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Abstract. A population of oscillatory Hodgkin-Huxley (HH) model neurons is shown numer-
ically to exhibit a behavior in which the introduction of excitatory synaptic coupling synchronizes
and dramatically slows firing. This effect contrasts with the standard theory that recurrent synaptic
excitation promotes states of rapid, sustained activity, independent of intrinsic neuronal dynamics.
The observed behavior is not due to simple depolarization block nor to standard elliptic bursting,
although it is related to these phenomena. We analyze this effect using a reduced model for a single,
self-coupled HH oscillator. The mechanism explained here involves an extreme form of delayed bifur-
cation in which the development of a vortex structure through interaction of fast and slow subsystems
pins trajectories near a surface that consists of unstable equilibria of a certain reduced system, in
a canard-like manner. We also consider how changes in the synaptic opening rate can modulate
oscillation frequency and can lead to a related scenario through which bursting may occur for the
HH equations as the synaptic opening rate is reduced.
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1. Introduction. Recurrent excitatory networks of neurons are purported to
underly persistent activity in the nervous system. Such networks have been used as
models for wave propagation and short-term memory [2, 17]. Long-lasting excitatory
synaptic connectivity is generally sufficient to enable such densely coupled neurons
to fire repetitively at high rates after some transient input, even when the individual
neurons do not intrinsically oscillate. The ability of an excitatory network to maintain
a persistent state depends on several interacting factors. In many types of cortical
neuron models, excitatory coupling leads to asynchronous firing when the synaptic
time course lasts long enough [10]. Shortening the time constant leads to two effects;
first, the neurons can synchronize and second, thus synchronized, the network cannot
re-ignite due to the refractory period of the neurons. Studies of persistent activity
have not generally focused on differences from this standard scenario that arise due
to the intrinsic dynamics of individual neurons.

In this paper we report on a new mechanism through which persistent activity is
drastically slowed by excitatory coupling in a network of Hodgkin-Huxley neurons. In
fact, even if the neurons are intrinsically active (say through current injection), the
excitatory coupling dramatically slows them down. We will show that the mechanism
for this slowing down is a consequence of an interesting mathematical structure (a
canard) in which a trajectory passes close to a curve of points that are critical points
for the intrinsic neuronal dynamics without coupling and that switch from attracting
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to repelling with respect to this dynamics as synaptic excitation decays [3, 22]. While
delayed bifurcation resulting from slow passage infinitesimally close to such a critical
curve has been studied previously [3, 15, 16, 4], we shall see that the extreme slowing
that we observe involves a novel “vortex” structure and does not fit into the standard
class of slow passage problems that have been considered. Indeed, the dynamics
controlling the slow passage here, namely the synaptic decay, does not need to be
particularly slow for the extreme delay in activity to occur. Moreover, the slowing
phenomenon occurs over a broad parameter range, which distinguishes it from typical
canard scenarios.

Our results to relate to those of Guckenheimer et al. [8, 9], who found prolonged
interspike intervals in a model of the LP cell of the lobster stomatogastric ganglion
(see Figure 5 in [8]) and analyzed a normal form of the subcritical Hopf-homoclinic
bifurcation that gives rise to this phenomenon in the LP model. To compare our work
to theirs, we note that the system that we study has a unique, unstable critical point,
at which the synaptic variable is zero. This critical point can be made to undergo
a subcritical Hopf bifurcation as certain parameters are varied, although we do not
do this. It is also quite possible that we are working in a parameter regime that is
near a homoclinic bifurcation curve, although we do not consider this aspect of the
dynamics directly. What Guckenheimer et al. analyze, however, is not a slow passage
problem. Indeed, a crucial difference arising in the present work is that the decay of
the synaptic variable sweeps a critical point of a reduced subsystem through a Hopf
bifurcation, whereas their analysis treats periodic orbits with the full system held at a
fixed distance from bifurcation. The slow passage that we consider leads to a delayed
escape from a repelling branch of critical points for the subsystem; the normal form
asymptotic analysis in [9] does not involve delayed bifurcation, multiple timescales,
or reduced subsystems, although a slow variable does bring trajectories closer to the
Hopf bifurcation on successive oscillation cycles in the LP model. Further, we give
a directly computable estimate for the change in the synaptic variable during the
passage through the vortex structure that traps it, which translates directly into an
estimate of passage time, and we analyze the contribution of the synaptic decay rate
to the delay. The work in [9] does give an estimate for oscillation period, but this is
stated in terms of normal form variables and includes some abstract constants. We
note that a prolonged silent phase in the Hodgkin-Huxley equations was also observed
in the thorough numerical study of Doi and Kumagai [5]. There, the slowing down
was attributed simply to a decrease in the instability of the unstable equilibrium of
a certain fast subsystem; no further analysis was given, and the vortex phenomenon
was not uncovered.

In section two of this paper, we begin by demonstrating the extreme delay effect,
first in a large network of Hodgkin-Huxley neurons, then in a reduced model, and fi-
nally in a single self-coupled neuron. Since we show that the Hodgkin-Huxley networks
oscillate in near synchrony, the self-coupled neuron represents a reasonable approx-
imation of the full network behavior. In the self-coupled neuron, we show how the
slowed firing rate depends on the coupling strength, the time constant of the synapses,
and the reversal potential of the synapses. In section 3, we review the phase plane for
the reduced Hodgkin-Huxley model for a single self-coupled neuron and illustrate the
slowing mechanism there. In section 4, we introduce a polynomial approximation of
the model that encapsulates the behavior of the reduced Hodgkin-Huxley neuron in
the silent phase. We analyze this model in some detail, first showing that the usual
approach to delayed bifurcations [3, 15, 16] does not capture the slowing down that
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Fig. 1.1. Behavior of networks of excitatorily coupled neurons depends on the intrinsic dynam-
ics. (A) Persistent activity in a network of 50 cells with Traub’s pyramidal cell dynamics. Neurons
are indexed horizontally and time increases downward along the vertical axis. Grey scale depicts the
membrane potential. (B) A similar network using the dynamics due to Hodgkin and Huxley. The
first 50 milliseconds show the behavior of the uncoupled network; coupling is then turned on showing
rapid synchronization and a ten-fold increase in the oscillation period. (C) Voltage traces from cells
# 0 and # 32 (out of 50) from the simulation in figure B.

we observe and then deriving a novel approach to analyzing the delay, including its
dependence on the synaptic decay rate. The central element in this approach is that
a vortex structure develops in which the interaction of fast and slow subsystems pins
trajectories in a certain neighborhood of the critical curve mentioned above, as the
synaptic strength gradually decays. More specifically, we use this structure to derive
an appropriate way-in way-out function [3, 15, 16] that can be used to compute a
good estimate of the change in the synaptic variable as a trajectory passes through
the vortex. In section 5, we show how this vortex mechanism carries over to the
Hodgkin-Huxley system and we explore the role of the active phase in the slow os-
cillations. In particular, we see how the slowing mechanism can contribute to a form
of bursting, or alternation of sustained silent periods with periods of spiking, in the
Hodgkin-Huxley equations. Finally, in section 6, we give a further discussion of how
this work relates to some earlier results and of the open questions that remain.

