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Abstract

The coupled Stokes and Darcy flows problem is solved by the
locally conservative discontinuous Galerkin method. Optimal error
estimates for the fluid velocity and pressure are derived.

1 Introduction

Modeling the interaction between surface and subsurface flow is a challeng-
ing environmental problem. One such example is the simulation of trans-
port of contaminants through rivers into the aquifers. Mathematically,
this complex problem can be modeled by the coupled system of Stokes and
Darcy equations.

The aim of this paper is to formulate and analyze a discontinuous finite
element method for the coupled Stokes and Darcy problems. The physical
domain is decomposed into two regions: the region filled with an incom-
pressible fluid modeled by the Stokes equations and the porous medium
region modeled by Darcy’s law. The interface conditions consist of the
Beavers-Joseph-Saffman condition, the continuity of flux and the balance
of forces. The unknowns, namely the fluid velocity and pressure in the fluid
region, and the fluid pressure in the porous medium, are approximated by
totally discontinuous polynomials of different order. The discontinuous
Galerkin (DG) methods considered here, are based on the Non-symmetric
Interior Penalty Galerkin (NIPG) method [16, 17] and the Symmetric In-
terior Penalty Galerkin (SIPG) method [20, 2]. DG methods are attractive
methods because they are element-wise conservative, they are high-order
methods, and they are easily implementable on unstructured meshes. A
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few algorithms for the coupling of Stokes and Darcy can be found in the
literature. In [13], the existence and uniqueness of a weak solution to the
coupled system is proved and the proposed scheme combines the contin-
uous finite element method for the Stokes problem with the mixed finite
element method for the Darcy equations. The study of continuous finite
element methods for both regions can be found in [7]. In a more recent
work [18], the DG method is used in the Stokes region while the mixed
finite element method is used for Darcy region. Finally, the reader can
refer to [4, 15, 14, 8] for analysis of similar coupled models.

The outline of the paper is as follows. Section 2 contains the model
problem and notation. The numerical scheme is introduced in Section 3.
The a priori error estimates are proved in Section 4 and followed by some
concluding remarks.

2 Model problem and notation

Let © be a domain in IR?, subdivided into two subdomains 1, s, with
interface I'12 = 021 NON2. Define I'; = 0Q; — ' for i = 1,2. The physical
quantities are the fluid velocity u and pressure p. Denote u; = u|g, and
i = pla,- We assume that the flow satisfies the Stokes equations on
and the single phase equations on Q.

=V-@uD(u1) —pI) = fy, in (1)
V-ou, =0, in Qi @)

us = —KVpy, in Q, (3)
Vous=fo, in Q. (@)

Here, f, and f, are external forces acting on the fluid, ;1 > 0 is the constant
fluid viscosity, D (u) is the strain tensor defined by D(u) = 3(Vu + Vu’)
and K is the permeability tensor. We assume that K is symmetric, positive
definite tensor, bounded below and above uniformly, and that the force
satisfies the solvability condition sz f2 = 0. The boundary conditions are

1 =0, on I4, (5)
—KVps-n=0, on Iy, (6)

where n is the outward normal to the boundary 9. As the pressure is
unique up to an additive constant, we assume that

/Qp:o. (7)
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Let mi2 (resp. T12) be the unit normal (resp. tangential) vector to T'ya
outward of ;. The conditions at the interface I are:

Ui - N2 = U2 - N2, (8)
p1 — 2p(D(u1)ni2) - niz) = po, ©)
Uy -T2 = —2G(D(u1)n12) *T12- (10)

Interface conditions (8) and (9) represent the mass conservation and the
balance of forces respectively, across the interface. The Beaver-Joseph-
Saffman law (10) is the most accepted condition (see [3, 19, 12]) and in-
cludes a friction constant G > 0 that can be determined experimentally.
The existence of a unique weak solution of (1)-(10) was shown in [13]. We
assume here that the solution (u,p) is regular enough, and is a strong
solution of (1)-(10).

