plane. The dotted curves are go curves for the
two cells at particular moments in time. The leftmost curve is the go curve for the
recruited cell when it gets recruited. The rightmost curve is an arbitrarily selected
go curve for the non-recruited cell. At any fixed time, the non-recruited cell’s
trajectory lies below the corresponding go curve, but the trajectory approaches
quite close to the relevant go curves.

Figure 15. gisyn
versus time for the same recruited (dashed) and non-recruited (solid)

cells shown in Figure 14. The dotted line at gisyn
≈ .027 corresponds to the value of

gisyn
at recruitment of the recruited cell. Although gisyn

for the non-recruited cell
exceeds this value several times in the simulation shown, the cell is not recruited.

Figure 16. Filtering properties with depression. Depression allows only intermediate
strength inputs to initiate bumps. LEFT: The input Iext = 0.5 to cells 9-11 is
so high that the synapses from these cells depress too quickly to recruit cells. No
bump forms. RIGHT: The input Iext = 0.07 to cells 9-11 is in an intermediate
range where it is able to initiate a bump. Simulation for smaller values of Iext for
which no bump formed are not shown.

Figure 17. Toggling with synaptic depression. Networks that have depressing synapses
can turn “on” and “off” with similar transient excitatory inputs. The network is
turned “on” at t = 0 with Iext = 0.1 to cells 9-11 for 50 msec. It is turned “off”
by raising Iext to 0.125 to these same cells from 200 to 250 msec.

Figure 18. Localized inputs have global effects. The simulation demonstrates how
transient inputs to small numbers of cells can have a global impact on network
activity patterns. The parameter Iext was raised to 0.3 for cells 9 to 11 from
t = 100 to 125 msec. This resulted in the end of the network activity. The
simulation also shows a curious phenomenon associated with networks that have
depressing synapses. They can exhibit transient changes in bump size due to the
strengthening and weakening of synapses.
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Figure 1: Stable bumps. LEFT: The grayscale encodes the v values of cells in a 20 cell
network with parameters from the Appendix. Time evolves from top to bottom, with
different cells’ voltage traces appearing in different vertical columns in the plot. Time
steps of .0025 time units were used, and values of v were only plotted once every 25 time
steps. Although we only show the first 1250 time units, this bump remained stable for
10000 simulation time units. RIGHT: This plot is similar to the one on the left except
that c0 = 0.025, c1 = 0.0253, c2 = 0.003, c3 = 0.001 and the bump may be metastable.
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Figure 2: Gradual recruitment with variable delays. Protocols for simulation and plot-
ting were similar to Figure 1. LEFT: c0 = 0.025, c1 = 0.0253, c2 = 0.003, c3 = 0.001,
and a shock of Iext = 2.0 was applied to cells 9-11 for 100 time units. RIGHT:
c0 = 0.02, c1 = 0.025, c2 = 0.003, c3 = 0.002 and a shock of Iext = 0.2 was applied
to cells 9-11 for 50 time units. In both cases, activity continued to spread gradually
after the times shown here.
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Figure 3: A bump of 8 cells in a ring of 20 theta neurons. This bump persists indefinitely.
Note that the greyscale encodes the synaptic variable s associated with each cell, which
remains at 0 for inactive cells.
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Figure 4: The phase circle for the theta model (2) with b < 0. The arrowheads show
the direction of flow generated by equation (2) on the circle.
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Figure 5: The θ − gisyn phase plane. The solid curve P consists of critical points of (3)
with β = 0, given by equations (4), for different values of gisyn. Note that the critical
points coalesce at gisyn = −b = 1/3 (dotted line). The points (θS , 0), (θU , 0) are actual
critical points of the (θ, gisyn) system from (3) for any β. The dashed curve is a branch
of the stable manifold of (θU , 0). The thin solid curves show trajectories starting from
(−1.5, 0.2), (−1.5, 0.4), (−1.5, 0.6), respectively. Initially, dθ/dt > 0 along these curves.
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Figure 6: Recruitment in the θ − gisyn phase plane. The trajectory of a cell that
eventually is recruited into the bump is shown (solid). It receives many synaptic inputs,
each characterized by a rapid increase in the gisyn

value, before it is eventually reset
above the go curve (dotted).
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Figure 7: Nullclines for system (5). LEFT: With Iext = 0, the v- and w-nullclines
intersect in three points, labeled with asterisks. RIGHT: Increasing Iext raises the v-
nullcline, eliminates two intersections of the nullclines, and allows for the existence of a
periodic orbit (with direction of flow indicated by the arrows).
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Figure 9: The flow in (v, gisyn
)-space with w = 0.02, w′ = 0, and g′isyn

= −βgisyn
. This

numerically generated figure shows the parabola P (densely dotted curve), the go curve

(dashed curve) corresponding to a branch of the stable manifold of the saddle point
(vcm

, 0), and several trajectories. The trajectories were obtained from the flow from
initial conditions (v, gisyn

) = (−0.4, 0.01), . . . , (−0.4, 0.06). Note that dv/dt > 0 along
these curves, as long as they remain above P. A trajectory from one of these initial
points escapes from the silent phase if and only if the initial condition lies above the go

curve.
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Figure 10: The flow (with w′ = 0) from various labeled points in (v, gisyn
)-space. Dotted

lines denote jumps due to instantaneous synaptic inputs. Solid curves denote trajectories
ensuing after jumps. Here we have taken tap = 0, such that g′isyn

< 0 at all times outside
of jumps, to simplify the illustration. See text for definition of points A-F.

