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Abstract

We consider a family of LES models with arbitrarily high consis-
tency error O(δ2N+2) for N = 1, 2, 3.. that are based on the van Cittert
deconvolution procedure. The family has been proposed and tested for
LES with success by Adams and Stolz in a series of papers e.g.[2], [1].
We show that these models have an interesting and quite strong stabil-
ity property. Using this property we prove an energy equality, existence,
uniqueness and regularity of strong solutions and give a rigorous bound
on the modeling error ||u − w|| where w is the model’s solution and u

the true flow averages.

Key words : large eddy simulation, scale similarity models, deconvolution,
approximate deconvolution models

1 Introduction

We consider the problem of modeling the motion of the large structures in a
turbulent fluid. This involves the interaction of many complex decisions made
in the simulation. To isolate some effects, we study herein the correctness of
the ADM(approximate deconvolution modeling) approach to closure pioneered
by Adams and Stolz, e.g.[2], [1].

The pointwise velocity and pressure, u, p in an incompressible viscous flow
satisfy the Navier-Stokes equations
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ut + ∇ · (uuT ) − ν∆u + ∇p = f

∇ · u = 0
u(x, 0) = u0(x)

(1)

We study (1) subject to periodic boundary conditions (with zero mean)

u(x + Le, t) = u(x, t) (2)

for x ∈ R
3, 0 < t ≤ T.

Periodic boundary conditions separate the hard problem of closure for the
interior equations from another hard problem of wall laws and near wall models
in turbulence.

Let overbar denote a local spacial averaging associated with a length scale
δ which commutes with differentiation. Averaging the Navier-Stokes equations
gives the nonclosed equations for u, p

ut + ∇ · (uuT ) − ν∆u + ∇p = f

∇ · u = 0
(3)

Let the averaging operation u → u be denoted formally by G so u = Gu. In
most interesting cases G is not invertible. Nevertheless, the closure problem (of
replacing uuT by a tensor depending only on u) is solved once the approximate
deconvolution problem ( of approximating the action of G−1) is solved.

The van Cittert approximation to G−1 can be developed in various ways
(see [3] and section 2 for a precise definition of it). The simplest is to find an
approximation to u by extrapolating from the resolved scales of u to those of
u. The first three examples are

u ≈ G0u := u (constant extrapolation in δ)
u ≈ G1u := 2u − u (linear extrapolation in δ)

u ≈ G2u := 3u − 3u + u (quadratic extrapolation in δ)

(4)

Let GNu denote the analogous N thdegree accurate approximate inverse
(section 2). Calling (w, q) the approximations that result when this is used
in (3) to treat the closure problem we are inevitably led to the fundamentally
important question of how well the solution w of the resulting model

wt + ∇ · (GNw(GNw)T ) − ν∆w + ∇q = f

∇ ·w = 0
(5)

matches the behaviour of the true flow averages u. This question has obvious
theoretical and experimental components. We consider herein the theoretical
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parts of the question for the whole family of models. Our analysis is based
on a delicate skew symmetry property that the model’s nonlinear interaction
terms have when the averaging operator is the differential filter ϕ → ϕ (as
studied by Germano [5]). Here for given ϕ ∈ L2(Q), ϕ is defined to be the
unique periodic solution of

−δ2∆ϕ+ ϕ = ϕ (6)

in Q where Q denotes the d-dimensional cube of size L > 0, Q = (0, L)d.

Our analysis is for periodic boundary conditions. We believe that many of
the results presented in this work can be extended to nonperiodic boundary
conditions with further research. Indeed, the basic model (5) does not increase
the order of the differential operator so the model makes perfect sense coupled
with any of the well posed boundary conditions used for the Navier-Stokes
equations.

Remark 1.1 The model (5) using G0 was considered recently in [7] and [8].
On the other hand practical calculations of Adams and Stolz in [2] and [1] have
stressed the superiority of models of order 4, 5 and higher in practical tests.

Herein we show that a single, unified mathematical theory is possible for
the entire family of models building on the analysis in [7] and [8].

2 Deconvolution Models

It has been pointed out by Germano(presented well in [6]) that with the dif-
ferential filter ϕ := (−δ2∆ + I)−1ϕ it seems that no decovolution is necessary;
one can write exactly ϕ := (−δ2∆ + I)ϕ.

