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Abstract. The phase field model is used to compute numerically the temporal evolution

of the interface for solidification of a single needle crystal of succinonitrile (SCN) in a three

dimensional cylindrical domain with conditions satisfying microgravity experiments. The

numerical results for the tip velocity are (i) consistent with the experiments, (ii) compatible

with the experimental conclusion that tip velocity does not increase for larger anisotropy

(e.g. for pivalic acid), (iii) different for 3-D versus 2-D by a factor of approximately (D-1),

(iv) strongly dependent on physical value of the kinetic coefficent in the model.
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The temporal evolution of an interface during solidification has been under intensive

study by physicists and material scientists for several decades. The interface velocity and

shape have important consequences for practical metallurgy, as well as the theory, e.g.,

velocity selection mechanism and nonlinear theory of interfaces. The simplest observed

microstructure is the single needle crystal or dendrite, which has been modeled in an early

study by Ivantsov [1] as a parabaloid growing at a constant velocity, v0, with tip radius,
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R, subject to the heat diffusion equation and latent heat considerations at the interface.

With the interface stipulated to be at the melting temperature, the absence of an additional

length scale implies the existence of an infinite spectrum of pairs of velocities and tip radii,

(v0, R0). Experimentally it has been observed that a unique pair (vexp, Rexp) is selected, so

that the tip velocity is constant throughout the experiment, and is independent of initial

conditions.

The theoretical mechanism for this velocity selection has been the focus of much of the

theoretical research on the subject (see, for example [2-7]). The emergence of the capillarity

length associated with the surface tension as an additional length scale has provided an

explanation for the selection mechanism. Advances in computational power and a better

understanding of interface models and their computation have opened up the possibility

of comparing experimental values for the tip velocity with the numerical computations.

This is nevertheless a difficult computational issue in part due to the large differences in

length scales that range from 1 cm for the size of the experimental region, to 10−6 cm for

the capillarity length, to 10−8 cm interface thickness length.

One perspective into the theoretical and numerical study of such interfaces has been

provided by the phase field model introduced in [8,9] in which a phase, or order parameter,

φ, and temperature, T, are coupled through a pair of partial differential equations described

below. In physical terms, the width of the transition region exhibited by φ is Angstroms.

In the 1980’s two key results facilitated the use of these equations for computation of

physically relevant phenomena. If the equations are properly scaled one can (i) identify

each of the physical parameters, such as the surface tension, and attain the sharp interface
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problem as a limit [10,11], and (ii) use the interface thickness, ε, as a free parameter, since

the motion of the interface is independent of this parameter [12]. The latter result thereby

opened the door to computations with realistic material parameters, by removing the issue

of small interface thickness. However, the difference in scale between the capillarity length

and overall dimensions still pose a computational challenge.

More recently, several computations, have been done using the phase field model [13-

19], with some 3D computations in [14] and [15] utilizing the model of [22], that will be

compared with our results below.

In this paper we present computations that have the following novel features:

(A) We perform numerical computations for a cylindrical region in three dimensional

space by utilizing rotational symmetry. This allows us to compare the velocity and tip

radius with the actual experiments in a meaningful way.

(B) The calculations utilize the parameters and boundary conditions of the IDGE mi-

crogravity experiments for succinonitrile (SCN) [20]. All previous experiments done under

normal gravity conditions introduced convection. Hence this provides the first opportunity

to compare experiments in the absence of convection to theory that also excludes convec-

tion. Our results for tip velocity compare favorably with the data of these experiments.

(C) The role of anisotropy in velocity selection has been noted in the computational

references cited above. Nevertheless, Glicksman and Singh [21] compare experimental tip

velocities of SCN with pivalic acid (PVA) whose coefficient of surface tension anisotropy

(defined below) differ by a factor of 10 but are otherwise similar, except perhaps for the
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kinetic coefficient. The graph of their data ([21] figure 7) indicates that the tip velocities

of the two materials differ by less than 10 percent.

We perform two sets of calculations in which all parameters are identical (SCN val-

ues) except for the anisotropy coefficient. Our computations confirm the result that the

velocities are nearly identical, which is somewhat paradoxical since one might conjecture

that the role of anisotropy in selection might lead to a mechanism for adjusting velocity

through the magnitude of anisotropy.

(D) Most of the previous numerical computations that simulate the interface growth

were done in 2-D. Our computations shows that the 2-D and 3-D computations differ by

a factor of approximately (D–1).

(E) The role of the kinetic coefficient [see definition of α below equation (2)] is subtle,

and this material parameter is often set to zero, for convenience, in theoretical and compu-

tational studies. We find, however, that there is a significant difference in the tip velocity

when all other parameters are held fixed while this coefficient is varied. This suggests that

further experiments and theory on this subject may lead to a deeper understanding of

dendritic phenomena.