2. Numerical simulations of networks. If a network of excitatory cells is
coupled together, often the network activity is asynchronous and has a much higher
frequency than the individual cell [11, 12]. This is illustrated in Figure 1.1A for 50
cells coupled together in an all-to-all manner using a biophysical model for the fast
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currents in a hippocampal neuron and synapses with a decay constant of 5 milliseconds
[23]. Individual cells do not fire on their own; the applied current is below threshold.
However, coupled together, they produce a rhythm that is nearly 400 Hz. This is an
example of strong persistent activity in an excitatory network. Contrast this behavior
with another biophysical model based on the Hodgkin-Huxley (HH) equations [13],
with the same initial conditions and all-to-all coupling. The upper part of figure 1.1B
shows asynchronous output of the network when there is no coupling; the frequency
is around 100 Hz. Here the neurons receive drive so that they fire spontaneously.
After the first 50 milliseconds, the coupling is turned on and the network rapidly
synchronizes and fires at a frequency of only about 10 Hz. Stronger coupling or
longer decay rates lead to even lower frequencies. Both networks contain only three
currents: a transient sodium current, a potassium current and a leak. The individual
voltage traces of two cells in network B are shown in figure 1.1C. They are nearly
synchronous, with out-of-phase subthreshold oscillations.

The difference in synchronization properties between these two example networks
is fairly well understood, at least in the weak coupling limit. It is known that excita-
tory coupling can synchronize or desynchronize coupled neurons depending on many
factors, such as the synaptic time constant. A very important factor is the nature of
the individual neuron. In models for which the onset of repetitive firing is through a
saddle-node on a limit cycle (e.g. figure 1.1A), excitatory coupling desynchronizes [6],
while in models for which the onset is through a Hopf bifurcation (e.g. figure 1.1B),
excitatory coupling synchronizes [11]. As it turns out, the extreme slowing observed
in the HH network also contributes to the synchronization through a form of fast
threshold modulation [20]. We will return to this point in the discussion.

Our goal in much of the rest of this paper is to understand how the frequency
of the synchronized oscillations is reduced to the extremely low rates observed in the
HH simulations. To understand this, we first reduce the four-variable model to a two-
variable system in the manner of Rinzel [18]. This will make the analysis simpler in the
subsequent sections. The same network of 50 cells for the reduced system exhibits the
same behavior as the full model (not shown); however, the cells synchronize perfectly,
unlike in the four-variable cell model. Since synchrony (or near synchrony) appears
to be a stable state of the network, we can understand the slowing down of the full
network by studying a single self-coupled reduced HH cell:

C
dV

dt
= −gL(V − VL) − gKn4(V − VK) − gNam3h(V − VNa)

+I0 − gsyns(V − Vsyn)

dh

dt
=

h∞(V ) − h

τh(V )

m = m∞(V )(2.1)

n = max(.87− h, 0)

ds

dt
= α(V )(1 − s) − s/τsyn.

The specific values of the gating functions and parameters in (2.1) are given in Ap-
pendix A. Note that the synapse has dynamics gated by the potential, V , and the
reversal potential of the synapse is Vsyn. Figure 2.1A shows the period of the self-
coupled cell as a function of the strength of coupling, gsyn, for several different synap-
tic decay rates, τsyn. This dramatic slowing down is not due to simple depolarization;
the period is a monotonically decreasing function of the applied current, I0. Further-
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Fig. 2.1. Properties of the self-coupled reduced HH model. (A) The variation of the period as
a function of the maximal synaptic conductance for different synaptic decay times. (B) Dependence
of the period on the reversal potential of the synapse; gsyn = 4 and τsyn = 10. The resting potential
of the neuron is about -65 mV. (C) V − s phase plane during a slow oscillation (trajectory shown
with circles and thick solid line) superimposed on the bifurcation diagram (thin solid and dashed
lines) for which s is treated as a parameter. The arrow depicts the value of s at which there is a
Hopf bifurcation. To compute the bifurcation diagram, we replaced the piecewise linear definition of
n in equation (2.1) with a smooth approximation.

more, if s is held constant as a parameter for gsyn fixed, then the period is roughly
constant as s increases. The mechanism for slowing down depends on the transient
nature of s(t) and its interplay with the intrinsic dynamics of the reduced HH model.
Furthermore, synaptic excitation is required for this; figure 2.1B shows the period as
a function of the reversal potential of the synapse Vsyn.

We can give a rather crude explanation for the behavior by treating the synapse
as a slow variable. Thus, in equation (2.1), we treat s as a parameter in the voltage
dynamics. For sufficiently large values of s and for gsyn large, the membrane dynamics
has a stable fixed point corresponding to depolarization block of the sodium current.
(The resting potential is so large that the sodium channels are inactivated by the
synapse.) As s is decreased, there is a Hopf bifurcation leading to large amplitude
periodic solutions. Figure 2.1C shows the V − s phase-plane with the bifurcation dia-
gram superimposed. The trajectory winds around in a clockwise motion. Essentially,
the slow oscillation is a “one-spike” elliptic burster [19, 24, 14]. That is, for large
values of s, the resting state is stable and the neuron cannot fire. Thus, the synaptic
gating variable decays. As this variable gets smaller, the trajectory passes through
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the Hopf bifurcation (shown by the arrow) and the resting state becomes unstable.
However, as can be seen in the figure and is known to occur in elliptic bursting, the
trajectory continues along the curve of unstable fixed points, to s-values well below
the Hopf point, before jumping away.

While this explanation seems somewhat satisfactory, it cannot account for the
drastic slowing down and extreme decay (to nearly 0) of s that we observe. Moreover,
the time constant of the decay in the figure (τsyn = 10 msec) is not particularly slow;
in this range it is about twice the decay rate of the inactivation variable, h. This
explanation also fails to explain related effects, such as the fact that the frequency is
a non-monotonic function of the rate of sodium inactivation. The mechanism for the
extended period is actually quite subtle, and it turns out to be better to treat the
recovery variable, h, as the slow variable and to study the dynamics in the V −h plane.
Moreover, we shall see that standard treatment of elliptic bursting and associated
delay does not predict the extent to which the period increases with τsyn here, as seen
in Figure 2.1A.

3. The V −h plane. We rewrite the equations for the reduced Hodgkin-Huxley
model:

C
dV

dt
= f(V, h) − gsyns(V − Vsyn)(3.1)

dh

dt
= αh(V )(1 − h) − βh(V )h(3.2)

where

f(V, h) = I0 − gNah(V − VNa)m3
∞

(V ) − gK(V − VK)n4(h) − gL(V − VL).

The equation for the synapse is

ds

dt
= α(V )(1 − s) − s/τsyn(3.3)

While h and s have similar time courses, h evolves much more slowly than V ,
so we refer to (3.1) as the fast equation and (3.2) as the slow equation, and we refer
to this pair of equations as (PS), for projected system. For each fixed value of s,
the solution to the equation dV/dt = 0 forms a triple-branched curve in (V, h)-phase
space, which constitutes the fast nullcline. We will also refer to the slow nullcline,
given by dh/dt = 0. Note that as s evolves, the fast nullcline of system (3.1)-(3.2)
evolves correspondingly, while the slow nullcline is independent of s. Alternatively,
for the full system (3.1)-(3.3), there exist two-dimensional fast and slow nullsurfaces
in (V, h, s)-phase space.

Solutions to the system (3.1)-(3.3) are strongly attracted to the left and right
branches of the fast nullsurface, except during fast jumps between branches. We refer
to a time period when a solution is near the left (right) branch as a silent phase (active
phase). For our analysis, we will make use of projections of solutions to (V, h)-phase
space, but it is important to note that s continues to evolve along with V and h.

