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Abstract

In this paper we provide an error analysis of a subgrid scale eddy
viscosity method using discontinuous polynomial approximations, for
the numerical solution of the incompressible Navier-Stokes equations.
Optimal continuous in time error estimates of the velocity are derived.
The analysis is completed with some error estimates for two fully
discrete schemes, that are first and second order in time respectively.

1 Introduction

The goal of this paper is to formulate and analyze a subgrid eddy viscosity
method for solving the incompressible time-dependent Navier-Stokes equa-
tions. If the separation point between large and small scales is held fixed, the
model can be viewed as a Large Eddy Simulation (LES) model. On the other
hand, if the separation point is decreased as the mesh size tends to zero, the
model can be viewed (and analyzed, as herein) as a numerical regularization
of the Navier-Stokes equations.

For many flows in nature, capturing all the scales in a numerical sim-
ulation, is an impossible task, since the scale separation may span several
orders of magnitude. Global diffusion is the traditional phenomenology to
model the dispersive effects of unresolved scales on resolved scales. The tra-
ditional approach for incorporating the effects of unresolved scales on the
resolved ones for the Navier-Stokes equations, utilizes eddy viscosity models.
These models, first formulated by Boussinessq [6] and developed by Tay-
lor and Prandlt [11], introduce a dissipation mechanism (Smagorinsky [30]).
Standard eddy viscosity models act on all scales of motion; and their ef-
fects can be too diffusive on the coarse scales (Lewandowski [26], Iliescu and
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Layton [20]). The idea of applying the eddy viscosity models only on the
small scales results in the subgrid eddy viscosity method, introduced and
analyzed by Guermond [14], Layton [24] and Kaya [22]. This subgrid eddy
viscosity method can also be thought of as an extension to general domains
and boundary conditions of the spectral vanishing viscosity idea of Maday
and Tadmor [27]. Recently, Hughes and co-workers [17] proposed a Varia-
tional Multiscale Method (VMM) in which the diffusion acts only at the finest
resolved scales. VMM is a promising approach in multiscale turbulence mod-
elling. There are different choices on how to define coarse and small scales
within the VMM framework. One approach is to define fluctuations via bub-
ble functions, and means via L? projection (Guermond [14], Hughes [16]).
Another possibility is to define fluctuations via the finest resolved scales in a
hierarchy of finite element spaces, and means via elliptic or Stokes projection
(Layton [24], Kaya [23], Hughes [19, 18]).

For any numerical method, the error equation arising from the Navier
Stokes equations contains a convection-like term and a reaction (or stretch-
ing) term. Discontinuous Galerkin (DG) methods, first introduced in the
work of Reed and Hill [29] and Lesaint and Raviart [25], are particularly
efficient in controlling convective error terms. On the other hand, (generally
nonlinear) eddy viscosity models are intended to give some control of the
error’s reaction like terms in a sense. Indeed, the exponential sensitivity of
trajectories of the Navier Stokes equations (arising from reaction like term)
is widely believed to be limited to the small scales. It is thus conjectured
that by modelling their action on the large scales, the reaction like terms
introduced exponential sensitivity will be contained.

DG methods have recently become more popular in the science and en-
gineering community. They use piecewise polynomial functions with no con-
tinuity constraint across element interfaces. As a result, variational formu-
lations must include jump terms across interfaces ([32]). The DG methods
offers several advantages, including: (i) Flexibility in the design of the meshes
and in the construction of trial and test spaces. (i) Local conservation of
mass. (7#4) h-p adaptivity. (iv) Higher order local approximations. DG
methods have become widely used for solving computational fluid problems,
especially diffusion and pure convection problems ([3, 28]). The reader
should refer to Cockburn [7] for a historical of DG methods. For the steady-
state Navier-Stokes equations, a totally discontinuous finite element method
is formulated in [12], while in [21], the velocity is approximated by discon-
tinuous polynomials that are pointwise divergence-free, and the pressure by



continuous polynomials.

Combining DG and eddy viscosity technique is clearly advantageous.
While convective effects are accurately modelled by DG, the dispersive effects
of small scales on the large scales are correctly taken into account with the
eddy viscosity model. Besides, the fact that there is no constraint between
the finite elements gives more freedom in choosing the appropriate the basis
functions on the coarse and refined scales such as hierarchical basis functions
for multiscale turbulent modelling. As an appropriate first step, we consider
in this paper the combination of DG methods with a linear eddy viscosity
model. We show that the errors are optimal with respect to the mesh size
and depend on the Reynolds number in a reasonable fashion. The particular
eddy viscosity model considered here was introduced in [24] and complete
numerical analysis for Navier Stokes equation is performed in [22] where it
was combined with the classical finite element method.

The outline of the paper is as follows. The model problem and notation
are presented in Section 2. In Section 3, a variational formulation is intro-
duced. Section 4 contains the continuous in time algorithm, some stability
results and some error estimates. In Section 5, two fully discrete schemes are
formulated and analyzed. Conclusions are given in the last section.

2 Notation and Preliminaries

We consider the stationary Navier-Stokes equations for incompressible flow
as given

u—vAu+u-Vu+Vp=Ff, in Q for 0 <t <T, (2.1)
V-u=0,in Q, for 0 <t <T, (2.2)

u = ug, in €2, for t =0, (2.3)

u=0o0n0%Q, for 0 <t<T, (2.4)

where u is the fluid velocity, p the pressure, f the external force, v > 0 the
kinematic viscosity, and €2 C R? a bounded, simply connected domain with
polygonal boundary 02. We also impose the usual normalization condition
on the pressure, namely that [p=0.

Q

Let K, = {E;,j =1,..., N} denote a nondegenerate triangulation of the
domain 2. Let h denote the maximum diameter of the elements E; in K.
We denote the edges of ICj, by {e1, ea, ..., ep,, €p, +1, .., €nr,, }, Where e, C 2 for



1<k < P,and e, C 09 for P,.1 <k < M. With each edge we associate a
normal unit vector n,. For k > P, the unit vector n,, is taken to be outward
normal to €. Let e; be an edge shared by elements E; and E; with ny
exterior to F;. We define the jump [¢] and average {¢} of a function ¢ by

1
o+ 5015 e

1
er (¢‘Ej)‘ek7 {¢} = §(¢ Ez)
If e belongs to the boundary 02, the jump and average of ¢ coincide with its
trace on e. We shall use standard notation for Sobolev spaces [1]. For s > 0
and r > 1, the classical Sobolev space on a domain £ C R? is

0] = (¢

W*'(E) ={v e L"(E):V|m| < s, 0™ € L"(E)},

where 0™v are the partial derivatives of v of order |m|. The usual norm
in W*"(E) is denoted by |||, and the semi norm by |- |5, . The L?
inner-product is denoted by (:,’-)E and only by (-,-) if E = Q. For the
Hilbert space H*(E) = W*?(E), the norm is denoted by |-||, . By Hg(E)
we shall understand the subspace of H'(E) of functions that vanish on OF.
Throughout the paper, boldface characters denote vector quantities.

For any function ¢ that depends on time ¢ and space x, denote

o(t)(x) = (t,x), Ve [0,T],Va € Q.

If Y denotes a functional space in the space variable with the norm || - ||y
and if ¢ = ¢(t, ), then for s > 0:

[R%

T
Lsmn:[/ I 50, [dllmoryy = max [H(E)]y-
0

0<t<T

Recall that for a vector function ¢, the tensor V¢ is defined as (V@), ; = %
and the tensor product of two tensors T and S is defined as T : § =

Zi,j T;;Si;. We define the following broken norm for positive s:

Np,
2
I = D N2 5,02
j=1

From [31], if £ € L2(0,T; (H})'), there exists a solution (u,p) of (2.1)-(2.4)
such that w € L>®(0,T; H(Q)) N L2(0,T; H}). In addition, we will assume
that w and p satisfy the following regularity properties:
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o (R1) w €C%0,T; H' () N L>(0,T; H*(Q))
e (R2) u, € L*(0,T; H(Q))
e (R3) w e L0, T; W>3(Q)), pe L>0,T;WH/3(Q)).