This leads to the exact model for u given by

ut + ∇ · ((−δ2∆ + I)u[(−δ2∆ + I)u]T − ν∆u + ∇p = f (7)

subject to the periodic boundary conditions. One criticism with using exact
deconvolution model (7) to predict u is that going from the Navier-Stokes
equations to (7) no information is lost.

Thus there is no reason to believe that (7) can be approximated with fewer
degrees of freedom than the NSE itself. Another difficulty with (7) is that any
model that increases the order of the differential equation must be supplied
with extra boundary conditions. Thus for nonperiodic problems models like
(7) shift the essential difficulty from interior closure to the harder problem of
specifying as boundary conditions the higher derivatives of turbulent veloc-
ities at walls. Thus approximate deconvolution which will lose information
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is necessary. The van Cittert method of approximate deconvolution, see [3],
constructs a family GN of inverses to G as follows: Writing G = I − (I − G) a
formal inverse to G can be writen as the nonconvergent power series

G−1 = Σ∞
n=0(I − G)n

Truncating this series gives

GN = ΣN
n=0(I − G)n (8)

The first three approximations are given in (4).

Lemma 2.1 The operator GN : L2(Q) → L2(Q) is compact, selfadjoint and
positive.

Proof: The operator G : L2(Q) → L2(Q) is compact, selfadjoint. Multiply-
ing (6) by ϕ and integrating over Q gives

δ2||∇ϕ||2 + ||ϕ||2 = (ϕ, ϕ) ≤
1

2
||ϕ||2 +

1

2
||ϕ||2

It follows that G is positive and ||G|| ≤ 1. Let hN (x) = ΣN
k=0(1 − x)k. By

the definition of GN

GN = hN(G)

and consequently GN is also compact selfadjoint operator. Because hN is
positive on [0, 1] which contains the spectrum of G it follows also that GN is
positive.

Lemma 2.2 The operators {GN}N satisfy the following recursion:

(I − δ2∆)GNu = −δ2∆GN−1u + (I − δ2∆)u (9)

Proof: Using the definition of GN we write

GNu = (I − G)GN−1 + I

for any N > 0 and multiplying to the left by (I − δ2∆) we get

(I − δ2∆)GNu = (I − δ2∆)(I − G)GN−1u + (I − δ2∆)u =

(I− δ2∆)GN−1u− (I− δ2∆)GGN−1u+(I− δ2∆)u = −δ2∆GN−1u+(I− δ2∆)u

i.e
(I − δ2∆)GNu = −δ2∆GN−1u + (I − δ2∆)u
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Lemma 2.3 For smooth u the approximate deconvolution (8) has consistency
error O(δ2N+2)

u − GNu = (−1)N+1δ2N+2∆N+1u (10)

locally in Q and also

||u − GNu|| ≤ δ2N+2||u||H2N+2(Q)

Proof: This is a simple algebraic argument. Let A := (I−G) and note that

Aϕ = (I − G)ϕ = (−δ2∆ + I)−1(−δ2∆ + I − I)ϕ = −δ2∆ϕ

Then with e := u − GNu we have (by the definition of GN)

u = u + Au + ...+ ANu + e

Applying to both sides the operator A and substracting gives(since I−A = G)

Gu = u − AN+1u + Ge

or as Gu = u

Ge = e = AN+1u

Applying (−δ2∆ + I) to both sides implies e = AN+1u which gives (10).

Lemma (2.3) shows that GNu gives an approximation to u to accuracy
O(δ2N+2) in the smooth flow regions. Thus it is justified to use it for the
closure approximation

∇ · (uuT ) ≈ ∇ · (GNu(GNu)T ) +O(δ2N+2)

If µ denotes the usual subfilter scale stress tensor µ(u,u) := uuT − uuT then
the closure approximation is equivalent to the closure model

µ(u,u) ≈ µN(u,u) := GNu(GNu)T − uuT (11)

Definition 2.1 A tensor function µ(u,v) of two vector variables is reversible
if

µ(−u,−v) = µ(u,v).

The tensor µ is galilean invariant if for any divergence free periodic vector
field w(x) and any constant vector U

∇ · µ(w + U,w + U) = ∇ · µ(w,w)
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The interest in reversibility and Galilean invariance is that the true subgrid
stress tensor µ(u,u) is both reversible and Galilean invariant, Sagaut [9]. Thus
many feel that appropriate closure models should at least, to leading order
effects, share these two properties. We next show that the model (11) is both
reversible and Galilean invariant.