We now define the functional spaces. For i = 1,2, let £} be a non-
degenerate quasi-uniform subdivision of €;, let I'} be the set of interior
edges and let h; denote the maximum diameter of elements in &}. For
any non-negative integer k¥ and number r > 1, the classical Sobolev space
[1] on a domain O is denoted by W*"(O) = {v € L"(0) : D™ €
L™(0), V¥|m| <k}, where D™v are the partial derivatives of v of order m.
The associated Sobolev norm is denoted by || - [|k,r,0, or by || - ||x,0 if r = 2.
We use the usual notation H*(O) for W*2(0) and L3(0O) for the space of
square-integrable functions with zero average. The L? inner-product will
be denoted by (-,-). Throughout the paper, C' will denote a generic pos-
itive constant whose value may vary but will but will be independent of
the mesh sizes h; and hs. Our scheme requires that the trace of p; and
the trace of the normal derivatives of u; and p, are well defined, and are
square-integrable. Therefore, we define the following functional spaces:

X' = {vi€(L’(M)?: VE€&, wlpe(W>(E)’}, (11)

Ml {ql € Lz(Ql) : VE € 5’1“ q1|E € W1’4/3(E)}7 (12)
M> = {g@eLl’Q): VEEE, ¢|lpeW>(E)} (13)

We associate to these spaces the following norms || - || x1, || - || a2 and semi-
norm || - ||az2:

0’1’ 1
o5 = IVoilge, + D |e|e||[v1]||3,e+5 D lor- T2l

e€l'L Ul e€l1z
a3 = llallg
2]
lgall3 = VeIt 0, + Z B |e I[g2]ll3.e

e€r?
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Here, |e| denotes the measure of each edge e, the parameters o1 . and o2,
are positive constants that may vary on each edge, and that will be defined
in the next section. Finally, the || - || norm is the usual “broken” norm:
lwlie, = Xreei lwll, 5 for i = 1,2 and for w any scalar or vector
function. Given a fixed normal vector n. on each edge, the average {w}
and jump [w] of function w can be defined:

{w} = Swls) + bwle). [w] = (wls) - (wlsz). Ve = OE! NEE,
{w} = w|g;, [w] = w|g:, Ve=3dE;NdN.

The aim of this paper is to formulate an algorithm that uses totally dis-
continuous approximating spaces. Let ki, k2 be two positive integers and
let the finite-dimensional subspaces X}, C X', M} C M' and M? C M2,
with the induced norms, be defined as follows

X}L = {v1 € X!': VEe 5,1“ vy € (IPy, (E))2}7
M’IL = {Q1 eM': VEe 5;1” q1 € Pklfl(E)}J
M}% = {q2€M2Z VEG(S%, Q2€sz(E }

We assume that the discrete spaces satisfy the optimal approximation prop-
erties. In particular, there exist an operator Ry, € L(H'(Q4)?; X}) such
that for any E € €1,

Yo € H'(Q)2, Vg € Py, 1(E), / V- (Ba(®)—v) =0, (14)

E
Vo€ H' ()2, VeeTl, Vg, € Py 1(e)’, / g, - [Rn(w)] = 0, (15)
V’U € H&(Ql)QJ Ve S 691; Vql S Pk1—1(e)2: /Q1 ° Rh(v) = 07 (16)

e

o € HY(M)?, Veer;urlurlz,/(Rh(u)—v):o, (17)

e

Vv € Hy(M)?,  [lv — Ru(v)llx1 < Clv — Ra(v)|1,0., (18)
Yv € Ws’t(ﬂl)2, Vs € [].,kl + ].], |’U - Rh(v)|Wm,t(E) < ChsE_m|’U|Ws,t(AE),
(19)

where Afg is a suitable macro-element containing E. Note that property
(18) is an easy consequence of (17) (see [10]). There exists also an operator
rn € L(L*(Q); M} x M}) such that for s = k; — 1,ko and for any 2z €
Lz(Q) n Ws+1,2 (Q)

Vg € PS(E),/ d(ra(z)—2) =0, VE €&l UE (20)
E

Iz = ra()llm,e < ChF ™2lst1,m, VE €& UE, m=0,1 (21)
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Note that the existence of Ry, for k1 = 1,2 or 3 follows from [6, 9, 5], and
the operator ry, is the well-known L? projection operator.