37



w

v

w=w

m

go curve
for w=w

(v  , w  , 0)

RK

RK

m

gisyn

v’=0,
isyn

v’=0, g      =0

 g      >0

isyn w’=0, g     =0isyn

W s

Figure 11: Phase space for system (10). The critical point (vm, wm, 0) has a 2-
dimensional stable manifold, which we denote W s. By definition, this is invariant under
the flow of (10). For any fixed w, this flow can be projected to the (v, gisyn

)-plane, and
the corresponding go curve for this projection is given by the intersection of W s with
the plane of constant w. As an example, one such curve is shown (dashed line) for
w = wRK , the w-value at the right (upper) knee of the v-nullcline with gisyn

= 0.
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Figure 12: Crossing the go curve determines escape from the silent phase. LEFT:
The trajectory of a cell in the (v, gisyn

)-plane, before and during its recruitment into a
bump. The stars (*) along the trajectory demarcate equal time intervals of 1 time unit
each. RIGHT: A blow up of the part of the trajectory that determines recruitment.
The dashed, dotted, and dash-dotted curves are go curves that are relevant for three
different inputs; see text.
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Figure 13: Once a cell crosses the go curve, no subsequent synaptic input is required for
the cell to fire. Bold arrows indicate direction of flow. The bold trajectory is the same
one shown in Figure 12, although we have now included a segment of the trajectory
corresponding to return from the silent phase from the active phase (marked with the
leftward arrow) to illustrate that both trajectories shown really do make it to the active
phase. The dash-dotted bold trajectory shows the result of the same simulation but
with all subsequent inputs to the cell blocked, starting from a moment just after the cell
crosses the go curve associated with t = t9 + tap. In particular, the cell does not feel
the tenth input, which arrives when the cell’s position in the plane corresponds to the
arrow labeled “shut off”. The cell is still able to escape from the silent phase.

40



−0.32 −0.3 −0.28 −0.26 −0.24 −0.22 −0.2
0.005

0.01

0.015

0.02

0.025

0.03

0.035

V

g is
yn

Figure 14: Trajectories of a recruited cell (dashed) and its non-recruited neighbor (solid)
projected into the (v, gisyn

)-plane. The dotted curves are go curves for the two cells at
particular moments in time. The leftmost curve is the go curve for the recruited cell
when it gets recruited. The rightmost curve is an arbitrarily selected go curve for the
non-recruited cell. At any fixed time, the non-recruited cell’s trajectory lies below the
corresponding go curve, but the trajectory approaches quite close to the relevant go

curves.
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Figure 15: gisyn
versus time for the same recruited (dashed) and non-recruited (solid)

cells shown in Figure 14. The dotted line at gisyn
≈ .027 corresponds to the value of gisyn

at recruitment of the recruited cell. Although gisyn
for the non-recruited cell exceeds

this value several times in the simulation shown, the cell is not recruited.
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Figure 16: Filtering properties with depression. Depression allows only intermediate
strength inputs to initiate bumps. LEFT: The input Iext = 0.5 to cells 9-11 is so high
that the synapses from these cells depress too quickly to recruit cells. No bump forms.
RIGHT: The input Iext = 0.07 to cells 9-11 is in an intermediate range where it is able
to initiate a bump. Note that initial conditions for this simulation were asymmetric,
leading to the asymmetry in the bump. Simulation for smaller values of Iext for which
no bump formed are not shown.
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Figure 17: Toggling with synaptic depression. Networks that have depressing synapses
can turn “on” and “off” with similar transient excitatory inputs. The network is turned
“on” at t = 0 with Iext = 0.1 to cells 9-11 for 50 msec. It is turned “off” by raising Iext

to 0.125 to these same cells from 200 to 250 msec.
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Figure 18: Localized inputs have global effects. The simulation demonstrates how tran-
sient inputs to small numbers of cells can have a global impact on network activity
patterns. The parameter Iext was raised to 0.3 for cells 9 to 11 from t = 100 to 125
msec. This resulted in the end of the network activity. The simulation also shows
a curious phenomenon associated with networks that have depressing synapses. They
can exhibit transient changes in bump size due to the strengthening and weakening of
synapses.
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