3.1. Attraction to the Intersection of Nullclines and Extended Delay.

The left panel of figure 3.1 shows a numerically generated trajectory of (3.1)-(3.3),
superimposed on V -nullclines of (PS) that were numerically generated for several
different values of s. A projection of this trajectory into (V, h)-phase space appears in
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Fig. 3.1. An orbit of (3.1)-(3.3) together with relevant nullclines. In the left panel, it is
apparent that the orbit spends a long time in the silent phase near the left knees of the V -nullclines.
In the right panel, it is clear that the orbit hugs the h-nullcline until s decays very near to zero, and
then there is a small oscillation followed by a jump up to the active phase. τsyn = 20 in this figure.

the right panel, along with the V - and h-nullclines for an arbitrary fixed s near 0. In
figure 3.1, we see that after jumping down to the left surface of the fast nullcline, the
orbit travels very close to this surface, although this is not apparent in the right panel
of figure 3.1 because we have only plotted the fast nullcline for a single, very small
value of s. The orbit also appears to hug the slow nullcline as the synaptic variable
s slowly decays; in other words, the orbit is very close to the intersection of the fast
and slow nullclines for each fixed s. After a long delay, the orbit spirals away from
the intersection of the nullclines as if this intersection point, treated as a critical point
of (PS), had suddenly become unstable through a Hopf bifurcation at some small s.
This is not the case; although there is a Hopf bifurcation and a loss of stability as
s decays, the orbit remains near the nullcline until s reaches values well below the
bifurcation point.

The intersection of the nullclines may be viewed as a critical point of (PS) with
s fixed as a parameter. The stability of the critical point changes when s ≈ 0.222 for
the default parameter set, while the escape seen in Figure 3.1 occurs when s ≈ 0.003.
This means that the orbit is attracted toward the intersection (or not repelled) while
that intersection represents an unstable fixed point of (PS). The objectives of this
and the following section are to explain why this delayed exit occurs and to derive an
analytical expression that gives a good estimate of the duration of this delay.

3.2. Ingredients for the Delay. The problem presented here is that orbits ap-
pear to be attracted to a curve of unstable critical points. However, each critical point
is only unstable for fixed s. For the full system (3.1)-(3.3), s decays during the silent
phase, and so there are no true critical points with s > 0. So, we cannot immediately
assume that the intersection will repel the orbit once it is unstable with respect to
(PS). Linear stability analysis for critical points of (PS) may not be appropriate for
the system (3.1)-(3.3). Somehow, one needs to take into account the dynamics of s to
explain the delay in escape from the silent phase. Previous authors have contended
with this issue in slow passage problems [3, 15, 16, 1, 4] and in elliptic bursting in
particular [19, 24, 14, 21]. Unless 1/τsyn � ε, however, equations (3.1)-(3.3) do not
fit the standard slow passage assumptions.

Also, because the slow nullcline has negative slope with respect to the variable
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V (in the (V, h)-plane), the intersection of the nullclines is moving left in the phase
plane (as s decreases). Because the trajectory is to the left of the slow nullcline,
there is a linear component of attraction between the trajectory and this nullcline.
When the trajectory is close to both nullclines, the rates of change of V and h become
comparable, and this attraction can compete with any repulsion due to V dynamics.

Finally, for a value of s near the Hopf bifurcation, the nullclines are in the fold
canard configuration [3]. Though this only lasts for a short period of time, it may
provide a mechanism for a canard to arise in the full system. In this paper we
will not use a singular slow fast decomposition, and we will not use the tools of
non-standard analysis [3]. Nevertheless, the canard configuration appears to be an
imperative structural feature in any system that demonstrates this extended delay,
for reasons that we shall see below.

4. A Simple System. To do any analysis directly, a simpler model than (3.1)-
(3.3) is useful to characterize the relevant dynamics in the silent phase, although the
conclusions of the analysis are expected to hold for more general systems. For the sake
of analysis, the system will ideally have nullclines that are represented by polynomials.
Based on the observations from the previous subsection, our model must incorporate
the following characteristics:

• The slow nullcline has a negative slope with respect to the fast variable,
provided the trajectory approaches the slow nullcline from the left after it
enters the silent phase (see figure 3.1). If the approach is from the right, then
the slope of the curve must be positive.

• The intersection of the fast and slow nullclines is a stable critical point (when
parameterized by s) of the intrinsic equations for large values of s, and then
changes stability via a Hopf bifurcation induced by a transversal crossing of
a conjugate pair of eigenvalues through the imaginary axis, away from the
origin, as s decays. For a value of s near the Hopf bifurcation, the nullclines
must be in the regular fold canard configuration, discussed in [3].

• The vector field of the system is analytic [15, 16] and autonomous during the
silent phase.

4.1. The Model. The model used for all analysis during the silent phase is

dx

dt
= −f(x) + y − I(s)x(4.1)

dy

dt
= −ε(y +

1

4
x5)(4.2)

ds

dt
= −

s

τsyn
(4.3)

where 0 < ε � 1. For simulations in this paper, the function f in equation (4.1) is

f(x) =
1

4
x3 − 2x

and the synaptic current function I is

I(s) =
3

2
s
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Note that this model does not oscillate, but trajectories do jump up from the silent
phase. This is sufficient for consideration of behavior during the silent phase. It is
not necessary to consider the active phase (when spikes occur) in order to explain the
slow release; however, we will return to the study of the role of the active phase for
the HH equations, and bursting in particular, later in the paper.

4.2. Some Notation. For the remainder of the paper, the following notation
will be used. Nf (x, s) is the y-coordinate of the fast nullcline ( dx

dt = 0) for a given x

and s. Similarly, Ns(x) is the y-coordinate of the slow nullcline ( dy
dt = 0) for a given

value of x. Note that ∂Nf/∂s < 0, that Ns(x) does not depend on s, and that these
two curves intersect for each fixed s. Let (x̃(s), ỹ(s)) denote the curve of intersection
points.

For the system given in (4.1), (4.2), the functions Nf (x, s) and Ns(x) are given
by

Nf (x, s) = f(x) + I(s)x

Ns(x) = −
1

4
x5

The intersection of these curves is easily found for each value of s.

4.3. The Usual Approach. Though the trajectory is visibly separated from
the intersection of the fast and slow nullclines in the right panel of figure 3.1, it is
still possible that the release value of s can be approximated using the variational
equation around (x̃(s), ỹ(s)). Indeed, this approach has been taken previously to
analyze delayed escape in slow passage through a Hopf bifurcation through use of a
way-in way-out function [3, 15, 16]. This function relates the attraction of the orbit
before the Hopf bifurcation to the repelling of the orbit after the change of stability has
taken place. We shall see that in our case, this approach is not necessarily appropriate.