The reader should refer to [5] for the justification of these regularity as-
sumptions, except for the last one, that is needed here for the discontinuous
Galerkin variational formulation. The following functional spaces are defined:

X = {v e (L*N)?:v|g, € W3(E;), VE; €Ky},
Q={q€ L) : qlp, € WH3(E;), VE; € K},

where LZ(€2) is given by

13(9) = {g € I(9) / 4= 0}.

Q

We associate to (X, Q) the following norms:

lvllx = (IVollg + J(v.v))2, Yoe X, |dllo=llalloe, Va€Q,

where the jump term J is defined as

J(u,v) = ; %’ / ] - [0, (2.5)

In this jump term, |e| denotes the measure of the edge e and o is a constant
parameter that will be specified later.

Recall the following property of norm || - ||x ([12]): for each real number
p € [2,00) there exists a constant C'(p) such that

[0l o) < CO)Ivllx, Vv e X. (2.6)
For any positive integer r, the finite-dimensional subspaces are

XM= {vh e X:v" € (P.(E;))?, VE; € K},
Q"=1{"€Q:q¢"cP_\(E;), VE;cky}.



We assume that for each integer » > 1, there exists an operator R; €
L(H'(Q); X") such that

|1Rn(v) = vllx < CW'|vliprn, Vo€ HH Q) NHQ),  (27)
v — Ry(v) o5, < Chgj1|v|r+1,AEj, Yoec H(Q), 1< <N, (2.8)

where Ag; is a suitable macro element containing £;. Note that for r = 1,2
and 3, the existence of this interpolant follows from [9, 8, 10]. The bounds
(2.7) and (2.8) are proved in [12] and in [13] respectively.

Also, for each integer r > 1, there is an operator r, € L(L2(Q); Q1) such
that for any E; in ICj,

/E (@) —q) =0, Ve, € Po_1(E;), Vg€ L2(Q), (2.9)

J

lg = rn (@), < OB " ldlvs,, Yo € H'(Q) N Lg(Q), m=0,1. (2.10)

Finally, we recall some trace and inverse inequalities, that hold true on each
element E in ICp,, with diameter hg:

[v]loe < Clhiy|[0llog + hil*|Vollog), VeedE, Yoe X,

(2.11)
Vo]l < C(hg"?(|Vollor + hil?|V0|l05), Ve€dE, Yve X, (2.12)
0/l sy < Ch” (0]l + hel|[Volog), VeedE, Yve X, (2.13)
0"l < Chy?|v"|o.p, Vee€ dE, Vo' e X" (2.14)

Vo |0 < Chy?|VV" o5, Ve € dE, Vo' e X, (2.15)

Vo' llop < Ch' [0 o, Yo" € X" (2.16)

(2.17)

0" sy < Chig 20" o, Yo" € X"



3 Variational Formulation

Let us first define the bilinear forms a: X x X - Rand b: X x Q — R:

Ny,
a(v,w) = Z/ Vv : Vw
j=17Ej
Mp,

B (L R R ) 3.1

) ==Y [ aved [ )il 3.2)

where ¢ takes the constant value 1 or —1. Throughout the paper, we will
assume the following hypothesis: if ¢y = 1, the jump parameter ¢ is chosen
to be equal to 1; if ¢¢ = —1, the jump parameter o is bounded below by
o9 > 0 and oy is sufficiently large. Based on this assumption, we can easily
prove the following lemma.

Lemma 3.1. There is a constant x > 0 such that
a(v" v") + J(v" V") > k|V"|%, Vol e X" (3.3)

In addition to these bilinear forms, we consider the following upwind
discretization of the term w - Vz:

c(u,z,0) = Z(/E('u, -Vz) -0+ /(9]; {u) - nEj|(zint — 2 Oi”t)

for all u, z,0 in X and where on each element the inflow boundary is:
OE; ={x € OF; : {u} -ng, <0},

and the superscript int (resp ext) refers to the trace of the function on a
side of E; coming from the interior of F; (resp. coming from the exterior
of E; on that side). Note that the form c is not linear with respect to its



first argument, but linear with respect to its second and third argument.
To avoid any confusion, if necessary, in the analysis, we will explicitly write
c(u, z,0) = cy(u,z,0) when the inflow boundaries OE; are defined with
respect to the velocity {u}. We finally recall the positivity of ¢ proved
in [12].

c(u,z,2) >0, Yu,ze X. (3.5)

With these forms, we consider a variational problem of (2.1)-(2.4): for all
t > 0 find u(t) € X and p(t) € Q satisfying

(ue(t),v) +v(a(u(l),v) + J(u(t), v))
+e(u(t), u(t),v) + b(v,p(t)) = (f(t),v), Yve X, (3.6)
b(u(t),q) =0, Vqe€Q,

We shall now show the equivalence of the strong and weak solutions.

Lemma 3.2. Every strong solution of (2.1)-(2.4) is also a solution of (3.6)-
(3.8). Conversely, if w € L>(0,T; H*(Q)) and p € L*(0,T; H'(Q)) are a
solution of (3.6)-(3.8) then (u,p) satisfies (2.1)-(2.4).

Proof. Fix t > 0. Let (u,p) be the solution of (2.1)-(2.4). Since u(t) €
H{(Q), by the trace theorem [u(t)]-n; = 0 on each edge. Also, V-u(t) = 0,

thus w satisfies (3.7). Multiplying the Navier-Stokes equation (2.1) by v € X
and integrating over € yields

/(ut—yAu—i—u«Vu—l—Vp)'v:/f"v.
Q 0

We shall decompose the integrals in the above equation into element contri-
butions and use Green’s formula for each E;.

Ny, My, Ny
Z/ (ut-v—l—VVu:V'v)—VZ/[Vunk-v]—l—Z/ u-Vu-v
j=17E; k=1 "¢k j=1"Ej
N M,
—Z/ pV~v+Z/[pv~nk]:/f~v.
j=1 E; k=1 "€k Q



The boundary terms are rewritten as:

Z / Vung, / (Vulry- | +Z / Vulny - {v}.

The first part of the lemma is then obtained because the jumps of u, Vun,
and of p are zero almost everywhere.

Conversely, let (u,p) be a solution to (3.6)-(3.8). First, let E belong to
K, and choose v € D(E)?, extended by zero outside E. Then, (u,p) satisfy
in the sense of distributions

u—vAu+u-Vu+Vp=f, V.-u=0, in E. (3.9)

Next consider v € C}(E) such that v = 0 on JF, extended by zero outside
E, Vv -n = 0 on OF except on one side e,. We multiply (3.9) by v and
integrate by parts. We then obtain

/ (o) =

which implies that [u] = 0 almost everywhere on e;. If e belongs to the
boundary 992, this implies that u|., = 0. Thus, u € H(f2). Finally, choose
v € CY(E), with v = 0 on OF except on one side e, extended by zero
outside. Integrating by parts (3.9), we have

/(—VVunE +png)-v= / {—vVung +png} - v.
ek

€k

Since v is arbitrary, this means that the quantity —vVun, + pn, is con-
tinuous across e,. Therefore, the equation (3.9) is satisfied over the entire
domain 2. The initial condition (2.3) is straightforward. O

We recall a discrete inf-sup condition and a property satisfied by Rj, (see
[12]).

Lemma 3.3. There exists a positive constant [y, independent of h such that

b h h
inf  sup % > L. (3.10)
€@ ynexr [V |x [l [l
Furthermore, the operator Ry, satisfies:
b(Rp(v) —v,¢") =0, VY¢"e Q" Vve HyQ). (3.11)



4 Finite Element Scheme

In order to subtract the artificial diffusion introduced by the eddy viscosity
on the coarse grid, we consider a coarsening of the mesh K, namely g,
such that the fine mesh K, is a refinement of Ky (so typically h << H).
Denote by L the space of tensors L?(€)?*? and consider the finite dimensional
subspace of L:

Ly = {S e L: Sij|2 S ]P)r_l(Z), VY € ICH}

Let Py : L — Ly denote the L? orthogonal projection on Ly and let I
denote the identity mapping. Since Py is a projection, we have the following
properties

Il = Pul <1,
I(I = Pu)Voloa < CH |vli10, Yo € HH(Q).