In the computations below we use a version of the phase field equations introduced

in [22], for which the phase or order parameter, φ(~x, t), as a function of spacial point, ~x,

and time, t, is exactly −1 in the solid and +1 in the liquid. We define the dimensionless

temperature, u, and the capillarity length, d0, by

u(x, t) =
T − Tm

lv/cv
, do =

σ cv

[s]E lv
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where Tm, lv and cv are the melting temperature, latent heat and specific heat per unit

volume of the material. Thus, we write the dimensionless phase field equations as following:

ut + 1
2
φt = D∇2u (1)

αε2φt = ε2∇2φ + g(φ) + 5
8

ε
do

uf ′(φ) (2)

where

g(φ) = 1
2(φ − φ3), f ′(φ) = (1 − φ2)2, D =

K

Cv
,

and the interface is defined by Γ(x, t) = {x ∈ Ω : φ(x, t) = 0}. In the limit as ε 7→ 0, the

temperature at the interface satisfies the kinetic Gibbs-Thomson relation

u = −d0κ − αd0 vn,

where vn is the normal velocity and α is the kinetic coefficient [8,22].

In order to simulate the interfacial growth of a 3-D single needle dendrite for the

compound succinonitrile (SCN) in a cylindrical geometry (under the assumption that the

needle grows symmetrically), we consider a domain which is a cylindrical chamber filled

with the pure melt. A small radially symmetric seed is placed at the bottom center of

the chamber. We denote the flat surface of the cylinder where the seed is placed by

S1, the flat surface across from the seed (i.e. far field) by S2, and the curved surface

around the cylinder by S3. Thus we define the boundary and initial conditions below

as follows. The temperature at S2 and S3 are kept at the constant supercooling value
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u∞. The temperature at S2 is also kept at a constant (in time) temperature, but declines

exponentially from u = 0 on the interface of the seed to the intersection of S2 with S3,

where u= u∞.

In particular, the boundary condition for u on S2 is given as utrav(s, 0) where s is the

distance from the seed interface, and

utrav(z, t) =




u∞ (1 − exp{−v(z − vt/|u∞|)/(D|u∞|)}) z > vt/(u∞)

0 z ≤ vt/(u∞)
(3)

is a plane wave solution to a 1-D problem. The order parameter is initially set to its

equilibrum value

φ(ρ) = tanh ((ρ − vt)/(2ε)) (4)

where ρ is the signed distance (positive in the liquid) from the interface [22]. The boundary

conditions for φ are defined to be compatible with those on the temperature.

The anisotropy is incorporated into the equations through the surface tension where

one has precise and quantitative experimental data in order to utilize the experimentally

observed quantities and parameters. Thus, we write the surface tension as

σ(θ) = σ0[1 − (M2 − 1)δσcos(M(θ − θ0)] (5)

where θ is the angle between the horizontal direction and the normal of the solid-liquid

interface. Here, θ0 is preferred growth direction, and σ0 is an experimental constant for the
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particular material, as is (M2−1)δσ. Hence, if (M2−1)δσ< 1 is satisfied then the curvature

has its maximum at θ = θ0 [12]. This is consistent with the experimental evidence [21].

For the computational convenience, we take a vertical cross section through the origin.

Upon writing the equations (1) and (2) in cylindrical coordinates, the terms involving θ

drops and we get a simplified form of the phase field equations in a cylindrical coordinate

system.

The discretization of the equations is done implicitly in space and explicitly in time

by using finite difference method. Where appropriate, we use centered difference method

for space derivatives. The singularity at r = 0 is avoided by using the operator value ∂2

∂r2

as an approximation for 1
r

∂
∂r

for r = 0 only. The motivation for this approximation is that

both ∂u
∂r

and ∂φ
∂r

are zero at r = 0 [23].

An adequate number of mesh points on the domain are necessary for the accurate

computation of φ in the interfacial region, which is costly since the mesh size has a strong

influence on the speed and size of the computation. Let L be the number of the grids on

each axis. We lay an LxL uniform mesh points over the domain such that 6 or 7 grids

points are located at the interfacial region as measured from φ = −0.9 to φ = 0.9.

To solve the large sparse linear algebraic systems which arise from the discretization,

we use a Fortran package ITPACK2C [24]. We perform the iteration twice for each time

step 4t = ti−ti−1. First, we solve the equation which governs the phase field. We use this

updated value and the initial values to solve the equation that governs the temperature.

The iteration process for each time step is controlled by a loop to compute φ and u at the

time ti = ti−1+4t, i = 1, 2, 3, ..., T.

7



Through out the computations, we set L = 600. Thus the uniform mesh size is h = 1/L

with a time step ∆t = 0.005 and the free parameter is set at ε = h. The true values of

d0, D and σ0 for SCN are given by 2.83x10−7cm, 1.147x10−3cm2/s and 8.9 ergs/cm2,

respectively [25]. Under these conditions, the diffusion length, D/vn, is at least 20 times

larger than the tip, R0, satisfying the standard theoretical conditions for dendritic growth

[14]. Moreover, we set M = 4 and θ0= π/2 so that the solid protrudes further in the

vertical and the horizontal directions in accordance with 4-fold symmetry.