Lemma 2.4 For each N = 0, 1, 2.. the closure model (11) is reversible and
Galilean invariant.

Proof: Reversibility is immediate.Galilean invariance also follows easily once
it is noted that UwT = UwT so GN(UuT ) = UGN(u)T . Using these and other
analogous properties gives

∇ · µ(u + U,u + U) = ∇ · [GN(u)GN(u)T +

+UGN(u)
T

+ GN(u)UT + UUT − (u + U)(u + U)T ] =

= ∇·[(GN(u)GN(u)T−uuT ]+∇·(GN(u)U+U∇·(GN(u)−∇·(u)U−U∇·(u) =

= ∇ · [GN(u)GN(u)T − uuT ] = ∇ · µN(u,u)

since ∇ · u = ∇ · GN(u) = ∇ · GN(u) = 0 and UUT = UUT .

3 Variational Spaces

Q denotes the d-dimensional cube of size L > 0

Q = (0, L)d.

Let
Hm(Q) = {u ∈ Hm

loc(R
n)|u periodic with period Q}

and

H
m

(Q) = {u ∈ Hm(Q)|

∫

Q

udx = 0}

For the variational formulation of the scale similarity model with periodic
boundary conditions we consider the spaces of divergence free functions

V = {u ∈ H1(Q) ,∇ · u = 0 in R
d}

and

H = {u ∈ L2(Q) ,∇ · u = 0 in R
d}
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as in R.Temam [10].
D(Q) is defined as

D(Q) = {ψ ∈ C∞(Rd)|ψ is periodic of period Q}.

and

D(QT ) = {ψ ∈ C∞([0, T )×R
d)| for t ∈ [0, T ), ψ(·, t) is periodic of period Q and

ψ has compact support in variable t ∈ [0, T )}.

The space of vector valued functions D(Q) is defined as

D(Q) = D(Q)d (12)

The other spaces D(QT ), H , H
p
(Q), V, L

2(Q) are defined accordingly.

Remark 3.1 Because the inclusion H
2
(Q) → H is compact, the inverse of

the Laplacian operator (−∆)−1 : H → H
2
(Q) ⊂ H is a bounded, selfadjoint,

compact operator. This implies that there exist an orthonormal basis (wj)j∈N

of H consisting of eigenfunctions of the Laplacian operator.

4 The models and the existence of weak solu-

tions

Definition 4.1 The strong form of the scale similarity model is:
Find (w, q) such that

w ∈
(

H
2
(Q) ∩H

)d

for a.e t ∈ [0, T ]

w ∈
(

H1((0, T ))
)d

for a.e.x ∈ Q

q ∈ H1(Q) ∩ L2
0(Q) if t ∈ (0, T ].

(13)

and

wt − ν∆w + ∇ · ((GNw)(GNw)T ) + ∇q = f in (0, T ) ×Q

∇ · w = 0 in (0, T ] ×Q

w |t=0 = u0 in Q
∫

Q
qdx = 0 in (0, T ].

(14)
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Definition 4.2 Let f ∈ L2(0, T ; V′) and w0 ∈ H
2
(Q). A measurable function

w : [0, T ] ×Q→ R
d is a weak solution of (14) if

w ∈ L2(0, T,H
1
(Q)) ∩ L∞(0, T ; H) (15)

and
∫ ∞

0

[(w,
∂ϕ

∂t
) − ν(∇w,∇ϕ) − (∇ · ((GNw)(GNw)T ), ϕ)]dt = (16)

−

∫ ∞

0

(f , ϕ)dt− (w0, ϕ(0))

for all ϕ ∈ D(QT ).

The following lemma gives an energy inequality satisfied by the strong
solutions of the Adams-Stolz models. We mention here that the same argument
is used to derive an energy inequality for the approximate solutions in the proof
of existence of weak solutions to the Adams-Stolz models.

Lemma 4.1 If w is a strong solution of (14) as in Definition (4.1) then w

satisfies the following energy inequality

1

2
(||w(t)||2 + δ2||∇w(t)||2) +

ν

2

∫ t

0

||∇w(s)||2 + δ2||∆w(s)||2ds ≤ (17)

K(

∫ t

0

||f(s)||2V ′ds+ ||w0||
2 + δ2||∇w0||

2)

for all t ∈ [0, T ] with K = max{
2||GN ||2

L2(Q)

ν
, 1

2
δ2, 1

2
, δ2

2
||GN−1||L2(Q)}.