Throughout the paper, the variable C' will denote a generic positive constant,
that will take different values at different places, but will be independent of
h, H,v and vr. Define the following bilinear g : X x X — R:

Np
g(v,w) = Z/ (I — Pg)Vv: (I — Py)Vw, Yv,we X.
j=1 7 Ej

For all t > 0, we seek a discontinuous approximation (u”(t), p(t)) € X" x Q"
such that

(uy(t),v") + v(a(u"(t),v") + J(u"(t), v")) + vrg(u(t),v")
+e(u(t), u(t), v") + b(v", p"(t)) = (f(t),v"), Vo' e X", (4.3)
b(u"(t),¢") =0, Yq¢"eQ",
(w(0),v") = (up, o), Vo' € X". (4.5)

Lemma 4.1. There exists a unique solution to (4.3)-(4.5).

Proof. The equations (4.3) and (4.4) reduce to the ordinary differential sys-

tem
du” A A b
W+VA’U, + Bu" + vpGu"” = F.
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h — gih s

By continuity, a solution exists. To prove uniqueness, we choose v u' in

(4.3) and ¢" = p" in (4.4).
() + v(a(ul, ul) + J(ut, ) + v (1 — Py) V|2 < [(F, u)

Then, applying the coercivity equation (3.3) and the generalized Cauchy-
Schwarz

1d | 2 A h VK, C
Sl + vl < 1 sl ey < S 1B + 12 say

Integrating over [0, ¢] yields:
C

h 2 B2 h 2 2

[ u (t>HL°°(O,T;L2(Q)) +vkfut |7z rx) < [ u (O)Ho + ,/_,,i||f||L2(o,T;L4/3(Q>)'
Since u" is bounded in L>(0,T; L(€2)), it is unique [4]. The existence and
uniqueness of p” is obtained from the inf-sup condition stated above. n

Remark: From a continuum mechanics point of view, it might be advanta-
geous to consider the symmetrized velocity tensor. In this case, the bilinear
form a is replaced by

a(v, w) = Z/E.W L Viw —Z/ {Veving - [w] — e{Vw}ny - [v]),

where V*v = 0.5(Vv + VoT) and the term relating the coarse and refined
mesh is replaced by Z;V:"‘l o (I—Pg)Veu : (I—Py)Vev". Tt is casy to check
that all the results proved in this paper also hold true for the symmetrized

tensor formulation.

5 Semi-discrete A Priori Error Estimate

In this section, priori error estimates for the continuous in time problem,
are derived. The estimates are optimal in the fine mesh size h. The effects
of the coarse scale appear as higher order terms.

Theorem 5.1. Let (u,p) be the solution of (2.1)-(2.4) satisfying R1-R3. In
addition, we assume that u, € L*(0,T; H™"'(Q)),u € L>(0,T; H(Q))
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and p € L*(0,T; H"()). Then, the continuous in time solution wy, satisfies
= w0 rinziy) + K702l = w120 ) + 1T = Pu) V(w = uh) | 21:020)
< CeCT VR (v + v+ ve) P2 mmr @) + v 2Dl 20 @)
+|ut|L2(O,T;H7~+1(Q))) + leﬂ/2HT|'U,|L2(O,T;H7"+I(Q))] + ChT|u0\r+1,Q,
where C' is a positive constant independent of h, H,v and vr.

Proof. We fix t > 0 and for simplicity, we drop the argument in ¢. Defin-
ing e" = u — u" and subtracting (4.3), (4.4), (4.5) from (3.6), (3.7), (3.8)
respectively yields

(el v") + va(e",v") + l/J(eh ") + vpg(e, v")
"t ") = —b(", p —p")
+vrg(u, v"), ‘v’v € Xy, Vt>0, (5.1)
ble",¢") =0, V¢"eQ", Vt>O0, (5.2)
e"(0),v") =0, vo"e X" (5.3)
", Where ¢" = u" — Ry(u) and 7 is the
). S qb in (5.1) and ¢" = r1,(p) — pn

+c(u, u, v") — c(u

Decompose the error e = n —
interpolation error n = u — Ry, (u
n (5.2):
(&1, ¢") +va(@", ¢") + v I (8", ¢") + vrg(e", ¢")
+C’U,h (uh7 uh7 ¢h) - Cu('lL, u, d)h) = ("71:7 ¢h) + Va(n’ ¢h) + V‘](Th ¢h>
+org(n, @") +b(@".p — 14 (p) —vrg(u,@"), VE>0.  (54)

In the analysis below, we will often use Young’s inequality: for any real
numbers z,y, and d > 0:

Lo,
Iride

We now bound the terms on the right hand-side of (5.4). The first three
terms are rewritten as:

lzy| < 52 +

Np,
)+ vl ) 07, 8%) = (31 6+ [ vn e

_yz / (Vi | +ueoz / (V6" [n] + T (1, 8")
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Using Cauchy-Schwarz and Young’s inequalities and the approximation result
(2.7), the first two terms are bounded as follows:

1
S1 < mlloalld"loe < 518" 150 + Ch?|ucly 0,

KV
IV [[§ + Cvhlul? .

Np,
S <20 [Vnlos, IV o, < 5

J=1

To bound the third term, we insert the standard Lagrange interpolant of
degree r, denoted by Ly (u).

Y [ (I @ =Y [ (T Lw))n - @)

0> [ 19aw) — Rafu) e ']

By using the inequalities (2.12) and (2.15), the definition of the jump (2.5),
and the approximation results (2.7), the third term can be bounded by

9%
S3 < EJ(fﬁh; ¢") + Cvh|ul}, g
Then, from the trace inequalities (2.11), (2.15) and the approximation result
(2.7), we have

Mh Mh
o

S1< Cv(y lll@"I5e) () gll{V?7}||§,ek)”2

i el i
KV
< IV + Cvh*lulr, o

The jump term is bounded by the approximation result (2.7) as follows:

RV
S5 S EJ(¢h7 ¢h) + CVJ("’; 77)

RV
<2218, @) + Cuh¥lul, g
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The eddy viscosity term in the right-hand side of (5.4) is bounded from (4.1)
and (2.7),

Np
vrg(n, ¢") <ve Y (I = Pu)Vnllos, (1 = Pu)Ve" ok,
j=1
< —HI(I Pr)V" [+ Corh™ ul}, o.
Because of (2.9), the pressure term is reduced to

My,

b(¢h,p—7”h Z/{p—rh ] ng,

which is bounded by using Cauchy-Schwarz inequality, trace inequality (2.11)
and approximation result (2.10)

b(¢",p —r4(p) < C(llp — ralp ||o+zh2 p =) g,) 2 (", @)

KV h ih

The last term on the right-hand side of (5.4), corresponding to the consistency
error, is bounded using Cauchy-Schwarz inequality and the bound (4.2)

Np
vrg(u, ¢") <vr Y (I = Pu)Vulosl(I = Pu)Ve" oz,

=1

< =FIT = Pu)V" I + CorH ul?, 0.
Thus far, the terms in the right-hand side of (5.4) are bounded by
LB + CH s+ OO v g+ O
+CvrH” ul?y o + "T85 + ST = Pu) V"I,

Consider now the nonlinear terms in (5.4). We first note that since w is
continuous,

Cu(% u, ¢h> = Cuh (’u’v u, ¢h)
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Therefore, adding and subtracting the interpolant Ry (w) yields:

Cuh (uh7 uh7 d)h) — Cyh (’U,, u, ¢h) = Cyh (uh7 uh - Rh(u)u d)h)
+C’U,h (uh - u, Rh(u)a d)h) — Cyh (’U,, n, ¢h)
= Cyh (uh> ¢h7 ¢h) + Cuh(¢ha Rh(“)? ¢h) — Cyh (777 Rh(u)a ¢h) — Cyh (’U,, n, ¢h)
= Cyhr (uh> ¢h7 ¢h) + C’U,h((:bha u, ¢h) - Cuh<¢h7 n, ¢h) — Cyh (777 Rh(“’)a ¢h) — Cyh (ua n, ¢h)
To simplify the writing, we drop the subscript w;, and write c¢(-,-,-) for

cu,, (v, ). From the inequality (3.5), the first term is positive. We then
bound the other terms. We first note, that we can rewrite the form c as

Np
1
(@ w ) =Y [ (@ V)@t et gh) (59
j=17E;
The first term, using the L? bound (2.6), is bounded by

Np,
Z/E (¢" - Vu) - ¢" < ||¢" |10 | VUl 20
j=17F;

KV C
< —|é"% +

=64 ;HUHioo(o,T;WQA/S(Q))”¢’h“3,9-

Let ¢; and ¢y be the piecewise constant vectors such that

1 1 .
= — u, CQ|Ej_— (,bh, 1§j§Nh
1E5| JE,

aile; “1E] s,

We rewrite using (5.2) and (3.11):

b(¢" u-¢") = b(¢" u-¢"—ci-e2) = b(¢", (u—c1) ¢") +0(¢", €1-(¢" ~2)).