We now demonstrate the poor performance of the standard way-in way-out, com-
puted using the equation of first variation along the curve (x̃(s), ỹ(s)). Let J be the
Jacobian matrix of the system defined by equations (4.1)-(4.2) along (x̃(s), ỹ(s)). We
have that

J(s) =

(

− 3
4 x̃(s)2 + 2 − I(s) 1

−ε 5
4 x̃4(s) −ε

)

(4.4)

The equation of first variation is

d

ds

(

x
y

)

= −
τsyn

s
J(s)

(

x
y

)

(4.5)

The solution to equation (4.5), taken from a starting point (x0, y0, senter), is

(

x
y

)

= exp

(
∫ s

senter

−
τsyn

s
J(s)ds

) (

x0

y0

)

(4.6)

Given an senter , we may solve the equation

∣

∣

∣

∣

∣

∣

∣

∣

exp

(
∫ s

senter

−
τsyn

s
J(s)ds

) (

x0

y0

)∣

∣

∣

∣

∣
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∣

2

=

∣
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∣
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(4.7)
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where x, y are functions of s since they solve (4.5).

In typical slow passage problems [3, 15, 16, 4], this sexit provides a good approxi-
mation for the release value of s. The results for the system under consideration here
are not good, especially for the lower values of τsyn tested. This poor performance
does not contradict the standard theory; this approach breaks down precisely when
the passage rate determined by the decay of s in equation (4.3) is not sufficiently slow
in comparison with the rate of change in equation (4.2). The value of the approxi-
mated value of sexit over a range of τsyn is shown in figure 4.1. The standard way-in
way-out analysis overestimates sexit. Since s decays in the silent phase, this means
that this approach underestimates the amount of time spent in the silent phase.

Notice further that the sexit curve generated here is rather flat. This is expected
because the linearization of the system when s is used as a parameter does not depend
on τsyn. The slight curvature of the sexit curve that is visible in figure 4.1 is due to
the fact that different values of senter satisfy the entrance criterion (see caption) for
different τsyn. Simulations (dotted line in figure 4.1) suggest that the true value of
sexit varies as the logarithm of τsyn. Correspondingly, it appears that spiking can
occur at arbitrarily low frequencies as τsyn increases.

It is now apparent this is not a standard way-in way-out problem about the curve
of critical points of a slow fast system. In the following sections, we will propose a
mechanism for the increased delay, perform the corresponding analysis, and demon-
strate that it gives a much better estimate of the observed delay than that given by
the usual analysis done in this section, up to values of τsyn for which 1/τsyn � ε.

4.4. The Trapping Mechanism. As s → 0, the fast nullcline moves upward
in the y-coordinate, since ∂Nf/∂s < 0. In simulations, it appears as if orbits of
(4.1)-(4.3) (or of (3.1)-(3.3)) track very close to the intersection curve of the fast and
slow nullclines. To understand what organizes the flow near this curve, it is useful to
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set A(s) also includes all points to the right of Ns(x), but only the shaded region is relevant.

define the following set:

A(s) = {(x0, y0)|
dy

dt
(x0, y0) <

dNf

ds
(x0, s)

ds

dt
}.(4.8)

This set consists simply of the points in the (x, y)-plane such that a trajectory that
passes through the point (x0, y0) ∈ A travels more slowly in the vertical direction
(y-direction) than the point on the fast nullcline with the same x-coordinate does.

Because Nf (x, s) increases as s decreases for fixed x, we have that
dNf

ds (x0, s)
ds
dt > 0,

which guarantees that A(s) is non-empty for each s. In particular, dy/dt < 0 to the
right of the slow nullcline, so all of the (x, y)-plane to the right of the slow nullcline
belongs to A(s). As x → −∞, dy

dt → ∞ as well (see (4.2)), so for each fixed y, there

exists x sufficiently negative such that dy
dt > (dNf /ds)(ds/dt); similarly, for each fixed

x, there exists y sufficiently negative such that this inequality holds. Thus, A(s) is
bounded to the left and below, and the boundary ∂A(s) is a curve, which we denote
y∂A(s)(x), in the (x, y) plane. For the simple system (4.1)-(4.2), we can express the
boundary curve ∂A(s) as the graph of a function:

y∂A(s)(x) = −
1

4
x5 +

3xs

2ετsyn
.(4.9)

Notice that y∂A(0)(x) = Ns(x), and that as τsyn → ∞, y∂A(s)(x) → Ns(x).
Figure 4.2 shows the curve ∂A(s) for s = .0326, along with Nf (x, s) and Ns(x).

For the value of s in figure 4.2, if the trajectory lies to the right of the curve ∂A(s) then
Nf (x, s) will be moving upward faster than the trajectory. Likewise, if the trajectory
lies to the left of the curve, then the nullcline will be moving upward slower than the
trajectory.

The intersection of the curves ∂A(s) and Nf (x, s) turns out to be extremely
important for the delay phenomenon under study. The curve defined by these inter-
section points for a range of s values forms an attractor for values of s for which,
from the perspective of the analysis done in section 4.3, the intersection of Nf and Ns

corresponds to a repelling set. Suppose that a trajectory lies below Nf (x, s) and to
the right of ∂A(s). Thus, the trajectory and Nf (x, s) are separating, but dx

dt < 0, and
so eventually the trajectory crosses ∂A(s) and then begins to catch up to Nf (x, s).
This may result in a net contraction toward ∂A(s)∩Nf (x, s). The y-coordinate of the
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Nf (x, s). Trajectories to the left of ∂A(s) pass to y-values above the observer, trajectories to the
right fall behind. The left and right movement is dependent on whether the trajectory is above or
below the curve Nf (x, s).

trajectory will eventually increase through Nf (x, s), such that dx
dt > 0 results. This

causes the trajectory to again cross the curve ∂A(s), and another contraction toward
∂A(s)∩Nf (x, s) may occur as Nf (x, s) catches up to the trajectory. Thus, the inter-
section curve of ∂A(s) and Nf (x, s), while not itself invariant under the flow, creates
a moving vortex, or core about which the flow spirals. The flow diagram around this
core, projected to the (V, h)-phase plane, is shown in figure 4.3.

This moving vortex structure generates a trapping mechanism within the flow.
Simulations show that trajectories follow the vortex curve very closely during the
silent phase. Using a change of variables, we next explore the stability of the vortex
curve and its impact on delayed escape from the silent phase.

4.5. Equations of the Moving Vortex. To focus on the moving vortex, we
will shift the system so that the intersection, say (x̂(s), ŷ(s)), of ∂A(s) and Nf (x, s)
occurs at the origin for all s. For the simplified model, note that one can obtain explicit
expressions for this intersection point. A linear change of variables, z1 = x− x̂(s) and
z2 = y − ŷ(s), yields the following system

dz1

dt
=

dx

dt
−

d

ds
x̂

ds

dt
(4.10)

dz2

dt
=

dy

dt
−

d

ds
ŷ
ds

dt
,(4.11)

which can also be written

dz1

dt
= f1(z1, z2, s)(4.12)

dz2

dt
= f2(z1, z2, s),(4.13)

where s is governed by (4.3).
If s is fixed as a parameter then we may compute the linearization of system

(4.12)-(4.13) about the vortex point (z1, z2) = (0, 0). Though (0, 0) is not a critical
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Fig. 4.4. Change of stability. The solid line represents the value of s where the sign of the real
part of the complex conjugate pair of eigenvalues changes along the curve (x̂(s), ŷ(s)). The dotted
line shows the value of s when the curve of critical points for (4.1)-(4.2) changes stability. This
value is not dependent on τsyn.

point for system (4.12)-(4.13), the sign of the real part of the complex conjugate
pair of eigenvalues of the linearized system will still yield information about to what
extent the neighborhood around the point acts as an attractor, as discussed above.
Also, because the parameter τsyn was incorporated into the linear component of the
system during the change of variables, the value of s where the eigenvalues’ real part
changes sign is not invariant with respect to τsyn, as it is using the regular approach
discussed in Section 4.3. The value of s where the eigenvalues’ real part changes sign
is shown in figure 4.4. This is encouraging because it demonstrates a lower value
for the change of stability in addition to a dependence on τsyn, both of which are
apparent in simulations but lacking in the analysis in Section 4.3.