In order to address the issue raised in (A) and (B) above we consider nine dimen-

sionless supercooling values from the microgravity experiments (IDGE) for SCN [20]. The

computations for 20 seconds confirm that there is a linear relation between the supercool-

ings and corresponding growth velocites (Figure 1 and 2) for SCN. Table I shows that the

computed results for velocity are close to the experimental values for each of the (dimen-

sionless) supercooling values 0.00610, 0.0079, 0.01, 0.0126, 0.0161 and 0.0205 and outside

of the experimental error range for the values 0.0265, 0.0338 and 0.0437. The results are

consistent with other phase field studies that confirm this linear relation (see e.g. [14]).

Next, we consider the issue discussed in (C) above. We note that other numerical

studies involving anisotropy have usually assumed dynamical anisotropy. Here we use only

the anisotropy that can be quantified from experiments, namely, the anisotropy of the sur-

face tension, which an equilibrium quantity. For the supercooling 0.01, we perform three

computations for different δσ values of 0.005, 0.01 and 0.03 to determine the influence of

anisotropy on the tip velocity [see equation (5)]. The corresponding growth velocities for

each δσ are 0.000524, 0.000527 and 0.00054 (cm/s), respectively. As mentioned earlier,
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the surface tension anisotropy for PVA is much larger than that of SCN. The experiments

suggest that the tip velocity is similar for both materials. However, the possible in differ-

ence in the kinetic coefficients between the two material does not allow one to conclude

that the magnitude of anisotropy does not influence the tip velocity. Our computational

studies, on the other hand, indicate that an order of magnitude change in the anisotropy

coefficient does not change the tip velocity significantly, confirming the conclusion of the

experimenters [21]. Moreover the shape of the dendrite also does not appear to be af-

fected very much. Only the tip of the dendrite becomes sharper for larger anisotropy, also

confirming the experimental results.

The comparison of the growth velocities in 2-D and 3-D are examined for the super-

coolings values of 0.01, 0.0161 and 0.0265. Since exactly the same initial and boundary

conditions are used in both computations, the tip velocities for 2-D and 3-D can be com-

pared. The velocities corresponding to these supercoolings in 2-D are 0.00033, 0.0005,

and 0.00066 (cm/s), respectively, compared with the values of 0.00058, 0.00083 and 0.0012

(cm/s) respectively. There is a ratio of 1.76 ±0.1 between the 3-D and 2-D calculations.

A ratio of approximately 2 would be suggested by the factor (D-1) arising from the gen-

eralized Gibbs-Thomson relation above under the assumptions that the tip temperature

and curvature are similar in the two geometries, and the two terms on the right hand side

have similar roles.

Finally, we examine the role of the kinetic coefficient, discussed in (E) above, by

varying α while other parameters are fixed. We use the undercooling ∆U = 0.01 with the

kinetic coefficients 1.5x106, 3.0x106 and 3.5x106. The corresponding velocities for each
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α are 0.00016, 0.00066 and 0.00083 (cm/s). This indicates a strong dependence on this

parameter which is a physically measurable quantity. Hence, setting this parameter to zero,

which may be convenient from some perspectives (see e.g. [14], [15]) appears to change the

tip velocity significantly. This may be the reason for the conclusion in [14], p. 4347, that

”For PVA the agreement between theory and experiment remains very poor.” In other

words, the approximation α ≈ 0 is not valid for some materials. The material constants

for PVA and SCN differ in the magnitude of the anisotropy and, perhaps, the kinetic

coefficient, α. We have demonstrated that the magnitude of the anisotropy (when altered by

almost an order of magnitude) does not have a strong influence on the tip velocity, while the

kinetic coefficient (when altered by much less than an order of magnitude) has a dramatic

influence. Thus, our calculations suggest that the kinetic coefficient is perhaps responsible

for the lack of agreement between computations (or theory) versus experiment. At present

there is little theoretical evaluation and experimental data for this parameter [26]. In all

other experiments in this paper, we used a value of 3.5x106 which is obtained from (3) in

the kinetic Gibbs-Thomson relation. Further experimental data on this parameter would

be very useful for developing our understanding of dendritic phenomena.
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Fig1. The plots of the dendritic growth into melt for the supercooling 0.001. Fig 1(a) 
shows the phase field and Fig1 (b) shows the temperature field after 100seconds 
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TABLE I. Microgravity dendritic growth velocity measurements  calculated from telemetered binary    
images from the space shuttle Colombia (STS-62) and  computational velocities 
 

 
  Supercooling           Velocity(IDGE)           Velocity(Computational) 
         (cm/s)                          (cm/s)  
               
          0.04370  0.016980       0.001770 

   0.03380  0.008720       0.001486 
          0.02650                 0.004620                 0.001273 
     0.02050  0.002328       0.001066 
     0.01610  0.001417       0.000922 
     0.01260  0.000840       0.000784 
     0.01000  0.000500       0.000681 
     0.00790     0.000343       0.000590 
        0.00610      0.000204       0.000502 
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