Proof:

We multiply (14) by the test function ϕ = (−δ2∆ + I)GNw and integrate
on Q. Because the weak form of the nonlinear term will vanish

(∇ · ((GNw)(GNw)T ), (−δ2∆ + I)GNw) = (18)

= (∇·((GNw)(GNw)T ), (−δ2∆ + I)GNw) = (∇·((GNw)(GNw)T ),GNw) = 0
(19)

we obtain the following energy equality:

1

2

d

dt
(w, (−δ2∆ + I)GNw) + ν(∆w, (−δ2∆ + I)GNw) = (f , (−δ2∆ + I)GNw)

(20)
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In the equality above all terms (−δ2∆+I)GNw are replaced using Lemma
(2.2) leading to

1

2

d

dt
(w, (−δ2∆ + I)w) +

1

2

d

dt
(w,−δ2∆GN−1w) − ν(∆w, (−δ2∆ + I)w)+

+νδ2(∆w, δ2∆GN−1w) = (f ,GNw)

Using integration by parts and the commutation property of the operator
GN−1 with differentiation gives

1

2

d

dt
||w||2 +

1

2
δ2 d

dt
||∇w||2 +

δ2

2

d

dt
(∇w,GN−1∇w)+

+ν||∇w||2 + νδ2||∆w|| + νδ4(∆w,GN−1∆w) = (f ,GNw)

We then integrate on [0, t] and obtain

1

2
||w(t)||2 +

1

2
δ2||∇w(t)||2 +

δ2

2
(∇w(t),GN−1∇w(t))+

+ν

∫ t

0

||∇w(s)||2ds+ νδ2

∫ t

0

||∆w(s)||2ds+ νδ4

∫ t

0

(∆w(s),GN−1∆w(s))ds =

=

∫ t

0

(f(s),GNw(s))ds+
1

2
||w0||

2 +
1

2
δ2||∇w0||

2 +
δ2

2
(∇w0,GN−1∇w0)

We use the positivity of the operators (GN)N in the inequality above to
get

1

2
||w(t)||2 +

1

2
δ2||∇w(t)||2 + ν

∫ t

0

||∇w(s)||2ds+ νδ2

∫ t

0

||∆w(s)||2ds (21)

≤

∫ t

0

(f(s),GNw(s))ds+
1

2
δ2||w0||

2 +
1

2
||∇w0||

2 +
δ2

2
(∇w0,GN−1∇w0)

An application of Cauchy’s inequality on the first term on the right hand side
above gives

∫ t

0

(f(s),GNw(s))ds ≤

∫ t

0

||f(s)||V ′||GN ||L2(Q)||∇w(s)||L2(Q)ds ≤

2||GN ||
2
L2(Q)

ν

∫ t

0

||f(s)||2V ′ds +
ν

2

∫ t

0

||∇w(s)||2L2(Q)ds
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We use this inequality in (21) to obtain

1

2
||w(t)||2 +

1

2
δ2||∇w(t)||2 + νδ2

∫ t

0

||∆w(s)||2ds +
ν

2

∫ t

0

||∇w(s)||2ds

≤
2||GN ||

2
L2(Q)

ν

∫ t

0

||f(s)||2V ′ds+
1

2
δ2||w0||

2+
1

2
||∇w0||

2+
δ2

2
||GN−1||L2||∇w0||

2
L2

Proposition 4.1 Let T > 0. Then for w0 ∈ H
2
(Q) ∩ H, and f ∈ L2(0, T ; V′)

there exists a weak solution w of (14)in the sense of Definition (4.2). This

solution w belongs to the space L2(0, T,H
2
(Q)) ∩ L∞(0, T ; V), it is L2-weakly

continuous and it satisfies the following energy inequality

1

2
(||w(t)||2 + δ2||∇w(t)||2) + δ2ν

∫ t

0

||∆w(s)||2ds ≤ (22)

K(

∫ t

0

||f(s)||2V ′ds+ ||w0||
2 + ||∇w0||

2)

for all t ∈ [0, T ] with K = max{
2||GN ||2

L2(Q)