4.6. Release Value for s. Because the Hopf bifurcation takes place at a smaller
value of s in the linearization of system (4.12)-(4.13) about (0, 0) than observed in the
linearization of (4.1)-(4.2), we expect that the linearization of system (4.12)-(4.13)
will provide an improved estimate of the exit value for s, relative to the analysis in
Section 4.3, at least until τsyn becomes extremely large. In addition to the geometric
argument given in Section 4.4, an analytical justification for this expectation is given
in Appendix B.

Now that we have transformed to the frame of the moving vortex, the analysis
itself proceeds as in Section 4.3. We rewrite equations (4.12)-(4.13) in vector form as

d~z

ds
= −

τsyn

s
~f(~z)(4.14)

The equation of first variation on the vortex curve (z1, z2) = (0, 0) is

d~z

ds
= −

τsyn

s
~f~z(0, 0)~z(4.15)

The solution to equation (4.15) is given by

~z(s) = exp

(

−τsyn

∫ s

s0

1

w
~f~z(0, 0)dw

)

~z(s0)(4.16)
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Fig. 4.5. Improved estimate of sexit. As a function of τsyn, the exit value sexit is derived
from solution of equation (4.17) (dashed line) and numerical solution of the full translated model
(4.1)-(4.3) (solid line). The entrance criterion for this figure was ||z||2 = 0.03, and again ε = 0.01.

To approximate the value of s where release begins to occur, we choose a value senter

satisfying an entrance criterion, ||z||2 = η. We solve the equation

||~z(s)||2 =

∣

∣

∣

∣

∣

∣

∣

∣

exp

(

−τsyn

∫ s

senter

1

w
~f~z(0, 0)dw

)

~z(senter)

∣

∣

∣

∣

∣

∣

∣

∣

2

(4.17)

The results of this estimation for a range of τsyn are shown, along with results from
full numerical simulations, in figure 4.5. The approximation is much better than the
one obtained in Section 4.3 for low to moderately high values of τsyn.

Remark 1: In principle, there exists some curve, say (xopt(s), yopt(s)), such that
linearization about this curve yields an optimal estimate of sexit. Numerical simula-
tion suggests that system (4.12)-(4.13) has a fixed point for each s, and this is the
natural candidate about which to linearize this translated system. (In terms of Ap-
pendix B, linearization about this curve would yield a truly linear system in equation
(8.8).) However, it is not clear how to access this curve numerically, and the geometric
arguments and numerical computations done here, along with the analytical calcula-
tion in Appendix B, show that the moving vortex curve is a good approximation to
(xopt(s), yopt(s)) to use for estimation of sexit.

Remark 2: Unfortunately, for very large values of τsyn, the approximation loses
accuracy and gives a similar, but slightly less accurate, performance to the standard
approach. Recall that the moving vortex point is defined as the intersection of ∂A(s)
with the fast nullcline Nf (x, s) for each s. The boundary ∂A(s) is given by dy

dt =
∂Nf

∂s
ds
dt = −

∂Nf

∂s
s

τsyn
. As τsyn increases, ∂A(s) therefore approaches the slow nullcline,

and correspondingly the moving vortex point approaches the intersection of the fast
and slow nullclines, which is exactly the moving critical point used in the standard
analysis. This explains why the moving vortex analysis is similar to the standard
analysis for sufficiently large τsyn. However, the transformation (4.10)-(4.11) brings
τsyn into equations (4.12)-(4.13), so the two approaches remain non-identical.

Remark 3: It is important to note that the results of our approach do depend on
the value of η chosen for the entrance criterion. Because we take the equation of first
variation of (4.12)-(4.13) about the vortex curve (z1, z2) = (0, 0), rather than about
the translated version of the optimal curve (xopt, yopt) discussed in Remark 1, we
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Fig. 4.6. The approximation curve and the actual curve using the value η = 0.025 (left panel)
or η = 0.035 (right panel) as the entrance criterion. The results are not as good as in figure 4.5.

cannot choose η arbitrarily small. The behavior in a very small neighborhood of the
origin, and the time to exit this neighborhood, do not perfectly capture the behavior
near the optimal curve. Also, η cannot be chosen too large. Large η will result in
failure of the approximation provided by the equation of first variation, and nonlinear
terms may dominate. There must be an ideal entrance value, in the sense that the
results obtained provide the most accurate approximations. Figure 4.6 shows the
results derived from less appropriate values of η than that used in figure 4.5. Note,
however, that these results are still better than the standard approach (figure 4.1)
over the lower range of τsyn values considered.

5. The HH equations.

5.1. Mechanism for Slow Oscillations. In Section 4, a simplified model was
used to elucidate a mechanism, involving trapping of trajectories near a vortex curve,
by which slow synaptic decay results in an oscillation with a very long period. Because
our simplified model satisfies the conditions listed at the start of Section 4, this model
is an appropriate subject for analysis, and we expect that the argument and findings
from Sections 4.4-4.6 carry over directly to the reduced HH model (3.1)-(3.3).

Indeed, numerical study strongly suggests that the mechanism for slow oscillations
in the HH equations is identical to that of the simple model. Again, there is a vortex
curve which is stable longer (for smaller s) than is the fixed point curve created by the
intersection of the fast and slow nullsurfaces. Figure 5.1 shows the analog to figure
4.2 for the reduced HH equations.

5.2. The Active Phase. Up to this point in this paper, our analysis has only
concerned what occurs during the silent phase of oscillations. By changing the recov-
ery capability of the synapse, we can either make the slow behavior discussed above
more pronounced, or we can eliminate the silent phase completely. The latter results
in high frequency oscillations, and for appropriate values of τsyn this can induce burst-
ing. Before discussing bursting, however, we take a closer look at how the recovery
of the synapse depends on parameters in the model, assuming that a prolonged silent
phase has occurred.

Under the flow of the reduced HH system (3.1)-(3.3), the synapse recovers (s
increases) during the active phase, which begins when the cell jumps up from the
vicinity of a left knee of the fast V -nullsurface and terminates when the cell jumps
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is moving more slowly in the direction of increasing h than is the fast V -nullcline.

down from a right knee of this nullsurface. If we let F (V, h, s) denote f(V, h) −
gsyns(V −Vsyn), then the knees are the two solutions of F (V, h, s) = ∂F (V, h, s)/∂V =
0, parametrized by s. More precisely, we can solve F (V, h, s) = 0 for V = V (h, s),
and then solve ∂F (V (h, s), h, s)/∂V = 0 for h = h(s), such that V = V (h(s), s).

We can implicitly differentiate the equation

f(V (h(s), s), h(s), s) − gsyns(V (h(s), s) − Vsyn) = 0

with respect to s to obtain

∂f

∂V

[

∂V

∂h

dh

ds
+

∂V

∂s

]

+
∂f

∂h

dh

ds
−(5.1)

gsyns

(

∂V

∂h

dh

ds
+

∂V

∂s

)

− gsyn(V (h(s), s) − Vsyn) = 0.