Then, expanding the first term
Np
M@ ()¢ == [(u—c) @'V ¢!
j=1"F
My,
‘f‘Z/ {('U, — Cl) . ¢h}[¢h] TNy = Sﬁ + 57.
k=1"¢%k
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The first term is bounded, for s > 2, using the inverse inequality (2.16) and
the bound (2.6)

Sg < C’Z||u—cl|

7=1

el @]

j)||V¢hHL2(Ej)

LSTZ

< C\|¢h||o,ﬂ\u|wl’5(ﬂ)

<V B + Sl o 62

The bound for the second term is more technical. First, passing to the
reference element F, and using the trace inequality (2.14), we obtain

My,
_ R R ~h
Sr <O exllEIT)@" ozl (@ — é1) - |

k=1

My,

_ .. 4k NN

<O el BT o ([(@ — 1) - @ [lo g + IV((@— &) - ¢
k=1

h

)

O,E)'

The L? term is bounded as, for s > 2,

Y L
(@ —¢1)- ¢ llop < llw—ellz H¢ |LS 2(B)

S C|U|W115(E)

Note for the gradient term, we write
Y Y .
V(@ —¢1)- @ )llop) = (V- o +(w—¢) Vo).
Let us first bound

A ~h AL
IVa-@ o5 < IVl Lz ||¢> |
< Ch|E|"Y*||Vu|

LSTQ
(s—2)/2s

e R A HL%(E)

< C|Vullml¢"l, 2

s— 2 )

16



Now the other term is

. . ~ ~h . . ~ ~h
[(@—e1) Vo [y <t — el eIV oz
< Chl|u| =5V " |05

Combining all the bounds above and using (2.6), we have

Np,
Sy < OZ 16" llo.e, (el 19"

LSTQ

IVl Lo, )||¢> 2 gy h|u|L°°(Ej)||V¢h||L2<Ej))

< §H¢ % + H¢h||3-
Now,
Np,
(@7 e1- (9 _02)):_;/1901 (9" — )V - ¢"
Mp,
23 [ e (08— elo) me =5+ S0
k=1 "¢k

The first term is bounded by (2.16)
Np
Se < CY leillle" = callos,h M@ lo.x,
j=1

Np,
<Y eV oz 19" 0.,

J=1

C
< 64H¢ 15 + —llullZ o i< 16" 5.0

Similarly, the second term is bounded

Np
Sy < CZ el V" lo.z | Pallo.s,
< _||¢ ||X ||'U/HL>o ([0,T] %) ||¢ ||OQ

17



Thus,
5Y29% C
c(@" u, d") < —=[¢" % + 18" 0.
64 v
Let us now bound ¢(¢",n, ™).

Ny,

@' moh = ([

(¢h . Vn) . ¢h _'_/ ) ’{‘bh} . nEj|(,nint o next) . ¢h,int)
j=1 Y Ej OE;
1
_§b(¢ha n- ¢h)

The first term is easily bounded:
Np, Np
Z/ (@"-Vn) - " <> 116" 0,5, 19" 41 | V7l 135
j=17E; j=1

KV e, O h||2
< E”qb HX + ;HuHLoo(o,T;W?A/S(Q))||¢ HO,Q-

The second term is bounded using inequalities (2.13), (2.16) and (2.6) and

the estimate (2.8)

Ny, Np,

S [ 1ol =) 6 < €S 18 o I s 16 o,
j=1 " 9F; j=1

Np,

<Y PRl alle" g

j=1
KV
< 10" 5 + CllullZee oz, 0 1" [0

The last term in c¢(¢",n,¢") is bounded like the terms Sg, S7,Ss and Sy
of ¢(¢",u,¢"). The remaining nonlinear terms are bounded in a similar
fashion.

wr(n R, @) =3 [ (m- VRiw) - 0"
DY R I RS D o) LS LATR

1
55 [ e 8 = St S
k=1 "¢k

18



Using the bound (2.6) and the approximation result (2.7), we have

S0 < |mll 2@ | VRL (W) | sy | 6" || L

< 64H¢ ||X+CHU’||L°° ([0,T]x) W |l g

The inequalities (2.11), (2.14), (2.6) and the approximation result (2.7) yield

Np
S < CZ 00,08, |l Lo rx) | " [l0.08,

i=1

Np,
—1/2 —1/2
<0y th/ ([llo,z + th||V77||o,Ej)th/ 16" (lo. 5,

j=1
< Cll" 5.0 + Cllulioe o mycey b Tl 41 -

Similarly, we have

Np,
S12 < Null ooy 16" 0.2, 11V - 1o,z

j=1
< Cllo"15a + Cllulleorxayh™ [uli o

Note that Si3 is bounded exactly like S;;. The other nonlinear term is
bounded using (2.7) and (2.14)

cur w4 Z/an +Z/ ) o o™ )

Nh
< CY |l p o< I Vallos [1€" oz, +CZHU\ILoo([oTmenHan 16" lo,0m,
Jj=1 j=1

< Cll"l5.0 + Cllullie oz P 1uli 41 0
Combining all bounds above and using (3.3), we obtain
RVA hpe | VT h)|2 1 h)|2
H¢ 15+ S 19" 15 + 17 = Pu)Ve"lig < C(= + Dll" 5

1 h2
+Ch* (v + = +w>\u\r+m+0 p[2g + Ch? w2, g + CorH? [ul?, | o

2dt
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Integrating over 0 and ¢, noting that ||¢"(0)|o is of the order A" and using
Gronwall’s lemma, yields:

1" ONF + w9 L2 0.0x) + 12l (I = Pu) V" 220 1220
l/71 r _ _
< CeUHIR (v ve)[ul Loz o)) + VP20, 00 9)
+|Ut|%2(o,T;Hr+1(Q)) + VTH2T|U|%2(O,T;HT+1(Q))] + Ch" g7y -
where the constant C' is independent of v, v, h, H but depends on [|w|| o 7w24/3(0))-

The theorem is obtained using the approximation results (2.7), (2.8) and the
following inequality:

lu(t) = u" (05 + svllu(t) — u" ()| Z202.x) + el (I = Pr)V(u(t) — v () |Z202:02(0)
< [lo" )5 + rvl¢" 1 Z20x) + vrll(T = Prr) V" |20 721200
Hin®lo + svlinllZaoz.x) + vel (I = Pr)Vnllizorie@)-

]

Remark 5.1. One of the most important property of the Theorem 5.1 is that
the new method improves its robustness with respect to the Reynolds number.
In most cases, error estimations of Navier Stokes equations gives a Gronwall
constant that depends on the Reynolds number as 1/v3. In contrast, this
approach leads to a better error estimate with a Gronwall constant depending
on 1/v.

Optimal convergence rates are obtained for Theorem 5.1 if v and H are
appropriately chosen.

Corollary 5.1. Assume that vp = h® and H = hY/*. If the relation § >
2r(a — 1)/« is satisfied, then the estimate becomes

Hu — uhHLOO(O,T;L2(Q)) + Hu — uhHLQ(O,T;X) = O(hr)

For example, one may choose for a linear approximation the pair (v, H) =
(h, h'/?), for quadratic approximation (vp, H) = (h, h**) or (vp, H) = (h?, h'/?),
and for cubic approximation (vp, H) = (h, k%) or (vp, H) = (h?, h?/?).
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Theorem 5.2. Under the assumptions of Theorem 5.1, and if a(.,.) is sym-
metric (eg = —1), the following estimate holds true

CcTy—1 [hr|U0|r+17Q

+h" w2051 @)) + R W L2001 0)) + CvrH Wl 20 7 mm+1.(0)))-

e — uf || 20,0200y + V2w — w|| e o,rix) < Ce

where C' and is a positive constant independent of h, H,v and vy. If a(.,.)
is nonsymmetric (e = 1), the estimate is suboptimal, of order h™1.