We recall a result proved in [10] that generalize a Sobolev imbedding.
For any real number s € [2,00), there is a constant C independent of h
such that

Yo e X, villpear) < Clloillx:- (22)

We now finish this section with some trace and inverse inequalities
needed for the analysis. Let E be a mesh element with diameter hg. Then,
there exists a constant C' independent of hg such that

Vo € H'(E), Ve COE, |9ll3. <Chz' i3 e+ heldlis), (23)
V¢ € HX(E), VYeCOE, |(Vé-n.|3,.<C(hg' 6]} p+heldfr), (24)

V¢ € Py(E), Ve COE, |Vé neloe < Chy gl p. (25

3 Scheme

We introduce the following bilinear forms a; : X Py X' — R,b: X b
M!' 5 R and as : M2 x M2 - IR:

ap(ug,v1) =2 z /ED(ul) : D(v1) + Z U|(12,|e /[ul] - [v4]

Eeég} e€l} Ul
2 ¥ /{Vulne}-['ul]+261 S [(Voin - [w]
ecTiur, ”*¢ ecliur, ¥ ¢
1
+5 Z /e(ul-‘l'lz)('vl-‘Tm), (26)
e€cl'12
o)== Y [pVo+ Y [l e, @)
Bee, ' B e€TiuT * °
(P2, @) = Y / KVp, -V + ) U|Z’|€ /[P2][(12]
pee2’F e€r? €

Y [KVm el ve Y [(KVe npl @)

ecI'? € eel? €

By introducing the parameters €;, €2 that take the value +1, we allow for
non-symmetric or symmetric bilinear forms a; and as. Throughout the
paper, we assume that:

Hypothesis A: if on one hand €¢; = 1, then the parameter o1 . needs only to



DG for Stokes-Darcy 6

be positive, and can simply be equal to 1 for the resulting NIPG method.
On the other hand, if ¢, = —1, the parameter 07, cannot be arbitrary,
and it must be bounded below by a sufficiently large positive value. This
is a standard constraint for the STPG method. The same assumptions hold
true for e; and the parameter oy .

We next define a bilinear form A : M2 x X' — IR acting on the interface
F12.

A(qg,’Ul Z /QQ’Ul 12, V(QQ,’Ul) € M2 X Xl (29)
e€l'yp V€

With these forms, we propose the following variational problem of (1)-(10):
Find (u1,p1,p2) € X' x M x M?, solution of

pai(uy,v1) + b(vi,p1) + A(p2,v1) = (fla'ul) Vv, € Xil;,a (30)
b(“l;Ql) =0, Vg € Mha (31)
az(p2,q2) — A2, u1) = (f2,42), Vg € Mh2a (32)
/ 4l +/ p2 = 0. (33)
Ql QZ

Lemma 3.1 If (u1, p1, p2) is the solution of the coupled Stokes-single phase
flow problem (1)-(4), then (w1, p1,p2) is the solution of (30)-(32).

Proof
Multiply the Stokes equation (1) by w1, integrate by parts over one element
E € &}, and sum over all elements in &;:

> / ~pI +2uD(w)) : Vor = ) / [(=p1 T +2pD (w))n - v1]

Eeg} eert ¢
— Z / —pI +2uD(u1))nys - v — Z/ —pI +2uD(up))n - vy
e€la ¥ € ecl'y
fl"U]_.
Q

Noting that D(uy) : Vv, = D(uy) : D(v1) and I : Vv; = V - v1, we can
rewrite the equation

3 / 2uD(u1) : D(v1) —p1V-v1) — > /{(—P11+2MD(U1))ne}'[Ul]

Eeceg} ecriur, ”°
-3 [ienT+wbn o} = ¥ [(-pl + 2uD)mz o
eel'}, ¢ e€lyp ¥ ¢

= (fl:Ul)'
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By regularity of the true solution and with the boundary condition (5), we
have

> [ eupw): Do) -pV -0+ ¥ [ n.

Ecé&} ecr} V¢
—2u Y [{D(w)nc}-[va] +2ue Y [{2uD(v1))nc} - [ua]
ecrlurt ”® ecrlurt”®
=Y [CnI D) v = (£,00). (34)
eclp 7€

By decomposing v1 and 2uD(u1)n12 into their normal and tangential com-
ponents, the interface integral is reduced to

_ Z / —piI +2uD(u1))nis - v =

e€lyp V€
> /(;D1 = 2pu(D(u1)n12) - n12)(v1 - M12)
e€l2 V€
- Z / U1 ’n12) T12(’U1 '7'12)-
e€la

With the interface conditions (9) and (10), the integral becomes:

> / —pud + 2pD(u1))nz - vy =

e€lyp ¥ ¢

Z /Pz v1 - M12) +— Z /ul T12) (V1 - T12). (35)

e€la E€F12

The continuity of u; and equations (34) and (35) yield:

pay(ur,v1) +b(vi,p1) + Alp2,v1) = (F1,v1).