Substitution of ∂F (V (h(s), s), h(s), s)/∂V = 0 into equation (5.1) yields ∂f
∂h

dh
ds =

gsyn(V (h(s), s) − Vsyn). Rewriting this as a formula for dh/ds and substituting the
currents in f from Appendix A, as well as Vsyn = 0, yields

dh

ds
=

gsynV

−gNam3(V )(V − Vna) − 4gKn3(h)(V − Vk)dn
dh

(5.2)

where V = V (h(s), s) and h = h(s). If we insert parameter values from Appendix A,
as well as the range of V values found in the silent phase (say h = hL(s)) or the active
phase (say h = hR(s)), into equation (5.2), we find that both dhL/ds and dhR/ds are
quite small, at most about .02. Thus, we will assume that there is a fixed value hL of
h at the jump up from the silent phase to the active phase and a fixed value hR of h
at the jump down from the active phase to the silent phase.

Now, in the active phase, we have

dh

ds
=

αh(V )(1 − h) − βh(V )h

α(V )(1 − s) − s/τsyn
.(5.3)
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Make the further approximations that α(V ) ≈ α and dh/dt ≈ −βh, for α, β constant,
in the active phase, and let τ = α + 1/τsyn. Then direct integration of equation (5.3)
from (h, s) = (hL, 0) to (h, s) = (hR, smax) yields

smax =
α

τ
(1 − Hτ/β)(5.4)

where H = hR/hL. Equation (5.4) gives an estimate of how the level to which the
synaptic variable s recovers in the active phase depends on the parameters of the HH
equations, particularly α (the approximate value of α(V ) in (3.3)), the synaptic decay
rate τsyn, and the active phase decay rate of h from (3.2), approximated by β.

In figure 5.2, we compare this approximation of smax to the value obtained from
numerical simulation of (3.1)-(3.3) and to an alternative, naive approximation to smax,
namely α/(α + τ−1

syn). This corresponds to the value of s that would be reached if
synapses responded instantaneously to voltage. We show how smax depends on α for
several values of τsyn, and also how smax depends on τsyn for α = 2, corresponding
to the default value of α0 for the simulations in the other sections of this paper (see
Appendix A). Note that there is some ambiguity in how to select the approximate
decay rate β for h, since this rate typically remains near a constant value throughout
much of the active phase but then decreases near the right knee, as the decay of h
slows. We neglect the slowing near the right knee, which accounts for some of the
error in figure 5.2.

It is interesting to note that for fixed α, the value of smax is roughly independent
of τsyn, such that the active phase contributes little to the slowing that occurs as
τsyn is increased, as discussed in the previous sections. As α increases, smax increases
correspondingly. This leads to a larger senter in equation (4.17), which in turn yields
a smaller sexit. Hence, the duration of the silent phase increases with α. We explore
a further implication of this dependence in the Section 5.3.

5.3. Bursting. Consider figure 5.3A. This figure shows the bifurcation structure
for (3.1)-(3.2) as s varies for gsyn = 2, while figure 5.3B shows the voltage trace of a
two-spike burst solution to (3.1)-(3.3). This solution was obtained by greatly reducing
the function α(V ), thereby reducing the turn-on of the synapse during the active
(spiking) phase. Any number of spikes can be seen in a burst by scaling the recovery
function appropriately.

As we have seen, during the time that a cell spends in the silent phase, its synaptic
variable decays beyond the point where the fixed point (intersection of fast and slow
nullclines) of the system (3.1)-(3.2) becomes unstable (s lies below the Hopf point at
s ≈ 0.22 in figure 5.3A). During the active phase, the synaptic variable s increases
as specified in equation (3.3). If s does not recover enough to reach a value for
which the fixed point of (3.1)-(3.2) is stable (s > 0.22 in our example), then after
it jumps down to the silent phase, it will not be attracted toward the slow nullcline
or the vortex structure. Instead, the orbit tends toward the fast nullcline and the
phase plane looks like a standard (oscillatory) relaxation oscillator. This results in a
subsequent rapid jump to the active phase when the left knee of the fast nullcline is
reached, corresponding to a rapid second spike, as seen for example at the start of
the simulation in the right panel of figure 5.3. Alternatively, if s does increase beyond
the bifurcation point, then the silent phase becomes prolonged again; however, if it is
still close to the bifurcation point, the silent phase duration is still reduced relative to
that seen for large s, based on equation (4.17). Figure 5.3 shows the recovery of the
synaptic variable, s, during the two spike burst shown in the right panel of figure 5.3.
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Fig. 5.2. The dependence of synaptic recovery level, smax, on the rate of synaptic rise (α)
and decay (τsyn). In each panel, the dashed line corresponds to the naive approximation smax ≈

α/(α + τ−1
syn), the solid line corresponds to equation (5.4), and the thick dotted line corresponds

to the actual value of smax attained in numerical simulations of (3.1)-(3.3). A: τsyn = 20. B:
τsyn = 100. C: τsyn = 500. D: α = 2.

6. Discussion. It is generally assumed that synaptic connections between ex-
citatory neurons have the effect of strengthening and accelerating neuronal firing.
Indeed, part of the accepted theory of computation in cortical circuitry is that if
input is strong enough to make some excitatory cells fire, then recurrent excitation
among excitatory cells amplifies this activity, whereas if inhibitory input comes in be-
fore the excitatory cells can become active, then this inhibition shuts them down. In
this paper, we explore a scenario in which recurrent excitation instead causes a drastic
slowing of firing. We find this effect, over a broad range of parameter values, in a
network of standard, biophysically-derived Hodgkin-Huxley model neurons, coupled
with slowly decaying synaptic excitation. This highlights the important point that
the effects of synaptic inputs in neuronal networks depend on the intrinsic dynamics
of the cells in the network, together with the timescale of the synaptic inputs. It re-
mains to explore the functional consequences of this result, particularly in a network
of interconnected excitatory cells and inhibitory interneurons.

Since we find that synaptic excitation is strongly synchronizing in this model
network (up to small differences in subthreshold oscillations), we study the mechanism
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Fig. 5.3. Bursting in the HH model. (A) shows the bifurcation diagram for the HH equations
with s as the bifurcation parameter (as shown in figure 2.1C). The curve at V ≈ −60 corresponds
to the critical point of system (3.1)-(3.2) formed by the intersection of the fast and slow nullclines.
This becomes unstable via a subcritical Hopf bifurcation as s decreases. (B) shows a two-spike burst
solution. During the first spike of a two-spike burst, the s value does not recover enough to exit
the regime where the critical point is unstable. The second recovery brings s into the stable regime,
which yields a prolonged silent phase. (C) shows the synaptic variable, s(t) during this burst. The
dashed horizontal line is the value of s where the critical point (parametrized by s) changes stability.
Because this stability is necessary to obtain a cycle with arbitrarily long period, the oscillator only
experiences a prolonged silent phase once s has exceeded this threshold. Parameter values for this
plot are τsyn = 20 and α0 = 0.15.

behind this synaptic slowing in a self-coupled neuron. The synchronization seen here
in part results from the phase response properties of HH neurons [11]. Further, the
extreme slowing in the silent phase enhances the synchronization tendency. We have
seen that this slowing involves a prolonged residence near the left knee curve of a
fast nullsurface. In a population of many cells in a near-synchronized state, a strong
spatial compression occurs during this residence. As soon as one cell jumps up to
the active phase, fast threshold modulation (FTM) [20] will pull the other cells up as
well. This compression and FTM easily overwhelm any desynchronization that may
occur in the other stages of an oscillation.