Proof. We introduce the modified Stokes problem: for any ¢t > 0, find
(u5(t),p%(t)) € X" x Q" such that
v(a(u®(t),v") + J(u’(t),v")) + vrg(u’(t), v") + b(v", p°(1))

= v(a(u(t), v") + J(u(t), ")) + vrg(u(t), v") + b(v", p (t)), Vo' e X",
(5.6)

b(u’(t),q") =0, Vq¢"e Q" (5.7)

For any ¢t > 0, there exists a unique solution to (5.6), (5.7). Furthermore, it
is easy to show that the solution satisfies the error estimate:

K22 () — uS ()| x + v (1 — Pr)V(u —u®) oo
<h@W+v '+ VT)1/2|u]T+1,Q + V71/2|p|r,9 + |ue|ri1.0) + V}/2H’"\u|r+17g, Vvt > 0.

h

Define n = u — u® and & = u" — u°, and choose the test function v" = &,.

The resulting error equation is:

€+ vale. &) + 52 TE.€) + 22 0(6.8)
= ("71:7 St) - VTg(uv St) + C(u’ u, 51&) - C(uha u 7675)‘ (58>

The first term in the right-hand side of (5.8) is easily bounded.

(m,Et) ||£tl|09+0h2r|ut|'r+lﬂ

— 64

The consistency error term is bounded using the inverse inequality (2.16)
and the properties (4.1) and (4.2).

VTg(u &) < CvrH"|ul, 110 VE o0

= 64||€t||OQ+C 7H? h~ 2|u|r+19
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Let us rewrite the nonlinear terms

C(uv u, Et) - C(uh7 uhv €t> = C(’U, - ’U’Sa uha Et) - C(€7 uh> 51:) + C(’U,, u - ’u’hv st)
= C(Ea Ea ét) - C(ga n, Et) + C(€> u, Et) - 0(7% uh> €t) + C(ua €7 €t) - C(ua n, ét)

In what follows, we assume that € belongs to L*((0,7") x Q). Indeed, we
have the inverse inequality

€] o 0.1)x) < ClIE| Lo (oy.11 () < CR* < 0.

We now consider each of the nonlinear terms. Expanding ¢(&, &, ;) results

c(§,€,&) = Z/ £-Vg- €t+2/ {&) - n mt ezt). int
*%ZW'E)E'@—%Z/Hm{&-st}
j=1 k—1 Y €k

:Sl4+"'+517-
The first term is bounded as
Sy < H€||L°o ) [IVE] o, Q||5t||0,9

From the definition of jump term, Si5 is bounded

Np
Sis < CZ €l oo @) [I€™ — € l0,0m, 1€ [lo.0m;

< CZ 1€ HOek 1/2 2)1&llo.c,

The bound for S; and S;7 is the same as Sy4.

Np,
Sie < CZ 1€l @) I VEo.2ll€ o0
j 1
< ||€tHOQ + CllE|1%-
64
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My,

Sir < C Y €l 11€]llo.ce 1€llo

k= 1

We expand the term c(&,n, &,)

N N . .
c<e,n,st>=;/Ejs-w-st+;/%|{e}-nEj|<n ) g

%;(v-s)n-et—%;/%m-nk{n-st}

= S8+ + Sa.
By using approximation results and L? bounds, Sis and Si9 are bounded as
Sis < €l [IVallonllé:llos
< SR+ Rl

h
Sig < CZ ||€||L°°(Q)||77mt - WextHo,an ||€fsm||0,an

= 64||€t”0 ot Chzr’u‘rﬂ Q

We use the inverse inequality, and L” bounds to bound Syg and S5

Np,

So0 < CY Il V€l 2@ ll€il 2w
j=1
Ch”1/2|ulr+mHV€HL2 W€ o

< =&l + ClielR

My,
8202 03 18l oo
=1
1 2r
_4||€t||0 ot Ch ’,u’|7'+1 Q
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The following nonlinear term c¢(&,u, &,) can be expanded as

Np, 1 Np
(eug)=Y [ &Vug+;>(V-gug
j=1 7 Ej j=1

1
_52/[«S]'nk{u'ﬁt}=522+‘“+524-
k=1 "¢k

Similarly, Sso and Ss3 are bounded by using LP bounds, jump term and
approximation results.

Saa < [[&llLa I Vull ooy ll€ll 2@
1
< 6_4||€tH(2),Q + Clulf e o rarzass gy €1 %

Np
Sos < CY Nl (o) e [ VEoll€ o0

j=1
1
< l€lRq + ClEl
My, o
S04 < O3 sl N Eloe &, (7o) 2
k=1

1
< & la+ClElR

Again, we expand c(n, u", &,)

Nh Nh
C(n,uh,ét)ZZ/ n-Vuh~£t+Z/ {n} - mp, |(w —whet) . g
j=1 7 E; j=170E;

1 1
32 (Vemut g =53 [l mfut €
j=1 k=1"¢k
= So5 + -+ - + Sas.
By using LP bounds and approximation results the terms are bounded as
Sas < [[nllzsio) [V [ oo ll€: 22

1 r
< aHEtHg,g +Ch? ’u|72~+1,97
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Np,
Sa6 < C Y w0y I{m}Hlo.om, 1€ 0.0,

Jj=1

< 64||€t||o ot ChQT’U|r+1 Q>

Np,
Sy < C Y [tz oryx | Vallogll€llog

Jj=1

= 64”€t||0 ot Oh%’“|r+1 Q

My,
Sas < C Y [t oo [ llo.c 1€ llo e

k 1

Use L? bounds to bound c(u, €, €,)
Nh

c(u.€.€) = Z/uvg gt+2/ ) - (7 £7) - €

= So9 + 530-

Sag < ||U||L°° (0,1 x) | VE&llo.all€ o

< €0+ ClENR

Np
Ss0 < O Nlull oy €™ = £ 0,08, 1€ 0,01,

j=1

< CZ” ||0€k||£t||oek< )1/2 1/2

< €M+ ClEN
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Lastly, if we expand c(u,n, §,), we get

Np, Np,
cwn €)= [w V&> [ lu)n - g
T VE o1 JoBy
= S31 + S32.

These terms are bounded as following;:

S31 < HUHLOO 0.1 [ V1lloall&:lloe

< 64 ||€t||o ot C']”L2T|'U'|r+1 Q>

Np,
S3p < CZ [l Lo o,y < [0 — 10,08, 1€ 0,08,
j=1

= 64”€t||0 ot thr’u|r+1 Q:

Collecting all the bounds with (5.8) gives:

1€.012 0 +ua<£ e+ 2 e+ e e

2% 2 dt
H&Hog + €[5 + Ch* |ul?y o
+Ch2r’ut‘r+l Q + CYZ/T];[%h 2’“"7"-%1 Q- (59>
In the case where the bilinear form «a is symmetric (g = —1), the inequality
becomes
HftHOQ +35 7 dtHSHX 2 dt 9(&,€) < CllEl%
+Ch27"|u| ti0 + OR wilf o + CvzH B2 [ul? o (5.10)

Integrating between 0 and ¢, and using Gronwall’s lemma yields:

vl T
Hft”%Q(O,T;LQ(Q)) + V”E”%W(O,T;X) + Vr max 9(&,€) < Ce“™ P uol2y, g

+Ch2r|u|i2(o,T;m+l(m) + Ch2r|ut|i2(0,T;H”+1(Q)) + +OV%H2rh_2|u|i2(0,T;Hr+1(Q))]'
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In the case where the bilinear form a is non-symmetric(eg = 1), we rewrite

(5.9) as

1d L ol
ol6.6) =5 5 IVERE - [ (V&b l6)+ Y [ (Vedne- (g
k=1 " ¢k k=1" ¢k
The bound is then suboptimal: O(h™™1). O

We now derive an error estimate for the pressure.
Theorem 5.3. Assume that a(.,.) is symmetric (¢¢ = —1) and v < 1.
In addition, we assume that w € L*(0,T; HY), u, € L*(0,T; H') and
p € L?(0,T; H"). Then, the solution p" satisfies the following error estimate
1" = 72 ()|l 20,720y < Ce“T [V [uglrs10
FUh" || 20,57+ ) + VR || 2011741 () + CVVTHTh_l|U’L2(07T;HT+I(Q))]
+CVPh" [wolrs1.0 + CVRT |ul 20 71 () + CVRT Dl 20,70 ()
+CvrH" || 2 0,1,17+1 ()
+CeTVT (v 407 + vr) 2\l 2o @) + v Pl 2o, ()
| 20,7871 (0))) + le“/QHT|U|L2(0,T;HT+1(Q))] + Ch"|uglr41,0.

where C' is independent of h, H,v and vr. Again, if ¢ = 1, the estimate is
suboptimal.