The equation (31) is a consequence of (2), (5) and the fact that [u]-n. =0
on each edge e. Now for the single phase flow part, we repeat the process
with (4): multiply by a test function ¢a, and integrate by parts and sum
over all elements in 7. The definition (3) of us, the regularity of p, and
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the boundary condition (6) give

Z /EKsz -Vgo — Z /{KVp2-ne}[q2]

Ecé? e€l'2 U2 ¢
O¢
+ey Z /{KVq2 ‘Nt [p2] + Z H/[W][‘h]
ecr2 ¢ e€r'? €
- Z /(uz “n12)g2 = (f2,q2)-
e€l2 v ¢

Using the interface condition (8) in the equation above, gives (32). Finally,
the equation (33) is just the condition (7).

The discrete scheme is: Find (U1, P;, P,) € X}, X M} x M? such that

par (U1, v1) + b(v1, Pr) + A(Py,v1) = (f1,v1), Vo1 € X}, (36)

b(Ulaql) = 05 Vl]l S M]%: (37)
ax(P2,q2) — Mg, U1) = (f2,8), Va2 € M, (38)
(39)

/ P+ P, =0.
Q1 Qo

Before addressing the existence and uniqueness of a solution to the numeri-
cal scheme, we recall the fact that the bilinear forms a; and a2 are coercive
with respect to || - || x2 and || - || a2 respectively. The proof of the following
lemma is straightforward for the nonsymmetric bilinear forms, and can be
found in [20] for the symmetric bilinear forms.

39

Lemma 3.2 Under hypothesis A, there exist two positive constants C
and Cy such that

01“’01”%(1 < al('ul,'vl), Vv, € Xl. (40)
Collall3pe < a2(a2,42), Vgo € M2 (41)

Lemma 3.3 The discrete scheme has a unique solution.

Proof

Since (36)-(39) is a square system of linear equations in finite dimension, it
suffices to prove that (f, f2) = (0,0) implies (U4, P1, P;) = (0,0,0). We
choose v1 = U in (36), ¢1 = P; in (37) and g2 = P» in (38). Adding the
resulting equations give

al(Ul,Ul) =+ GQ(PQ,PQ) =0.
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From Lemma 3.2, this implies ||U1||x1 = ||P2||ar2z = 0, which means that
U; =0 and P is a global constant over Q3. The equation (36), with (39)
becomes

b(’Ul,Pl) m / Pl

We now write P, = P, + P, where P, = |Ql—1| le P;. The equation above
becomes

Z/’Ul ne, =0, Vv, € Xy,.

e€l'1s

b(vl,P1)+b(v1,P1) |QI|P1

Z/’Ul n, =0, Vv, € Xy,

e€li2
Note that
b(’Ul,Pl) = —Pl Z V1 - Ne.
e€lp ¥ ¢
So that, we have
b(’Ul,Pl) P1 Z /'U1 ne, =0, Vv, € X (42)
e€l12

Since P; belongs to L3(Q;) and the spaces HE(94)?, L3(Q;) satisfy the
exact inf-sup condition (see for example [11]), there exists ¥ € Hg ()
such that —V - & = P;. Choose v1 = Rp(®) in (42), then we have from
properties (14)-(16) 3

1R, = 0.

This implies that P, = 0, and from (42), we have that P, = 0, which also
means that P, = 0.

Remark: The approximation U, of the Darcy velocity us is a discontin-
uous piecewise polynomial vector of degree k; — 1 and is directly obtained
from the discontinuous approximation P, by the formula Uy, = —KVP;.

4 FError estimates

In this section, we derive first optimal error estimates in the energy norm
for the Stokes velocity and in the L? norm for the Darcy pressure. A second
estimate gives an optimal convergence rate for the L? norm of the pressure
in the Stokes region.
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Theorem 4.1 Let (u,p) be the solution of the coupled problem (1)-(4),
such that u|g, € HF*+1(Q), plo, € H*(Q1) and plo, € H*T1(Q2). The
discrete solution (U, P) of (36)-(39) satisfies the error estimate:
llur = Uillxs + [lp2 = Pollaz < CBY (Jua |ky1.0, + Plks,04)
+Ch§2 |p2|k2+17927

where C' is a constant independent of h; and hs.