We use a simplified model to elucidate the moving vortex canard mechanism by
which slowly decaying synaptic excitation prolongs the silent phase between spikes,
and this mechanism carries over to the HH model. The scenario that we study truly
meets the criteria for a canard, since the fast (V ) and slow (h) nullclines of the HH
model, with s taken as a parameter, are in a regular fold canard configuration for
an s-value near that at which the intersection of the nullclines loses stability via a
Hopf bifurcation [3]; see also [22]. Moreover, the solutions to the full system spend
a significant period of time traveling along the middle branch of the V -nullsurface
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(although they remain extremely close to the curve of knees; see figure 3.1). Unlike
typical canards, however, the delayed solutions that we study are easy to find, occur-
ring over a broad range of synaptic decay rates. We do not discuss the precise size
of the region in phase space from which trajectories are drawn to the vortex region,
for fixed parameter values. This may relate to attraction to a stable manifold of the
s = 0 critical point of the HH model in the vicinity of a homoclinic bifurcation, as
discussed in [9], but we have not explored this issue.

According to previous analytical results, one should be able to estimate the change
in the slow variable s that will occur during the silent phase using a way-in way-
out function [3, 15, 16]. This function incorporates information from the projected
system derived by treating s as a parameter. Specifically, it involves the eigenvalues
of the linearization of the projected system about an appropriate curve of critical
points (parametrized by s). The eigenvalues correspond to rates of decay and growth
toward this critical point curve. This approach has been used previously in neuronal
networks to study elliptic bursting, in which there is a delayed escape from a curve
of critical points that are unstable with respect to a fast subsystem [19, 24, 14, 21].
However, the novel vortex phenomenon that we have identified causes this approach
to underestimate the change in s in the silent phase, and correspondingly the time
spent there, for a large range of synaptic decay rates.

The vortex structure develops through a breakdown in the distinction between fast
and slow dynamics in the vicinity of the critical point curve for the projected system.
The corresponding flow pins trajectories near a vortex curve, which itself lies close to
the curve of critical points, for a prolonged period, as the synaptic strength gradually
decays. We use the vortex curve to approximate a release threshold for the synaptic
variable s, relative to a specified criterion for entrance into the trapping regime. This
approach makes use of a set A, determined by the dynamics of the system, that is
central to the vortex effect. In particular, A relates to the relative rates of change of
the non-synaptic slow variable and the position of the fast nullcline. Note that the
position of the fast nullcline depends on the size of the synaptic variable s. Further,
while there are three possible timescales corresponding to the rates of change of the
three dependent variables (V, h, s) in the problem, the rate of change of the non-
synaptic slow variable (characterized by ε) and the synaptic decay rate 1/τsyn are
comparable over much of the range of τsyn that we consider. A full mathematical
analysis of the vortex mechanism, and in particular the types of vector fields and
range of timescales for which computations based on the vortex curve will always give
small errors, remains open for consideration.

While we introduce the vortex mechanism and perform relevant calculations in
the context of a simplified model related qualitatively to the silent phase features of
the HH system, we illustrate numerically that the same ingredients are also present
in the reduced HH equations (e.g. figure 5.1). Numerical simulations of the full HH
model show a similar prolongation of the silent phase, with a strong dependence on
the synaptic decay rate τsyn; indeed, such simulations led us to note and seek an
explanation for the delay mechanism in the first place. In the reduced HH equations,
we connect the active phase of oscillations to the silent phase by considering how the
synaptic recovery rate α affects the level to which s recovers. This affects the level of s
at which trajectories enter the trapping region (quantified by our choice of η), in turn
affecting our estimation of s at release from the silent phase (see equation (4.17));
however, as discussed in Section 5.2, the level of s at release feeds back little effect on
the level to which s recovers in the active phase. By exploiting our understanding of
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the interaction of intrinsic and synaptic dynamics, we also describe how the fast-slow
structure allows for bursting in the HH equations. While this can be considered as
elliptic bursting, the burst frequency can be quite slow, as the prolonged silent phase
again occurs in the intervals between bursts of spikes.

7. Appendix A. The gating functions for h in equation (3.2) are

αh(V ) = .07φ exp(−(V + 65)/20),

βh(V ) = φ/(1 + exp(−(V + 35)/10)).

The m and n gating variables are slaved to V and h respectively by

m =
αm(V )

αm(V ) + βm(V )
,

h = .801− 1.03h,

where

αm(V ) =
0.1φ(V + 40)

1 − exp(−(V + 40)/10)
,

βm(V ) = 4φ exp(−(V + 65)/18).

The synaptic recovery function, α(V ), is given by

α(V ) =
α0

1 + exp(−V/Vshp)

Parameter values for all simulations are VNa = 50, VK = −77, VL = −54.4, gNa = 120,
gK = 36, gL = 0.3, c = 1, φ = 1, Io = 13, Vshp = 5, gsyn = 2, and Vsyn = 0. Also,
α0 = 2 in all sections except Section 5.2, where it is varied, and Section 5.3, where
bursting is discussed.

8. Appendix B. Consider the model system (4.1)-(4.3), which we express as

dx
dt = y − Nf (x, s)

dy
dt = −ε(y − Ns(x))

ds
dt = −s/τsyn

(8.1)

Note that we can express (8.1) as a pair of equations

− s
τsyn

dx
ds = y − Nf (x, s)

s
ετsyn

dy
ds = y − Ns(x)

(8.2)

To find the “vortex point” (x̂(s), ŷ(s)) about which to linearize, we solve

y = Nf (x, s)(8.3)
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and

dy(x, y)/ds = ∂Nf (x, s)/∂s.(8.4)

Together with equation (8.4), the second equation of (8.2) gives

ετsyn(ŷ − Ns(x̂))/s = ∂Nf (x̂, s)/∂s.(8.5)

Implicit differentiation of equation (8.3) along the solution (x̂(s), ŷ(s)) gives

∂Nf (x̂, s)/∂s = dŷ/ds − (∂Nf (x̂, s)/∂x)(dx̂/ds).(8.6)

Together, equations (8.5) and (8.6) yield

dŷ

ds
=

ετsyn

s
(ŷ − Ns(x̂)) +

∂Nf (x̂, s)

∂x

dx̂

ds
.(8.7)

Substitute (x̂(s)+u(s), ŷ(s)+ v(s)) into (8.2) and linearize about (x̂, ŷ) to obtain

− s
τ

du
ds = s

τ
dx̂
ds + ŷ + v − Nf (x̂, s) − u(∂Nf (x̂, s)/∂x)

s
ετ

dv
ds = − s

ετ
dŷ
ds + ŷ + v − Ns(x̂) − u(dNs(x̂)/dx)

(8.8)

In the first equation of (8.8), ŷ = Nf (x̂, s). From (8.7), we have

s

ετ

dŷ

ds
= ŷ − Ns(x̂) +

s

ετ

∂Nf (x̂, s)

∂x

dx̂

ds
.

Thus, equation (8.8) becomes

− s
τ

du
ds = s

τ
dx̂
ds + v − u(∂Nf (x̂, s)/∂x)

s
ετ

dv
ds = v − u(dNs(x̂)/dx) − s

ετ (∂Nf (x̂, s)/∂x)(dx̂/ds)
(8.9)

Note that while this is a “linearized” equation, the right hand side is not linear in
(u, v) because the vortex point is not a critical point of equations (8.2).