Proof. The error equation can be written for all v" in X"
_b(vh7ph - Th(p)) = (’U,? - Uy, vh) + Va’(uh —u, vh) + V‘](uh - u, vh>
+rrg(u” —u,v") + c(u” u" v") = c(u, u, ") +vrg(u,0") = b(v", p —ri(p)).

From the inf-sup condition (3.10), there is v" € X" such that

1
o =) = =18 = @I, 9" < 518" = 7)o
Thus, we have
Np,
I8 = @l = (! = w0t 0y [ V(- ) Vo
j=17E;
Mh Mh
—VZ/ {(V(u" —u)}ny - "] + ve Z/ {(Vo"lny - [u" —u] + vJ(u" — u,v")
k=1 "¢k k=1 "¢k
—I—VTg('u,h —u, 'vh) + c(uh, u”, 'vh) — c(u, u, 'vh) + vrg(u, 'vh) — b('vh,p —7rr(p))
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All the terms above can be handled as in Theorem 5.1. The resulting in-
equality is

Ip" — (@) < CVPuy — wilg o + CVPlu" — ulk + CvPh™ |ull,, o + CvP R [plg,
+C"/TI‘[2T|'U'| 410 T CVTQ(U —u, u — u) + CHU - UHOQ

We now integrate between 0 and 7', and use Theorem 5.1 and Theorem 5.2
to conclude. O

6 Fully discrete scheme

In this section, we formulate two fully discrete finite element schemes for
the discontinuous eddy viscosity method. Let At denote the time step, let
M = T/At and let 0 =ty < t; < --+ < tpy = T be a subdivision of the
interval (0,7). We denote the function ¢ evaluated at the time t,, by ¢,
and the average of ¢ at two successive time levels by ¢, 1 = (gbm + Gmt1)-

Scheme 1: Given ul, find (u"),,>1 in X" and (pl!)m>1 in Q" such that

1
E(UZ@H —ul, ")+ V(a(ugz+17 ")+ J(ul WUpy i1,V v")) + c(ul, u?nJrl? v")
"H/Tg( m—i-l’ h) + b(vh7p?n+1) = (fm+1>vh)7 vvh € Xh7 (6'1>

b(ul,y.q") =0, Vq"eQ" (6.2)

Scheme 2: Given @y, @, pl, find (@”)mss in X and (Pl in Q" such
that

Loy

A_t(um+1 —ﬂ,h’vh)—ky(a(ﬂ,:%’_l’ )+J( m+1’ ))+C( m+1,’lliln+%,’l)h)
—H/Tg( ) + b(v ,pfnJr%) = (fm+1,vh> Vol e Xh’ (6.3)
b(ap,1,q") =0, V" e Q" (6.4)

For both schemes, the initial velocity is defined to be the L? projection of
ug. Scheme 1 is based on a backward Euler discretization. Scheme 2 is based
on a Crank-Nicolson discretization, and requires the velocity and pressure
at the first step. The approximations @/ and " can be obtained by a first
order scheme (see [2]). We will show that Scheme 1 is first order in time, and
Scheme 2 second order in time. First, we prove the stability of the schemes.
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Lemma 6.1. The solution (ul)),, of (6.1),(6.2) remains bounded in the fol-
lowing sense

||fu,,’;L||aQ <K, m=0,...,M,

M-1 K
A bl < 5
m=0
M-1 K
ALY U = Pu) Va5 < 2

m=0

where K = ||u0||09 £ 122 o 9%
The solution (@), of (6.3),(6.4) remains bounded in the following sense

HaT};’LHS,QSK—7 m:07"'7M7

M-1 f(
AEY ik < 3
m=0

M-1 K
AT (T = P) Vo lfie < 5,
m=0

where K = llwoll5.o + 2HfHL2(OT]><Q)

Proof. Choose v" = w!, | in (6.1) and ¢" = pl', | in (6.2). From the positiv-
ity of ¢ and (3.3), we have

1
gz 6o = llun8.0) + mvllwn %

+ Sl

1
el = P) Va2 < 517

Multiply by 2At and sum over m:

m—1 m—1
lwpli5.0 = llugllGg + 250A8 Y lluflk + 200 At (1 = Pu) Vel 5
=0 =0
m—1 m—1
< At Z 1f; + At Z ||U?+1||(2m
§=0 §=0
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The result is obtained by using a discrete version of Gronwall’s lemma [15]
and the fact that ||[u}]lo0 < [|wolloq-
For Scheme 2, the proof is similar. Choose v" = 4, .1 in (6.3) and

m+3
= ﬁfn% in (6.4).

1

g7 Ul lloe — 1@ 160) + g ey e
- 1 1, - -
+urll(1 = Py) Vi, 1 5 < §||fm+%||3,g + 5(||Ufn+1||3,9 + [ an130):
The rest of the proof follows as above. O

Theorem 6.1. Under the assumptions of Theorem 5.1 and if u; and wy
belong to L>°(0,T; L*(RY)), there is a constant C' independent of h, H,v and
vr such that

M-1
meax oy =) oo + (VEAL Y atmer — ) 3)"
m=0
M
+wrAtY (T = Pu)(Vmi — wh )5 <
m=0

Ce“T 0 (v + v+ vr) V2l o ey + vr Y w2 o)

+V_1/2At(||Ut||L<>o(o,T;L2(Q)) + ||Utt||Loo(o,T;L2(Q))) + by |p|L2(O,T;HT(Q)]

t+ Ch" |wolr41,0-

Proof. As in the continuous case, we set e,, = u,, — uﬁl. We subtract to
(6.1) and (6.2) the equations (4.3) and (4.4) evaluated at time ¢t = ¢,,,.

1
(ut(tm-i-l)’ vh) - K(ufn—f—l - ’u’?nv vh) + V[a(em+17 vh) + J(em+17 vh)]

t
+vrg(emqi, 'Uh) + c(Wmi1s Wit vh) - C(Uf%a U’Zw—kl? vh)
+b(vh7pm+l - pql?n—i—l) = VTg(um-‘rb vh)v v,vh € th (65)
b(ems1,4") =0, Vq" € Q".
Define ¢,, = u” — (Rp(w))m, M, = Um — (Rp(w))m. Choose v" = ¢, in
(6.5) and ¢" = pZ,, in (6.6). Adding and subtracting the interpolant and
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using (3.3) yields the following error equation:

1
oz Uemrilloe = dnlon) + el éuilx +vrll (T = Pu)Vels

+C(UZ¢7 UZ@JFU ¢m+1> - C(um+17 UWUim41, ¢m+1) + b(d)m—i-l?p:vl%—i-l - pm+1>

ou 1 1
< IIE(th) = xg Ut = Un) ol @miillog + L Mmi1 = llogll@miillog

a1 Grit) + T g1, B )| + vl (1 = Pa) Va1 lloll (1 = Pra) Ve, iallo
+url|(I = Pu)Vmia ol (I = Pr)V i llo-

We rewrite the nonlinear terms:

h h
Cu,’zn (umv Uity ¢m+l) 7 (um+1> Um+1, ¢m+1)
h h
= C’U;ﬁ‘n (um7 Uyt 1s ¢m+1) - C’U/fn (’U,m+1, Umt1, d)m—‘rl)'

We now drop the subscript u”,.

