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Abstract

We study a fully inertial discrete model of a martensitic phase transition which

takes into account interactions of first and second nearest neighbors. Although

the model is Hamiltonian at the microscale, it generates a nontrivial macroscopic

relation between the velocity of the martensitic phase boundary and the conjugate

configurational force. The apparent dissipation is due to the induced radiation of

lattice waves carrying energy away from the front.

Introduction

The fact that a nonzero configurational force is required to sustain a martensitic phase
transition reflects inability of the classical continuum elasticity to describe dissipative phe-
nomena inside the transition front where discreteness of the underlying crystal structure
cannot be neglected. We recall that in continuum theory a phase boundary can move
without friction. At the same time its motion in a lattice can be compared to that of a
particle placed in a wiggly (Peierls-Nabarro) landscape: the oscillations of the velocity
then lead to the energy transfer from macro to microscale [14]. At continuum level the
emitted short-length lattice waves are invisible, and the radiation is perceived as energy
dissipation. Since the rate of energy release at the macroscale remains unspecified, in
order to close the system of equations at the macrolevel, one needs to supplement the
conservative continuum equations with the dissipative kinetic relation on the moving dis-
continuity [10, 11]. In this paper we consider the simplest nonlocal discrete model of
a martensitic phase boundary allowing one to find the unknown energy release rate ex-
plicitly. Following some previous work in fracture [7, 8] and plasticity [1, 3, 4] we use a
biparabolic ansatz for the free energy and construct an explicit solution of the discrete
problem. We emphasize that our only input information concerns the elasticities of the
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Figure 1: (a) The macroscopic stress-strain law and the Rayleigh line for a subsonic phase
boundary. The difference A2−A1 between the shaded areas is the configurational force G.
(b) The discrete microstructure with nearest and next-to-nearest neighbor interactions.

constitutive elements, and hence the resulting kinetic relation can be considered of the
“first principles” type.

1 Continuum Model

Consider an isothermal motion of an infinite homogeneous bar with a unit cross-section.
Let u(x, t) be the displacement of a reference point x at time t. Then strain and velocity
fields are given by w = ux(x, t) and v = ut(x, t), respectively. The balances of mass
and linear momentum are vx = wt and ρvt = (σ(w))x, where the function σ(w) specifies
the stress-strain relation. To model martensitic phase transitions, we follow [2] and as-
sume that σ(w) is non-monotone as shown in Figure 1a. The two monotonicity regions
where σ′(w) > 0 will be associated with material phases I and II. Suppose now that an
isolated strain discontinuity propagates along the bar with constant velocity V . On the
discontinuity the balance laws reduce to the Rankine-Hugoniot jump conditions

ρV 2[[w]] = [[σ]], ρV [[v]] = −[[σ]], (1)

where [[f ]] ≡ f+ − f− denotes the jump. Conditions (1) must be supplemented by the
entropy inequality R = GV ≥ 0, where

G = [[φ]] − {σ}[[w]] (2)

is the associated configurational force. Here {σ} = (σ+ + σ−)/2. Given V and the
state (v+, w+) in front of the moving discontinuity, one can use (1) to determine the
state (v−, w−) behind. In particular, (1)1 implies that w± lie on the intersection of the
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curve σ(w) and the Rayleigh line with the slope ρV 2, as shown in Figure 1a. To satisfy
the entropy inequality it is sufficient to require that the difference between the areas A2

and A1 shown in Figure 1a is nonnegative. It is not hard to see that the macroscopic
jump conditions do not provide enough information to specify the velocity of the phase
boundary V uniquely.

Although the difficulty with finding V does not arise in the case of supersonic shock
waves, it is essential in the case of subsonic phase boundaries, where additional jump
condition controlling the rate of dissipation must be provided to ensure that the continuum
problem is well posed [6, 12]. The corresponding closing kinetic relation in the form
G = G(V ) can be either postulated as a phenomenological constitutive relation (e.g.
[10, 11]) or derived from a regularized continuum model which usually includes dissipative
as well as dispersive terms (e.g. [5, 10]). Below we take a different approach and derive
the closing relation from a discrete lattice model represented by an infinite system of
coupled ordinary differential equations.