ν
, 1

2
δ2, 1

2
, δ2

2
||GN−1||L2(Q)}

Proof: The proof uses the Faedo-Galerkin method. We will use Galdi [4]
as a reference and we will only point out the differences between the proof of
existence of the weak solution of the Navier-Stokes equations and the proof of
existence for our models. We pick an orthonormal basis {ψj}j ∈ D(Q) of H

consisting of eigenfunctions of the Laplacian operator as in Remark (3.1). Let

wk(x, t) = Σk
r=1ηkr(t)ψr(x) (23)

for k ∈ N the solution of the following ODE system

(
∂wk

∂t
, ψr) + ν(∇wk,∇ψr) + (∇ · (GNwk)(GNwk)T , ψr) = (f , ψr) (24)

for all r = 1..k with initial condition

(wk(0), ψr) = (w0, ψr)

for all r = 1..k. It follows that the coefficients ηkr satisfy the following ODE
system

dηkr

dt
+ Σk

i=1airηki + Σk
i,j=1aijrηkiηkj = fr (25)
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for r = 1..k with the initial condition

ηkr(0) = C0r, for r = 1..k

where air = ν(∇ψi,∇ψr), aijr = (∇ · ((GNψi) (GNψj)T ), ψr),
fr = (f , ψr), C0r = (bw0, ψr).

The function fr belongs to L2([0, T )) for any r and consequently (25) has
a unique solution near 0,

ηkr ∈ W 1,2(0, Tk)

where Tk ≤ T . Because w0 ∈ H
2
(Q)∩H there exists u0 ∈ H such that u0 = w0

For the ODE defined above we have (wk0, ψr) = (w0, ψr) for all r = 1..k. This
gives

(wk0, ψr) = (u0, ψr) (26)

for all r = 1..k. But wk,0 ∈ Gk = span{ψj}j=1..k and Gk is an invariant
subspace of the Laplacian operator. Consequently we can replace in formula
(26) ψr with (I − δ2∆)wk,0 to get

(wk0, (I − δ2∆)wk,0) = (u0, (I − δ2∆)wk,0) = (u0,wk,0) (27)

Integrating by parts the first term above and using Cauchy ’s inequality in the
second we get

||wk0||
2 + δ2||∇wk0||

2 = (u0,wk,0) ≤
1

2
(||u0||

2 + ||wk0||
2) (28)

which gives the following estimate

1

2
||wk0||

2 + δ2||∇wk0||
2 ≤

1

2
||u0||

2 (29)

We want to prove that we can pick Tk = T . In equation (24) we replace
ψr with (I − δ2∆)GNwk. One can do this since (I − δ2∆)GNwk(t) ∈ Gk =
span{ψj}j=1..k for any t ∈ [0, T ). In the same way in which the energy inequal-
ity (17) for strong solutions was derived we obtain

1

2
(||wk(t)||

2+δ2||∇wk(t)||
2)+δ2ν

∫ t

0

||∆wk(s)||
2ds+

ν

2

∫ t

0

||∆wk(s)||
2ds ≤M

(30)
where

M := K(

∫ T

0

||f(s)||2V ′ds + ||wk0||
2 + δ2||∇wk0||

2) (31)
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with K = max{
||2GN ||2

L2(Q)

ν
, 1

2
δ2, 1

2
, δ2

2
||GN−1||L2}.

M does not depend on t and using (29) also M does not depend on k. Due
to orthonormality of the family {ψj}j in H we get that á priori the coefficients
ηkr satisfy

|ηkr|
2 ≤ 2M

1
2

for any t ∈ [0, T ), r = 1..k and k ∈ N. This implies that for any k there exists
global solution (that is, on [0, T ))

ηkr ∈ W 1,2([0, T ))

r = 1..k of the ODE system (24).
In the same way as in Galdi [4] one can show using the estimate (30) that

there exists a subsequence of wk (which is redenoted wk) which converges
weakly in V uniformly in t to a function w ∈ L∞(0, T,V). From estimate (30)

we infer that the sequence wk is bounded in L2(0, T,H
2
(Q)) consequently it

contains a sebsequence(which is redenoted wk)which is weakly convergent to a

function w′ ∈ L2(0, T,H
2
(Q)). One can show taking limits of wk in the space

L2(0, T,L2(Q)) that w = w′. It follows that w ∈
(

H
2
(Q) ∩ H

)d

.