Cuh, (’u’frw uinlwla d)m-i-l) — Cuh, (Wit 1; W15 ¢m+1> =

C(U?m D1 ¢m+1) + C('“’fna '“'7In+17 ¢m+1) — (U1 — U, W1, ¢m+1) — (WU, Wy 1, ¢m+1)

= C(’“’Zm Pt ¢m—|—l) + C( mo u{nJrl? ¢m+1> + c(uﬁl, u£1+17 ¢m+l)

_C(um+1 — Um, U+, ¢m+1) - C(urm Um+1, ¢m+1)

= C(uﬁw Drni1s Pri1) + c(Pp, u£1+1> GBrni1) — (M u£1+17 Prngr) (W, uil—&-l’ BDrnt1)
—C(Wmt1 — Wi, Uint1, Pryr) — (Wi, U1, Py r)

= c(u, Prnsts Prni1) = AP Mg 15 Pr1) + A Prys U1 Byr) — (M U7In+1> Prnt1)
_C(umr MNint1s ¢m+1) - C(um—H = Uy Ui+, ¢m+1)-

Thus, we rewrite the error equation as

1
75 Bmiallon = 1omllee) + veldmllx +vrl(I = Pu) Ve,

2At
ey, Brnirs Brnir) < 1B Mn1> B
He(Drs Wint 1, B )| + 1€ 1, D)
(W Mgt P

+|C(um+1 - U, Um+1, ¢m+1)| + ‘b<¢m+17p£ln+1 - perl)‘

ou 1 1
+H§(tm+1) - E(uerl — U)ol @miilloo + A—tHan — N llo.ell@miilloo

+vla(Mps1s @rgr) + M1 Pl + v2ll(L = Pu) Vi, lloll(I — Pu) V.o
Fuvr[|(I = Pa)Vtmallol|(I = Pa)V,,illo < |Tol + - - - + [Thol-
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We want to bound the terms Ty, T5....T79. We can rewrite the first term as
Nh Nh

Ty = Z/E (D= VTi1) * Py + Z /(9E { &} "Ej|("7171rlbt+1 - "7(;;;3-1) : ¢Zﬁil
j=1v"i j=1 i

1 1
+5 Z/ (V ’ ¢m)nm+l : ¢m+1 5 Z/ [d)m] ' nk{nm-‘rl : ¢m+1}
2 j=1 7 Ej 2 k=1 "¢k
=To1 + -+ Toa.

By using Cauchy-Schwarz, Young’s inequality and L? bound (2.6), we have:

Np
Tor <Y N bmiillzapll bl z2) | Vi las,)

j=1

< Ollppmir vl @mll 2 @) Vi1l 21
RV
< —

< Spnllz + O bl all e o sy

The bound for Tp, is obtained by using the trace inequalities for L? (2.14),
(2.13), and the approximation results (2.7), (2.8).

Np
Too < CY N bllz@e) 1Mmallzso8;) | i ls o8,

J=1

Np
—1/2 —3/2
< OZth/ ||¢m||0,E]-th/ Ummgallo,e; + 1 (Vi llo,g;) (| @ llo,g; + Ry [V @t o)

Jj=1
Np

<Y hp i ol (Do, + he |V @i lo.2) | drmlo.

=1

KV _
< ﬂ”ﬁbmﬂ”g( +Cv 1||“’”%°°(0,T;HT+1(Q))||¢m||3,9‘

Similarly, the inverse inequalities (2.16), (2.17), the bound (2.6) and the
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approximation result (2.8) yields

Np,

TO3 S CZ hEJ;||¢m||L2(Ej)||nm+1||L4(Ej)||¢m+1||L4(Ej)

j=1
< Ch M@l 2@ 1M |2 @) | @ | 22
< Ch™2|b,lloll P Lx 1711 o0

< Ch 2| b llogll Gmallx [wimsalrir0

KV _
< SrllPmlli + Cv el oz 0 | Pl

The bound for the term Ty, is the same as for Tps.

My,
Tos < CY N bullzzten Mmoo e 1Bt 23 (er)
k=1

KV _
< Sl Pmnlx + Cv Tt wlie o) | Bmllo.o

The term T} is bounded exactly like the term (5.5) in the proof of Theo-
rem 5.1. Here, the constant vectors are

1 1
Cc = —/ Um+1, C2 = —/ ¢m+1-
1Ej| JE, |Ej| JE,

Then, T} can be rewritten as:

Np
ﬂzzlﬁwV%m¢m1

1 1

_§b(¢m7 (Wny1 —€1) - bpy1) — §b(¢m7 ¢ (@1 — €2))

RV _
< Splemnlix + Cv bl

Expanding 75, we obtain:

Nh Nh
I,i I, ;
L= [ 0 Vuh) a + Y [l e (al -l -t
j=1 Ej j=1 an

1o 1 o
+5 Z/ (v : nm)u’{n—i—l ' ¢m+1 -5 Z/ [nm] ' nk{u’r[n—l—l : ¢m+1}
2 j=1 7 Ej 2 k=1 "¢k
=To + -+ Ty
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The bound for Ty is obtained using (2.6) and (2.8):

Tor < Ml Vel il 2@l @msal o)

= 24||¢m+1HX+CV 1thTH’u'HLoo(oTW24/3 )|um|r+1§2

Similarly for the term Th9, the inequalities (2.7) and (2.14) give

Np
Ton < CY mllz2om 1, L@ |1 22008,

Jj=1
Np,

< CY W g1, i Lo ()| @41 0.2,

J=1

KUV _
< ﬂ”¢m+l||§( +Cv thTHUH%w([o,T]xQ)|um|z+1,9-

The estimate of Ts3 is obtained by using a bound on interpolant, Cauchy-
Schwarz inequality, the approximation result (2.7), Young’s inequality and
LP bound (2.6).

Np
Tos < CY NV - mllos i =@ | @i llos,

=1
= 24”¢m+1HX +Cv™ lheruHLoo ([0,7]x) ‘um|r+1ﬂ

The term T34 is bounded exactly as for T5,. Because of the regularity of wu,
the approximation result (2.7), we can bound T3.

/ U - vnerl m+1 + Z /E_ ‘{um} ' nE] ’(nigt—‘rl nf:-ti-l) ’ (biqnlz—l
J

< C||um||L°°(Q)hr|um+l|r+1,Q||¢

KUV 19
< ﬂ”qsm—ﬂ”g( +Cvth? H’U’H%OO([O,T]XQ)|’u’m|3+1,9'
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The term 7} is bounded using the estimate (2.6).

Np,
Ty = Z/ (Umt1 = W) - VUinir) - P
i=1"%s

tm+l Nh
:/ > / (we - VUnir) « @ pqdt
tm j=1 Ej

< Atflwgl| Lot tmsrsz2 @) | VUmar | 22 | @1 |22
% _
< ﬂu(ﬁm—l—lH.ZX + Cv 1At2HutH%W(tm,thrl;LQ(Q))HuHiOO(O,T;WQAB(Q))'

By property of the interpolant (3.11) and properties of 7,(p) (2.9), (2.10),
we now bound T5.

T = b(¢m+l7p}rln+l — (ra(P))mt1) — b(¢m+1vpm+1 = (rn(P))m+1)

= b Pt = (D) = Y [ A = 4B He ]

My,

<D Mmalllocilerl > 2 lpmer o,
k=1

KV _
< ﬂ“¢m+l”§( +Cv 1h2r|pm+1‘72~,9-
From a Taylor expansion, we have

Ts < CAt|| |l x llwe(t7) o0

KV _
< _||¢m+1||§( +Cv lA752||UTm||%<><>(0,T;L2(Q))-

24

To bound 77 we assume that h < At and we use the approximation result
(2.8) and (2.6).
kv 2 R 2 2
17 < ﬁwmﬂHx +Cv A—tg(|um+1’r+1,ﬂ + [ lr10)
<

S o [ iall% + Cy_thT(‘uTn-i-l‘?%—H,Q + |um|72~+1,9)-
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We expand the term T:

Nh Mh
Tg = VZ/E: Vnm+1 : vgbm—&—l - VZ/ {vnm-i-lnk} ' [d)m-i-l]
j=1"Y"%j k=1 "¢k

Mh Mh
o
+€0VZ/ {V¢m+1nk} ) [nm+1] + VZ m/ [nm+1] ) [¢m+1]
k=1 "€k k=1 Ck
=Tg1 + -+ Ty

Clearly, using Cauchy-Schwarz inequality and the approximation result (2.7),

we have e

T < —

DY

Using the definition of the jump term, the inequality (2.15), and the estimate
(2.7), we obtain

b1 [I% + CvR [t 11 0

My,
o _
T82 S VZ |H¢m+1] O,ek(m)l/2 1/2||V77m+1H0,ek
k=1

< Cvd (@, ¢m+1)1/2hr‘um+1 lr41,0

RV
< SNl + o i o

Using the trace inequalities (2.11), (2.15) and the approximation results (2.7),
(2.8), we have

Np,
Tas <vC Y 1 Mmiilloss, | Vdiilloss,

j=1

Np
<vCY W, h 2V Bllos,

J=1

KU
< z|‘¢m+1”§( + CVh2T’um+1’z+l,Q'

Using the approximation result (2.7), we have

Tss < VJ(¢m+1a ¢m+1)1/2=]("7m+1a "7m+1)1/2

RV
< 2 dnlli + CvR e
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From the bound (2.7) and the property (4.1), we bound Ty:
Ty < vl = Pu)Viilloll(I = Pr)Vay,iallo
v T
< ZT\H(I = Pu)Véallo + Corh™ [t [y .