2 Discrete model

Consider a chain of particles connected to their nearest neighbors (NN) and next-to-
nearest neighbors (NNN) by elastic springs, as shown in Figure 1b. In the undeformed
configuration the NN and NNN springs have length ε and 2ε, respectively. Let un(t),
−∞ < n < ∞, denote the displacement of nth particle at time t with respect to the
reference configuration. In terms of the strain variables wn = (un − un−1)/ε the dynamic
equations take the form

mẅn = φ′

NN(wn+1) − 2φ′

NN(wn) + φ′

NN(wn−1) + γ(wn+2 − 2wn + wn−2). (3)

Here φNN is the nonlinear and nonconvex NN potential, while the NNN interactions are
assumed to be linear: φ′

NNN(w) = 2γw. We seek solutions of (3) in the form of a traveling
wave moving with the velocity V and connecting two states in different phases. Let
x = nε − V t and assume that

un(t) = u(x), wn(t) = w(x) = [u(x) − u(x − ε)]/ε (4)

The system (3) can now be replaced by a single nonlinear advance-delay differential
equation for w(x):

mV 2w′′ = φ′

NN(w(x + ε)) − 2φ′

NN(w(x)) + φ′

NN(w(x − ε))

+ γ(w(x + 2ε) − 2w(x) + w(x − 2ε)).
(5)

The states at x = ±∞ must correspond to their macroscopic limits

w(x) → w± as x → ±∞. (6)
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Since we expect emission of elastic waves, the limits in (6) must be understood in the
weak sense only.

In order to obtain analytical solution of the discrete problem, we choose NN potential
to be biparabolic and symmetric so that φ′

NN(w) = K(w − aθ(w − wc)), where θ(x) is a
unit step function. Assume that all springs in the region x > 0 are in phase I, while all
springs with x < 0 are in phase II. Then in nondimensional variables equation (5) can be
written as

V 2w′′ − w(x + 1) + 2w(x) − w(x − 1) − β

4
(w(x + 2) − 2w(x)

+ w(x − 2)) = −θ(−x − 1) + 2θ(−x) − θ(1 − x),
(7)

where β = 4γ/K is the main nondimensional parameter of the problem. Observe that
Eq. (7) is linear in x < 0 and x > 0 so that the nonlinearity is hidden in the switching
condition

w(0) = wc (8)

and in the constraints

w(x) < wc for x > 0, w(x) > wc for x < 0 (9)

ensuring that the springs are in proper phases. The problem now reduces to solving (7)
subject to (6), (8) and (9). We remark that a related discrete problem with β = 0 (no
NNN interactions) was previously considered in [8, 9].

3 Solution of the discrete problem

Equation (7) can be solved by standard Fourier transform (see [13] for details) yielding

w(x) =















w− +
∑

k∈M−

4 sin2(k/2)eikx

kL′(k)
x < 0

w− − 1

1 + β − V 2
−

∑

k∈M+

4 sin2(k/2)eikx

kL′(k)
x > 0,

(10)

where
L(k) = 4 sin2(k/2) + β sin2 k − V 2k2

and
M± = {k : L(k) = 0, {Imk ≷ 0} ∪ {Imk = 0, kL′(k) ≷ 0}.

The solution can be viewed as a homogeneous state superimposed with the combination
of plane waves with phase velocity V and wave numbers given by the zeroes of L(k). In
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particular, there is a finite number of real roots of L(k) = 0 corresponding to radiative
modes. To obtain (10), we applied the radiation conditions [1, 7] requiring that all radia-
tive modes with group velocities Vg higher than the interface velocity V appear in front
of the moving phase boundary (x > 0), while all radiative modes with Vg < V appear
behind the front. Since

Vg = V +
L′(k)

2V k
,

the relevant radiative modes ahead (behind) the interface must satisfy kL′(k) > 0 (< 0).
Equations (10) imply that the limiting states are related by

w+ = w− − 1

1 + β − V 2
,

which is exactly the macroscopic Rankine-Hugoniot condition (1)1. The switching condi-
tion (8) implies that

w± = wc ∓
1

2(1 + β − V 2)
+

∑

k∈N
±
pos

4 sin2(k/2)

|kL′(k)| , (11)

where N± = {k : L(k) = 0, Imk = 0, kL′(k) ≷ 0}. Since both L(k) and N± depend
explicitly on V , Eq. (11) provides two additional relations between the velocity of the
moving interface and the strains at infinity; one of them is equivalent to (1)1 while the
other one generates a nontrivial kinetic relation. To recover the second Rankine-Hugoniot
condition (1)2, we recall that given the self-similar ansatz (4), the strain and velocity fields
are related through v(x)−v(x−1) = w′(x). Since the right hand side of the latter equation
is known explicitly (see (10)), we can again use the Fourier transform to show that the
difference between the average velocities at infinity satisfies v+ − v− = V/(1 + β − V 2),
This is exactly our macroscopic jump condition (1)2.