We can show that w satisfies the variational equality (16) in the same way
as in Galdi [4] taking the limits of wk in the equality (24). In the case of
Adams-Stolz models when taking limits the nonlinear term is handled in the
following way: One needs to show that for given eigenfunction ψr

∫ t

0

(GNwk · ∇GNwk, (I − δ2∆)−1ψr) − (GNw · ∇GNw, (I − δ2∆)−1ψr)ds→ 0

But

|

∫ t

0

(GNwk · ∇GNwk, (I − δ2∆)−1ψr) − (GNw · ∇GNw, (I − δ2∆)−1ψr)ds| =

= |

∫ t

0

(GNwk · ∇GNwk, ψr) − (GNw · ∇GNw, ψr)ds| ≤

≤ |

∫ t

0

(GN(wk − w) · ∇GNwk, ψr)ds| + |

∫ t

0

(GNw · ∇GN(wk − w), ψr)ds| ≤

≤ ||GN ||
2
L2(Q)||wk − w||L2(0,T,L2)||ψr||∞||∇wk||L2(0,T,L2)+

|

∫ t

0

(GNw · GN(∇(wk − w)), ψr)ds|
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The first term on the right hand side above converges to 0 since wk → w

in L2(0, T,L2(Q)) and the second converges to 0 because ∇wk → ∇w weakly
in L2(0, T,L2(Q)) and the operator GN is selfadjoint. The energy inequality
(22) is obtained the same way as in the case of Navier-Stokes equations taking
limits in (30).

Lemma 4.2 The weak solution w that was constructed in the previous theo-
rem is also a strong solution of (14).

Proof: This follows directly from Definition (16), the regularity proven for
the solution and an integration by parts.

Lemma 4.3 The weak solution w of (14) constructed in Proposition (4.1) is
the unique weak solution of (14).

Proof: This is a consequence of the regularity of w. The proof is the
same as in the case of the NSE.

5 An á priori Estimate of the Modelling Error.

Our goal here is to give an á priori estimate of the modeling error ||u − w||.
In this direction there are several fundamental problems. First, in 3d there
is no proof of uniqueness of weak solutions u of the Navier-Stokes equations.
Thus for u a general weak solution of the Navier-Stokes equations the best
result attainable in the usual norms with present technique seems to be the
following:

Proposition 5.1 Let w = w(δ) be the unique strong solution of the model
(14). Then there is a subsequence δj → 0 as j → ∞ and a weak solution
u of the Navier-Stokes equations such that w(δj) → u in L∞(0, T,L2(Q)) ∩
L2(0, T,H1(Q)),

Proof: This proof follows that of Theorem 3.1 of Layton and Lewandowski
[7]

The second question concerns the right norm. Obviously if we are re-
stricting attention to general weak solutions the right norm must be a very
weak norm for which the modelling residual ||uuT −GNu(GNu)T || is not only
well defined but also vanishes as δ → 0. The answer to this question is still
unknown, see, e.g. Layton and Lewandowski [7] for first steps. The third
question concerns extracting a rate of convergence for ||u − w|| which gives
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some insight into the model’s accuracy on the laminar regions. This problem
is much simpler. It reduces to proving the highest posible rate of convergence
for ||u − w|| → 0 for very smooth solution u.

In the remainder of this subsection we give the answer : The modeling
error is á priori O(δ2N+2) for smooth u.

Proposition 5.2 Assume u is a weak solution of the Navier-Stokes equations

and ∇u ∈ L4(0, T,L2(Q)). For w ∈ L2(0, T,H
2
(Q)) ∩ L∞(0, T ; V) a weak

solution of (14) and τ := uuT − GNu(GNu)T there exists a positive constant
P = P (ν,N, ||∇u||L4(0,T,L2)) ≥ 0 such that

||u−w||2L∞(0,T,L2) + ||∇(u−w)||2L2(0,T,L2) ≤ P (ν,N, ||∇u||L4(0,T,L2))||τ ||
2
L2(0,T,L2)

(32)

Proof: To begin we derive an equation for ϕ := u − w. First we note
that w is a unique strong solution of the model and under stated regularity
asumptions on u, u is a unique strong solution of the Navier-Stokes equations,
see Remark 3.3 in [10]. Thus there are no subtelties in the derivation of the
error equation. Equality (3) can be rewritten as

ut + ∇ · (GNuGNuT ) − ν∆u + ∇p = f + ∇ · (GNuGNuT − uuT )
∇ · u = 0

(33)

Substraction gives the equation for ϕ := u − w

ϕt + ∇ · (GNuGNuT − GNwGNwT ) − ν∆ϕ + ∇p− q = −∇ · τ in (0, T ) × R
d

∇ · ϕ = 0 in (0, T ] × R
d

ϕ |t=0 = 0 in R
d

∫

Q
p− qdx = 0 in (0, T ].