Using (4.2), we easily have
v T
Tio < (I = Pu)Veypally + Cor B [t 711 0.

Combining all the bounds of the terms Ty, ..., Tio yields:

1 VK vr
181l = 10l0) + 2 Nbmiallz + 2T = Pr) V6,413

< Cv [ @ullta + CR* v (Jumlir o + Pmiiliir0)
+CR* (v + v+ vp) [ f0 + CvrHY |umia |2 g
+CV71At2<HutH%W(O,T;LQ(Q)) + HuttH%OO(O,T;LQ(Q))>'

Multiply by 2At, sum over m, we obtain:

1pmsrllia = lgollsn + vrat > lldinlx +vrAtY NI = Pu)Vell

i=0 i=0

< CeTRT (v v + vr)[wliam ey + VP H [l L0510

AT AR (T 0,7, 200)) + 1t T 0 1522000)) + 12V P12 0,700 )
The final result is obtained by noting that ||¢|/o.q is of order A" and by using
approximation results and a triangle inequality. ]
Theorem 6.2. Assume thatuy, € L>(0,T; (HY(Q))?), py € L>(0,T; H'(Q)),
wy € L°(0,T; (H?*(2))?) and f,, € L>=(0,T;(L*(Q))?). Under the assump-
tions of Theorem 5.1, there is a constant C independent of h, H,v and vr
such that

M-1
e, [ = o+ (030 3 s = )
M-1
~ v=lrpr —
At Y = Pa) Vs = @nall})” < O 0w plleoirma)
m=0

+0" (v + v+ )2l 2o ) + APV ]| oo 0 7200
FAPVTY2 (|| w || Lo 0.1 () F Dot Lo 0.7 mr @) + el e o.mz2()) + | Feell oo o.mz2()))

+V%/2HT |u|L2(O,T;H'r+1(Q))] + Chr|'U,0 |T‘+1,Q‘
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Proof. The proof is derived in a similar fashion as for the backward Euler
scheme. Using the same notation, the error equation is obtained by sub-
tracting the equation (3.6) evaluated at the time ¢ = ¢,,,4.1/2 to the equation
(6.3) and adding and subtracting the interpolant (Rj(w))m1/2. After some
manipulation, we obtain

1
g7 1 Pmrillon = 0nlon) + vallén sl +vrl(I = Pu) Ve, 11l

~h h
+C(’U,m+%, ¢m+%’ d)m—i—%) S |C(¢)m+%7 Tlm—i—%’ ¢m+%)| + |C(¢m+%7 um—i—%? ¢m+%)|
+|C(nm+%a ufn+%7 ¢m+%)| + |C(’u’m+%7 nm—&—%v ¢m+%>|

+|C(um+% - ’u’<tm+%>’ um—&—%v m+%)| + |C(’u’<tm+%>’ um—&—% - u@m—l—%)a ¢m+%)|
- 1
H0( sy Pt = Pt )+ [eltns1) = 15 (i = )o@l @i 1o

1
i = TalloalBms gllon + 1 F iy = Fltme) ol By o

+V’a<u<tm+%) - U’»{,H_%a ¢m+1) + J(u(thr%) - ufn+%7 ¢m+1)‘
+vrll(F = Pu)Vn,, ol (I = Pa)Vey,, 1o
+vr[(I = Pr) Ve, 1 lloll(I = Pa)Ve, illo < Ao+ -+ - + Aus.
The terms Ay, Ay, A, A3, Ag, A1 and A;, are bounded exactly like the terms

To, Ty, Ty, T3, T;, Ty and Ty respectively. From a Taylor expansion, we bound
the terms A, and As:

Az S Az S

3 Z/}E_(Utt(t*))'vum+;)'¢m+; +?2/E u(t, 1) V(uu(t")) - @np1

j=1 j=1"E;

KV _
< 6_4H¢m+%‘|,2)( +Cv 1At4“’u’tt”%°°(0,T;H1(Q))HUH%W(QT;W?A/?’(Q))'
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With (3.7), (3.11) and (6.4), the pressure term can be rewritten as:

A6 = b(d)m—i-%?ﬁ;bwr% - pm-‘r%) + b(¢m+%’pm+% _p<tm+l>)

2

= _b(¢m+%7pm+% - (Th(p))er%) + b(¢m+%7pm+% - p(thr%))

) ; /ek{pm+é = 0P s g1 = ; /Ej Pt = Pns 1))V - Brois

My,
T DY TSNS} (T
k=1 "¢k

RV
< —

= 61 H¢m+§ 1% + Cv ' W (|pmalig + lpmlog) + CV_IAt4HpttH%oo(o,T;Hl(Q))‘

We now bound A7, using a Taylor expansion,

Az < CALlue(t) ol @t o
RV _
< a”d’m%ﬁ + Cv 1At4||utttH%OO(O,T;LQ(Q))‘

Using also a Taylor expansion, we bound Ag:
Ag < Cv ' AL £, + =l I
9 = ttllLoe(0,1:02(2)) T gy 1 Pmtg lix
Finally the last term Ajy is handled as follows:

AIO - V[a(nm_t,_%a m—l—%) + J(’r]m—i-%) m—i—%)]
+1/[a(u(tm+%) — Uil m+%) + J(u(t,,,

= Ajo1 + Ajp2.

%) - ru’m—&—%’ m—i—%)]

The term Ajg; is bounded like T5. The term A9y reduces to

Ny, My,
Az =vy / V(lty1) = pis) : Vs =1 / (V(ultniy) = )1} By 1]
j=1"7E; k=1 " €k

RV
< —

=64 ||¢m+%||§( + CVAt4||utt||%°°(O,T;H2(Q))'
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Combining all the bounds above yield:

ongUPmllon = llonlloe) + S l@metlx + 50U = Pu)Ven, il
< Cv  ([|9mllen + 1 Pmiillo) + COF (v + v + vr)([tmalFr 0 + [wnli o)
+CR v (Ipmralrg + [Pml7a) + CAt4yHutttH%OO(O,T;HQ(Q))

+0At4’/71(HuttH%m(O,T;Hl(Q)) + ||ptt||%°°(0,T;H1(Q)) + ”utttH%m(O,T;LQ(Q)) + ||ftt||%°°(0,T;L2(Q)))

+CVTH2T<|um+1|72~+1,Q + |’U/m’12n+1,sz)-
The end of the proof is similar to the one of Theorem 6.1. n

Corollary 6.1. Assume that vy = h? and H = hY/* where 8> 2r(a—1)/a
(see Corollary 5.1), then the estimates in Theorem 6.1 and Theorem 6.2 are
optimal.

M—1
max [y = wpfloo + (At ZO [ i1 = up i [13)"? = O(R" + Ab),
M-—1
o~ o~ 2\1/2 — r 2
masx [y — nflon + (A Y [t — G [5)12 = O(R + AF2).

=U,...,

m=0

7 Conclusion

In this paper, we have analyzed the stability and convergence of totally dis-
continuous schemes for solving the time-dependent Navier-Stokes equations.
Both semi discrete approximation and fully discrete are constructed for ve-
locity. In addition, semi discrete approximation of pressure is obtained. We
showed that these estimations are optimal. Numerical experiments are cur-
rently investigated.
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