At this point, we make a key assumption. Since the trajectory lies in the vicinity
of the knee during the time over which the vortex calculation is done, we henceforth
assume that ∂Nf (x̂, s)/∂x = 0. In some sense, this amounts to assuming that the
system is in a “vortex canard” configuration, since it specifies that the boundary
∂A(s) should intersect Nf (x, s) at the knee of Nf (x, s). Clearly this assumption
is not precisely satisfied; however, a straightfoward generalization of the calculation
below shows that any error resulting from the violation of this assumption will be of
the same order of magnitude as (∂Nf (x̂, s)/∂x)(dx̂/ds).

Next, we express (u(s), v(s)) = (u1(s), v1(s)) + (ũ(s), ṽ(s)) where (u1, v1) is a
critical point of (8.9); that is, (u1, v1) solves

0 = s
τ

dx̂
ds + v

0 = v − u(dNs(x̂)/dx)
(8.10)

Note that (u1(s), v1(s)) = O(1/τsyn), while (u′

1(s), v
′

1(s)) = O(1/τsyn) as well since
the determinant of coefficients (dNs(x̂)/dx) 6= 0. Substitution of this decomposition
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of (u(s), v(s)) into equation (8.9) yields

− s
τ

dũ
ds = s

τ
du1

ds + s
τ

dx̂
ds + v1 + ṽ

= s
τ

du1

ds + ṽ

= O(1/τ2
syn) + ṽ

s
ετ

dṽ
ds = − s

ετ
dv1

ds + v1 − u1(dNs(x̂)/dx) + ṽ − ũ(dNs(x̂)/dx)

= − s
ετ

dv1

ds + ṽ − ũ(dNs(x̂)/dx)

= O(1/τsyn) + ṽ − ũ(dNs(x̂)/dx)

where we have assumed in the final line that ετsyn = O(1). Thus, when ετsyn = O(1),
the error in using the equation of variations in the vortex approach is of O(1/τsyn).

Contrast this with the usual approach, Here one solves 0 = y − Nf (x, s) and
0 = y − Ns(x) to obtain (x̃(s), ỹ(s)). As previously (equation (8.2)), we have

− s
τ

dx
ds = y − Nf (x, s)

s
ετ

dy
ds = y − Ns(x)

and we now linearize about (x̃(s) + u(s), ỹ(s) + v(s)) to obtain, after cancellations,

− s
τ

du
ds = s

τ
dx̃
ds + v − u(∂Nf (x̃, s)/∂x)

s
ετ

dv
ds = − s

ετ
dỹ
ds + v − udNs(x̃)/dx

We can apply the same decomposition of (u(s), v(s)) = (u1(s), v1(s)) + (ũ(s), ṽ(s)) as
above. However, if we again assume that ετsyn = O(1), then we will have (u1, v1) =
O(1) from the dỹ/ds term, and an O(1) error can result from calculation with the
equation of variations. As τsyn → ∞, this error decays as 1/τsyn.

ACKNOWLEDGMENTS This work was partially supported by the National Sci-
ence Foundation (NSF). Thanks to F. Diener for providing material that would have
otherwise been unobtainable.

REFERENCES

[1] Baer S.M., Erneux T., and Rinzel, J. (1989) The slow passage through a Hopf bifurcation:
delay, memory effects, and resonance. SIAM J. Appl. Math 49: 55-71.

[2] Compte, A, Brunel, N, Goldman-Rakic, P.S., and Wang, X.J. (2000). Synaptic mechanisms
and network dynamics underlying spatial working memory in a cortical network model,
Cerebral Cortex, 10:910-923.

[3] Diener, M. (1984). The canard unchained or how fast/slow dynamical systems bifurcate, Math.
Intell.. 6(3):38-49.

[4] Diener, F. and Diener, M. (1993). Maximal Delay Dynamical Bifurcation (E. Benoit, editor),
Springer, Lecture Notes in Mathematics, Vol. 1493, pg. 71-86.

[5] Doi, S. and Kumagai, S. (2001). Nonlinear dynamics of small scale biophysical neural networks.
In Biophysical Neural Networks, Mary Ann Liebert Inc., Larchmont, NY.

[6] Ermentrout B. (1996) Type I membranes, phase resetting curves, and synchrony. Neural
Comput. 8:979-1001.

[7] Ermentrout B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide
to XPPAUT for Researchers and Students , SIAM, Philadelphia.



24 J. DROVER ET AL.

[8] Guckenheimer J., Harris-Warrick R., Peck J., Willms A. (1997). Bifurcation, bursting, and
spike frequency adaptation. J. Comp. Neurosci. 4:257-277.

[9] Guckenheimer J. and Willms A. (2000). Asymptotic analysis of subcritical Hopf-homoclinic
bifurcation. Physica D 139:195-216.

[10] Gutkin B.S., Laing C.R., Colby C.L., Chow C.C., Ermentrout G.B. (2001). Turning on and
off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural
activity. J Comput Neurosci. 11(2):121-34.

[11] Hansel D., Mato G. and Meunier C. (1995). Synchrony in excitatory neural networks, Neural
Comput. 7:307-37.

[12] Hansel, D. and Mato, G. (2001). Existence and stability of persistent states in large neuronal
networks. Phys. Rev. Lett. 86, 4175-4178

[13] Hodgkin, A.L. and Huxley, A.F. (1952). A quantitative description of the membrane current
and its application to conduction and excitation in nerves. J. Physiol (Lond.) 117:500-544.

[14] Hoppensteadt, F.C. and Izhikevich, E.M. (1997). Weakly Connected Neural Networks,
Springer-Verlag, New York, NY.

[15] Neishtadt, A.I. (1987) On delayed stability loss under dynamical bifurcations I. J. Diff. Eqn.
23, 1385-1390.

[16] Neishtadt, A.I. (1988) On delayed stability loss under dynamical bifurcations II. J. Diff. Eqn.
24, 171-176.

[17] Pinto, D.J. and Ermentrout, G.B. (2001b). Spatially Structured Activity in Synaptically Cou-
pled Neuronal Networks: I. Traveling Fronts and Pulses SIAM J. Appl Math. 62(1):206–
225

[18] Rinzel, J. (1985) Excitation dynamics: insights from simplified membrane models. Fed. Proc.
44:2944-2946.

[19] Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. Pro-
ceedings of the International Congress of Mathematicians (ed. A.M. Gleason), AMS,
Providence, RI, 1578-1593.

[20] Somers, D. and Kopell, N. (1993). Rapid synchronization through fast threshold modulation.
Biol. Cybern. 68, 393-407.

[21] Su, J., Rubin, J. and Terman, D. (2003). Effects of noise on elliptic bursters. Preprint.
[22] Szmolyan, P. and Weschelberger, M. (2001). Canards in R3. J. Diff. Eqn. 177, 419-453.
[23] Traub, R.D. and Miles, R. (1991). Neuronal Networks of the Hippocampus, Cambridge Univ.

Press, Cambridge.
[24] Wang, X.-J. and Rinzel, J. (1995). Oscillatory and bursting properties of neurons. Handbook

of Brain Theory and Neural Networks (ed. M.A. Arbib), MIT Press, Cambridge, MA,
689-691.