Proof
Let 1 = Rp(u1),p1 = rp(p1) and o = ri(p2) be interpolants of ui,p;
and py respectively. Define x = U — @ and £ = P> — pa. From (30)-(32)
and (36)-(38), the error equations are:
pai(x,v1) + b(vi, Py — p1) + A(§;v1) = pai (w1 — @1, v1)
+b(v1,p1 — P1) + A(p2 — Pa,v1), Vo1 € X, (43)
b(x,q1) = b(ur — @1,q1), Vg1 € M}, (44)
a2(€,q2) — Mgz, X) = az(p2 — Po, @2) — Aq2, uy — 1), Vo € My, (45)
Choosing v; = x in (43), ¢1 = P1 — p1 in (44), ¢o = £ in (45) and summing
the resulting equations gives:
pai(x, x) + az2(§,§) = pai (w1 — @1, x) + az(p2 — P2, &) + b(x, p1r — p1)
—b(uy — 11, P — p1) + A(p2 — P2, x) — A(§,ur — ). (46)
We now bound each of the terms in the right-hand side of (46). We first
rewrite aj (u; — @1, X):

pay(uy — a1, X) —QHZ/Dul 1) : D(x)

Eeé&l
ES /{D wr—@)}ne [+ 206 Y /{D Ve - [ur — ir]
e€l}ul'y e€l'}, Ul
O1,e
+ Z |1| /[u1 ul] +— Z / ul—ul 7'12)(X 7'12)
eel'lur, €€F12 €
=T +---+1Ts.

Using Cauchy-Schwarz inequality, and the approximation result (19), we
have

Ty <Cpu Yy (IV(uy — i)
Ecé}

1 _
< <IVxll o, + ClIV (w1 — @)l3 o,
8

—

< 2Vl o, + ChT* [uli, 41,0, (47)

oo
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Let Lp(u) denote the standard Lagrange interpolant of degree ki defined
in Q; and let us insert it in the second integral term. For e a segment of
I} UTy, we have

(T = anne - = [(Tw - Ln)n, -
+ [(V(Eatn) = )} - .

Expanding the first integral, we obtain from the trace inequality (24) and
from the fact that the Lagrange interpolant satisfies the optimal approxi-
mation result (19)

Y [{V - Ly@)}ne - [x]

ecriur, ”*®
1/2 1/2
o1, lel
< Y |e|1;2||[x]||o,e1—/2||{v(u — Li(u))Inello.e
eel'lur, O1,e
1 01, k
< 3 Z |e|e ||[X]||(2),e +Chi 1|“|%1+1,91-
eEF}LUFl

Similarly, if we denote by E!? the elements sharing the edge e, and we
use the trace inequality (25), a triangle inequality and the approximation
results, then we have

> [V -ain <y > TR,

eeriur; ¢ eel'lur; le
€ 1y~
£ Y - s
1 Ol,e €
ethUF1
1 0'1,
<z > (x5 e + ChY* Julf, 11,0,
8 4~ el
eel"hul"l
Therefore,
1 (71’
L ¥ b+ Ol 0. (19)
eel"}lul‘l

The third term vanishes because of the properties (15), (16) satisfied by .

T; = 0. (49)
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Using Cauchy-Schwarz inequality, the jump term T} is bounded by virtue
of (23) and (19):

1 UL 0’1 ~
TS 5 Y b +C 3 bl -l
e€l'L Ul e€TLUT,
1 0-71 p k «
< 3 X T+ Ol 0, (50)

eEF}LUI‘l

Finally, the fifth term is bounded using the trace inequality (23) and the
bound (19)

Ts < & 3 = alloelx - mrallo.

ecl’y

N — ~ ~
< g5 2 Il +C Y (M lu = ally p + helu — @l )
e€l'12 eel’y

K 1
< °G Z lIx - T12ll3 . + Chi* [ulf, 1.0, (51)
e€l'io
Combining (47), (48), (49), (50) and (51), we have

B 1 3
ar(wn =1, x) < IVXlia, + 5 D0

eeriurl

Ol,e

lel

lIx]]

2
0,e

[ k
+25 2 lx- Tl + OB ul, 40, (52)
ecl2

Let us now expand ax(ps — P2, £).