(34)
We multiply the first equation in (34) by (I−δ2∆)−1GNϕ and then integrate

on Q. Following exactly the same computations as in Lemma (4.1) gives

1

2

d

dt
||ϕ||2 +

1

2
δ2 d

dt
||∇ϕ||2 +

δ2

2

d

dt
(∇ϕ,GN−1∇ϕ)+ (35)

+ν||∇ϕ||2+νδ2||∆ϕ||+νδ4(∆ϕ,GN−1∆ϕ) = −(∇·τ,GNϕ)+b(GNϕ,GNu,GNϕ)

where b is the standard trilinear form

b(u,v,w) = ((u · ∇)v,w)

The first term on the right hand side is bounded as follows:

|(∇ · τ,GNϕ)| = |(τ,GN∇ϕ)| ≤
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≤ ||τ ||||GN ||L2||∇ϕ|| ≤
2||GN ||

2
L2

ν
||τ ||2 +

1

2
ν||∇ϕ||2

To bound the second term we use Young’s inequality

ab ≤ εa4 +
3

4
(4ε)−1/3b4/3

together with the standard estimate for the trilinear form

|b(GNϕ,GNu,GNϕ)| ≤ C(Q)||∇u||||ϕ||1/2||∇ϕ||3/2

to obtain that for any ε > 0

|b(GNϕ,GNu,GNϕ)| ≤ ε||GN ||
2||∇ϕ||2 +

3

4
(4ε)−1/3||GN∇u||4||GNϕ||

2

Picking in the above inequality ε = ν
2||GN ||2

we get that

|b(GNϕ,GNu,GNϕ)| ≤
ν

2
||∇ϕ||2 +

3

4
(

2ν

||GN ||2
)−1/3||GN ||

4||∇u||4||ϕ||2

Using the last two inequalities in (35) gives

1

2

d

dt
||ϕ||2 +

1

2
δ2 d

dt
||∇ϕ||2 +

δ2

2

d

dt
(∇ϕ,GN−1∇ϕ)+

νδ2||∆ϕ||+νδ4(∆ϕ,GN−1∆ϕ) ≤
2||GN ||

2
L2

ν
||τ ||2+

3

4
(2ν)−1/3||GN ||

10/3||∇u||4||w||2

Gronwal’s inequality and positivity of the operators (GN)N gives

||ϕ||2 ≤

∫ t

0

e−2
∫ t
s ( 3

4
(2ν)−1/3 ||GN ||10/3||∇u||4ds′ 2||GN ||

2
L2

ν
||τ ||2L2ds

For fixed N we have that

||GN || ≤ 1 + (1 + ||G||) + (1 + ||G||)2 + ...+ (1 + ||G||)N

and since for every δ ||G|| ≤ 1 it follows

||GN || ≤ 2N+1 − 1

uniformly in δ. Under the assumption that ∇u ∈ L4(0, T, L2) we infer the
existence of a constant M = M(ν,N, ||∇u||L4(0,T,L2)) such that
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||ϕ||2L∞(0,T,L2) ≤M(ν,N, ||∇u||L4(0,T,L2))

∫ T

0

||τ ||20,T,L2 (36)

To estimate ||∇ϕ||2L2(0,T,L2) we integrate (35) from 0 to t and using inequal-

ity (36) we obtain

||∇ϕ||2L2(0,T,L2) ≤ R(ν,N, ||∇u||L4(0,T,L2))

∫ T

0

||τ ||20,T,L2

for positive constant R = R(ν,N, ||∇u||L4(0,T,L2)). Consequently, there exists
a constant P = P (ν,N, ||∇u||L4(0,T,L2)) such that

||ϕ||2L∞(0,T,L2) + ||∇ϕ||2L2(L2) ≤ P (ν,N, ||∇u||L4(0,T,L2))||τ ||
2
L2(0,T,L2) (37)

Proposition 5.3 Under the conditions of the previous theorem if u ∈ H
N+1(Q)

there exists P = P (ν,N,u) ≥ 0 such that

||u − w||2L∞(0,T,L2) + ||∇(u− w)||2L2(0,T,L2) ≤ P (ν,N,u)δ2N+2 (38)

Proof: An aplication of Lemma (2.3) gives

||τ ||2L2(0,T,L2) ≤ C(u)δ2N+2

(38) will follow then from (37).
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