4 Kinetic relation

Consider the global energy balance in the discrete model

d

dt

{ ∞
∑

n=−∞

[

v2
n

2
+ φNN(wn) +

β

2

(

wn + wn+1

2

)2]}

= Fnvn|n=∞

n=−∞, (12)

where Fn = φ′
NN(wn)+

β

4
(wn−1 +2wn +wn+1) is the total force acting on the nth particle

from the left. Since at infinity our solution tends to the homogeneous state plus linear
oscillations we use asymptotic orthogonality of the modes and write

〈Fnvn|n=∞

n=−∞〉 = P + P0,
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where 〈·〉 denotes the averaging over sufficiently large period, P = σ+v+ − σ−v− is the
macroscopic power supply at ±∞ and P0 is the energy carried away by the microscopic
lattice waves:

−P0 =
∑

k∈N+

〈Gk〉+(Vg − V ) +
∑

k∈N−

〈Gk〉−(V − Vg). (13)

Here Gk is the sum of kinetic and potential energies per particle carried by the mode k.
The average energy density carried by the mode k can be computed from 〈Gk〉 = 〈G−G0〉k,
where G(x) is the total energy per particle and G0 is the energy of the limiting homogeneous
states. The calculation yields [13]

〈Gk〉± =
8V 2 sin2(k/2)

(L′(k))2

for the the average energy density carried by the radiative wave with k ∈ N±
pos = {k ∈ N± :

k > 0}. Substituting these explicit relations into (13) and observing that R = GV = −P0,
we obtain the desired expression for the driving force:

G = 4
∑

k∈N
±
pos

sin2(k/2)

|kL′(k)| . (14)

Since both L(k) and N± are known functions of V , Eq. (14) yields an explicit kinetic
relation (see also 11).

Alternatively, we could compute the driving force G by using Eq. (2) for the contin-
uum macromodel. Observe that the macroscopic energy density φ(w) is related to its
microscopic counterparts via

φ(w) =
1

2
(1 + β)w2 − θ(w − wc)(w − wc).

By substituting this relation into (2) and using (11), we obtain

G =
1

2
(w− + w+) − wc = 4

∑

k∈N±
pos

sin2(k/2)

|kL′(k)| ,

which coincides with (14). This confirms that the macroscopic energy release rate is
consistent with the microscopic account of dissipation.

To compute the resulting kinetic relation we need to find at each V all positive real
zeroes of L(k). The typical function V (k) is plotted in Figure 2a. It possesses an infinite
number of local maxima V r

i (resonance velocities) where L′(k) = 0 and the sums in
(10) and (14) diverge. These resonances are symmetry-related and disappear when the

6



5 10 15 20 25

0.2

0.4

0.6

0.8

V

k

V = V1
r

V = V2
r

V = Vs



V = V3
r

− +

0.2 0.4 0.6 0.8

1

1.5

GP

G

V

(a) (b)

− V = Vs



V = V1
r

V = V2
r

Figure 2: (a) Real wave numbers k corresponding to a given interface velocity V with
“+” and “−” denoting the sign of kL′(k). Also marked are the resonance velocities V r

i .
(b) Mobility curves G(V ). The entire region around the resonances should be excluded.
In both graphs β = −1/8.

curvatures of the energy wells are different [3]. Two limiting cases, V → 0 and V → Vs,
where Vs =

√
1 + β is the macroscopic sound velocity, deserve particular attention. In

the zero-velocity limit we obtain [13]

G(0) =
1

2
√

1 + β
= GP,

which coincides with the Peierls force computed in [14]. The limit V → Vs depends on
β. Assume for determinacy that −1/4 < β ≤ 0. Then one can show that for V → Vs the
only relevant positive real root k ∈ N−

pos(V ) tends to zero and since in this limit

G =
6

(1 + 4β)k2
+

44β − 1

10(1 + 4β)2
+ O(k2),

we obtain that G(V ) → ∞.
In the intermediate range 0 < V < Vs the kinetic relation can be obtained numerically

by computing the sets N±
pos(V ). Figure 2b shows the typical mobility curves G(V ) at

β = −1/8. As expected, in the small-velocity range 0 < V ≤ V r
1 there is an accumulation

of resonances. It can be shown [13] that the corresponding traveling wave solution are
not admissible because they violate the condition (9). In this range of average velocities
the interface motion may be of a more complex nature, for instance, stick-slip.
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