~ ~ 02,e ~
ax(pa — P2, 8) = Y / KV(po =) - VE+ Y |Z’| /[P2 - p2][¢]
peez ' P e€l'y €
=Y [1KYG - ) e X [(KYE 0 -l
eEF% ¢ eEF% €
Clearly, these terms are bounded in a similar fashion as the terms 77, . .., T},

using in particular the approximation result (21).

) 1 3 . ,
w2 =526 < gIVER 0.+ 3 T (167 + On Il 0. (59

EEF%

ag

Using property (20) of the operator 7, the third term in the right-hand
side of (46) reduces to

b(x,p1 — 1) = Z /{pl—ﬁl}[X]'ne7

CEF}IUr‘l €
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which is bounded using Cauchy-Schwarz inequality, trace inequality (23)
and the estimate (21) by:

_ 1 o1,
b1 —p1) < ¢ > “(|(x]ll5,e + Ch™ Iplz, 0, - (54)
ecTlur |e|
rUl1

The term b(u; — 41, Py — p1) vanishes because of the properties (14), (15)
and (16) of @4. It suffices then to bound the interface terms A(p2 — P2, X)
and A(&,uy — @) in (46). Using the trace inequality (23), the approxima-
tion result (21) and the bound (22), we obtain

Al = 52,3) < 3 lIp2 = Belloellxlone

eel'1o
< Clixllo,0 h** (P2l kst 1,05
I
< §||X||§c1 + Ch**2|pa iy 1.0, (55)

For each edge e belonging to the interface, we associate the constant ¢, =
ﬁ?‘ [, €. From the property (17) and (19), we can write

Mgw —an) = 3 [(€- e — )

e€lyp “ ¢

< Y llE=celloelleer = @allo,e

e€l2
< ChP ' Phy? | ve

1
< gl + O, 10, (56)

0,2 [%1]ki 41,04

Collecting the bounds (52), (53), (54), (55) and (56) and using Lemma, 3.2
yields

A ok
I/ + €l < ORI (Junli, 11,0, + [Pl 2,) + ChE™p2[%, 410,

The final result is obtained with a triangle inequality and approximation
results.

Remark: Clearly, Theorem 4.1 gives an estimate of the error in the L2
norm of the Darcy velocity. The convergence rate is optimal.

Theorem 4.2 Under the assumptions and notation of Theorem 4.1, we
have

1 = Pillo,a, < ChY (Jutlky+1,00 + [P1lks,01) + Ch32|P2lkar1.0,-

where C' is a constant independent of hy and hs.
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Proof
Subtracting (30) from (36) gives

par (U1 — u1,v1) + b(v1, PL — p1) + A(Py — p2,v1) =0, Vo1 € X

Asin Theorem 4.1,1et p1 = r,(p1), P2 = rr(p2), ( = Pi—p1 and € = Po—pPo.
The error equation becomes

= b(¢,v1) = par(Ur — u,v1) + A€, v1)
— A(p2 — P2,v1) = b(v1,p1 — P1), Vvi € X,
If we decompose ¢ = C + ¢, where { = ﬁfﬂl ¢, and & = & + &, where
&= ﬁ Jo, & then (39) and (33) with property (20) yield:
| |¢+ |Q2/€ = 0.
The error equation is then rewritten

. Ol
—b(C;U1)+(1+u)C > [ vinie = pa (U —ui,01)
|Q2| e€lp €
+A(§,v1) = A(p2 — P2, v1) = b(v1,p1 —F1), Vo1 € X (57)
Since { belongs to L3(€1), there exists & € H{ (1)? such that —V - & =
and |9|1,0, < CJ|¢]lo,0,- Choose v1 = Rp(®) in (57). From properties (14),
(15) and (16), (57) is reduced to:

I o = pay(Uy—u1,v1) +A(E,v1) — A(p2 — P2, v1) —b(v1, p1 —P1). (58)

We expand and bound each term in the right-hand side of (58).

a(Uy —uy,v1) =2p Y / DU -w):D(w1)+ > a|:|e /[U1 —u1] - [v1]
peer ' P eeliur, ¢
=21 Y [{DUi —ui)n}-[vi]+2pe Y [{D@i)n.}- [Us —ui]
eeliur; ”¢ eeriur, ” ¢
+% Z /6(U1 —uy) - T12(v1 - T12)
e€l'12
= Qi+ + Qs

The bounds for Q1,Qs, @4, Qs are easily obtained:

Q1+ Q2+ Qs+ Qs < CIUL — wa|| x1||vi]| x1-
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The remaining term is bounded by introducing the interpolant %; = Rp(u1).
Q== ¥ [(pWianiel-2 Y [{D@-uwn. ol
ecriur; ”® ecTiur, ”*®

The first part vanishes because of (15) and (16) and the second part is
bounded like T3 in Theorem 4.1. Therefore, we have

a1(U1 —u1,v1) < |loil|x2 (U1 — willxr + Chi* lus |k, 41,0,)-

Let us denote by E, the element in £7 that shares the edge e of the interface
I'12. Define also the constant ¢, = ﬁ?‘ J, & From property (16) of the
operator Ry, we have

Z/fvl.nu: Z/(f—ce)vl-nlz

e€l'12 € e€l'12 €
<C N 1el”?1VEllo,z. v lo.e
e€l'1o
1/2
< Chy*|VEllo. (D Ilvrll2 ).
e€l'1o

By (21) and (23), we have

> / (B2 —F2)v1 102 < S [lps = Bollose 01l

ecl1o € e€l2
ko+1/2 .
< CHE P palis 00 (Y a3 )Y
ecl'12

Now, since vy satisfies fe v1 = 0 for any edge e in I'15, we have

(Y ll3 )2 < Chy?[Voillog, < Chy?[lvr|x:

ecl12

Therefore, the resulting bound is

A€, 1) = Ap2 =2, 01) < Oy [0l x1 (1P2 = Pollage + 152 [P y1.02).

Finally, the bound for b(vy,p1 — p1) is similar to the one obtained in (54):
b(v1,p1 — Fr) < Cllvi |l xhf pi |y 0, -

From properties (19) and (18), we have

[o1llxr < |1BA(®) = Bllx1 + 18]l x1 < Clol,a, < Clilllo:-
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Combining all the bounds above give

Il < ClUL —uillx: + Cl|P2 = palas
+CRY ([u1lky+1,00 + [P1lks,00) + Ch? |P2karr,0.- (59)
To finish the proof of the theorem, it remains to bound ||(|lo,q,. This is

accomplished by choosing a particular test function v; in (57). Let p be a
function in C?(Q)2, with compact support in  such that

Z /p-nm:l.

e€l V¢

Denote v = | |(p and choose v; = Ry (v). Note that it suffices to take
the Crouzeix-Raviart operator [6], so that v, is piecewise linear. We first
show that ||v1||x: is bounded by ||(||o,0,. By property (18) and (19), we
have:

lv1llx1 < [|Bn(B) = 2llx2 + [[2llx: < Clo]10, + [|0]]x1.

But,
13]%: = [8]20. + |4 ?IC Z (p-712)? < ClO4 |72 |ICII2
xt = V1,0, G p-Ti2)* < O] ||<||0,Ql-
€
ecl2
Thus, B
v1llx2 < Clicllo.g- (60)
With that test function vy, the error equation (57) becomes
(9] _
1+ GDICIR 0, = s (U1 = wr,00)
2
+A(€,v1) — A(p2 — P2,v1) — b(v1,p1 — P1) — b((, v1). (61)

Except for the last term, all the terms in the right-hand side of (61) are
bounded exactly as in (58). We now rewrite the last term.

b({,v1) = b({, R (D) — 9) + b((, D).

Clearly,

Go) =108 Y [ 29 < Ol Gl Il
Eeg} B

And it is easy to check that

b(C, Rn(®) = 3) < ClI¢llo.gy [|1Ba(0) = vllo,0; -
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Finally, we obtain from (61) and the bounds above:

IClloy, < ClU1 —uillx: + Cl|P2 — pallarz + CliCllo.0
+CR (|t gy 41,9, + P1lke.20) + ChE D2 lkyt1,00- (62)

The bounds (59), (62), (21) and Theorem 4.1 give the final result.
Remark: The results stated in Theorems 4.1 and 4.2 hold true in the
case where k» > 2 and the parameter oy is equal to zero, for all edges e
in 'L UTL. In this case, the proof differs in the choice of the interpolant
P2, which now has to satisfy special flux properties (see [17] for further
details).

5 Conclusion

In this paper, a discontinuous Galerkin method is formulated for the cou-
pled Stokes and Darcy equations. Both symmetric and non-symmetric
cases are considered. Optimal convergence rates are obtained for the fluid
velocity and pressure.
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