LOCALLY CONSERVATIVE COUPLING OF STOKES AND DARCY
FLOWS
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Abstract. A locally conservative numerical method for solving the coupled Stokes and Darcy
flows problem is formulated and analyzed. The approach employs the mixed finite element method
for the Darcy region and the discontinuous Galerkin method for the Stokes region. A discrete inf-sup
condition and optimal error estimates are derived.
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1. Introduction. The numerical modeling of reactive transport necessitates the
use of numerical schemes that do not create artificial mass. Mixed finite element
(MFE) and discontinuous Galerkin (DG) methods are two examples of locally mass
conservative methods, that are used in the geosciences. MFE methods are quite
popular for porous media problems [12, 30, 13, 3] and DG methods are attractive for
modeling flow on unstructured meshes [29, 27, 26, 28].

Many applications involve different physical processes in different parts of the
simulation domain. In this paper we propose a numerical method for approximating
the solution to the coupled Darcy-Stokes problem. Such systems arise, for example,
in modeling the interaction between surface water (river) and groundwater (aquifer).
There are few works in the literature that address the numerical analysis of the cou-
pled Darcy-Stokes problem. In [21], Layton et al. consider a formulation based on
the Beavers-Joseph-Saffman interface conditions [4, 31, 20], prove the existence and
uniqueness of a weak solution, and analyze a continuous finite element scheme coupled
with MFE. A similar formulation is studied by Discacciati et al. [11], where contin-
uous finite elements are used in both regions. An application of this formulation to
vugular porous media is studied in [2]. A singularly perturbed Stokes problem, which
models Darcy flow as a limiting case, is considered by Mardal et al. [23]. There, a
new finite element is proposed which behaves uniformly in the perturbation parame-
ter. Ewing et al. [14] employ finite difference methods for a similar model involving
the Navier-Stokes equations with an added Darcy term.

The model we consider, wich is similar to the one in [21], is based on imposing the
correct local equations in each region, coupled with appropriate interface conditions.
In particular the fluid region is modeled by the Stokes equations and the porous media
region is modeled by the Darcy’s law. Continuity of flux, balance of forces, and the
Beavers-Joseph-Saffman slip with friction condition (see (2.10) below) are imposed
on the interface. In this work we emphasize locally mass conservative discretizations.
Conserving mass locally is especially important when the flow equations are coupled
with the reactive transport of chemical species. In the porous media region, the fluid
velocity and pressure are obtained by MFE, and in the incompressible flow region, the
fluid velocity and pressure are approximated by DG. An advantage of our approach is
the possibility of coupling existing highly optimized MFE-based porous media simu-
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lators with the flexibility and easy implementation of DG methods for incompressible
flows. The estimates are derived for two-dimensional problems. The results are also
valid in higher dimension, and depend on the existence of approximation operators
(See Remark 4.1 below).

The outline of the paper is as follows. In Section 2, the model problem, notation
and scheme are presented. Section 3 contains the derivation of the discrete inf-sup
condition. In Section 4, approximation results and optimal a priori error estimates
are proved. Some concluding remarks follow.

2. Model Problem, Notation, and Scheme. Let Q be a domain in R?,d = 2,
subdivided into two subdomains 2, ),. Let T';5 be the interface 92, N 9€,. Define
T; = 0Q;\I'12, i = 1,2. Denote by n the outward normal vector to 0. Let 12 (resp.
T12) be the unit normal (resp. tangential) vector to I'12 outward of Q. Denote by
u = (u1, us) the fluid velocity and by p = (p1,p2) the fluid pressure, where u; = u|q,
and p; = p|,. The flow in domain Q is assumed to be of Stokes type, and therefore
the following equations are satisfied:

-V T(Ul,pl) = fl in Ql, (21)
V- u; = 0 in Ql, .
u; =0 onTj. (2.3)

Here T is the stress tensor
T(u1,p1) = —p1 I +2pD(uy)
which depends on the viscosity p > 0 and the strain tensor
1
D(uy) = i(Vul + Vaul).

In the region (2, the fluid pressure and velocity satisfy the single phase Darcy flow
equations:

V- U = f2 in Q2, (24)
Uy = —Ksz in 927 (25)
us-n =0 onlDs, (2.6)

where K is a symmetric and positive definite tensor representing the permeability
divided by the viscosity and satisfying, for some 0 < ko < k1 < 00,

kotTe < ETK (2)€ < ki €7¢ Yz € Qy, VE e R (2.7)

The physical quantities are coupled through appropriate interface conditions

Uy - M1z = U - N2, (2.8)
p1 — 2u(D(ur)niz) - nio) = pa, (2.9
U1 - T12 = —2G(D(u1)n12) - T12. (2.10)

Note that condition (2.8) represents the mass conservation across the interface, con-
dition (2.9) imposes balance of forces across the interface, and condition (2.10) is
the Beavers-Joseph-Saffman law, where G > 0 is a friction constant that can be de-
termined experimentally. The reader should refer to [4, 31, 20, 21] for a detailed
description and motivation for the choice of these interface conditions.
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For i = 1,2, let 5,’; be a non-degenerate quasi-uniform subdivision of ;, let F};
be the set of interior edges and let h; denote the maximum diameter of elements in
&l Fors >0,p>1,and a domain E C R?, let W*?(E) be the usual Sobolev spaces
[1], let H*(E) = W*2%(E) be equipped with the usual norm || - ||s,r, and let L2(E)
denote the space of L? functions with zero average. In the formulation for the Stokes
region, we need that both the gradient of u; and the pressure p; have a trace on line
segments. For this, it suffices to define the following velocity—pressure spaces for the
Stokes region:

X' ={v; € (L2())?: VE€&}, wvi|pe (W3(E)%},
M= {41 S Lz(ﬂl) : VE€ gflu CI1|E € W1’4/3(E)};

with norms

loilio, = D ol e,

Eegl

g M
sl = 1Voils0 + >0 lliwdlse + G D llor- Tz,
eel'lury e€l'12

lg1llazr = llgillo,c: -

Here, the parameter o, > 0 takes a constant value over each edge e and |e| denotes the
measure (or length) of e. Given a fixed normal vector m. on each edge e = OE! NOE},
directed from E! to E2?, the average and jump of functions in X' and M' can be
defined as

{w} = 3 (w]g) + 5(w|g2), [w] = (w]p) - (w|g2), VYe=0dE;NIEZ,
{'u)} :w|Eéa [’U)] :leg’ Ve:@Eé ﬂ@ﬂ

The velocity-pressure spaces for the Darcy region are
X? = {v € H(div; Q) : / v-nw=0VYwe Hy, ()},
89
M? =L? (92)7

where H (div;(2s) is the space of vectors in (L?(£22))¢ whose divergence lies in L2(Q5)
and

H&,F12(Q2) = {w S Hl(Qz) :w=0o0n F12}-

The norms associated with (X2, M?) are

lv2ll%> = [|v2ll5 0, + IV - v2ll6.0,5  llg2llarz = llgzllo.0.- (2.11)

We can now define X = X' x X? and M = (M x M?) N L(Q), the spaces for the
coupled formulation with the usual norms

I[vll% = lloall%r + llvalli=,  Nlallis = llaallin + llaallaze- (2.12)

In [21], it was shown that there exists a unique weak solution (u,p) of the coupled
problem (2.1)—(2.10), with u; € (H'(Q1))¢, uy € X?, and p € M. We will assume
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that the solution (u, p) is regular enough, so that it is a strong solution of (2.1)—(2.10).
Next, we introduce the bilinear forms a; : X' x X' 5> R and b; : X' x M! - IR,

ar(ug,v1) =24 ) /ED(u1):D(111)+ > %/[ul]'[vl]

Ecé&} e€l} Ul
Y [{Din o4z Y (Do), (]
ecriur, ”® ecriur, ”*®
+% Z ] Uy - T1201 - T12, (2.13)
e€lo
bi(vi,pr) =— ) /plv‘171+ S [ - e (2.14)
Eecé&y, E eEFiUFl €

Here, € is a constant that takes the value —1 or +1, which makes the bilinear form a
symmetric or non-symmetric. The bilinear forms corresponding to the Darcy region
areas: X?x X2 5 Rand by : X? x M2 > R:

GQ(UQ,'Uz) = K_I'U,Q - Vo, (2.15)

b2(v2,q2) = —/ @V - vs. (2.16)
Qo

Let k1, k2 and I3 be positive integers. Let X and M}, be finite dimensional subspaces
of X and M respectively, such that

Xh:X’ILXX?“ Mh:M}%XMl?a
where (X ,11, M}) is the pair of discontinuous finite element spaces
X,ll ={v; € X': VEe 5,%, v € (]Pkl(E))d},
M,t ={q € M': VEe€ Eé, q € Py, 1(E)}.

The discrete spaces corresponding to the Darcy region, consist of the standard mixed
finite element spaces (such as RT spaces [25], BDM spaces [7], BDFM spaces [6] and
BDDF spaces [5]). The mixed velocity spaces X} contains polynomials of degree
ks and the pressure spaces M} polynomials of degree ls. Note that for the Raviart-
Thomas spaces, the condition ls = ks — 1 holds. We also assume that

szeXi, vo-n=0 on Is.

Let E be a mesh element with diameter hg. Given p € L3(Q), we denote by p the L2
projection of p in M}, satisfying

Vg e Pk1—1(E)7 / q(ﬁ _p) =0, VEE€ gflw (217)
E
Voe Py (B), [ aG-p)=0, VEEe, (2.18)
E

and, if plo, € H*(Q) and p|g, € H211(Qy), then

”p—ﬁ”m,E < Ch%l_m|p|k1,E, EC Ql, m=20,1, (2.19)
”p _ﬁ”Tn,E S ChlE2'+1_m|p|l2+1,E7 EC Q?J m = 07 1. (220)
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Here and throughout the paper, C' denotes a varying constant that is independent of
the diameter of the mesh elements. We also make use of the the quasi-local interpolant
Ik : (H'(Q))? — XL [10, 15, 9, 18] satisfying for all v; € (H'(2;))¢

bl(H}l’Ul - 'ul,ql) =0, Vq € M,%, (221)

VeeT} UTy, /[H}Lvl] -1 =0, Vo€ (H Q) :v,=00nTy, Vg1 € M},
e
(2.22)
IThv1li0, < Clloille,- (2.23)

The operator H}l has the optimal approximation properties

|H}11’Ul—’Ul|m’E‘SChsEim|’Ul|s’5(E) V].SSSkl-i']., V’Ul EHS(Ql), m:0,1,

(2.24)
where §(E) is a suitable macro-element containing E. Moreover, it holds that for at
least one edge e of every element E € £}

/ (Mo, —v1) =0, Vo, € (H' ()% (2.25)

e

We note that (2.25) holds true for all edges in the case k =1 and k = 2. For k = 3,
we can assume without loss of generality, that (2.25) is satisfied for all edges in T'y5.
We will make use of the following bounds on TT},.
LEMMA 2.1. Let 1 < s < ky + 1. For all vy € (H*(2,))¢,
ITTv1 — vllxs < O3 u, (2.26)
ITvllx: < Cllvillve,- (2.27)

Proof. To show (2.26), we note that

lv1 = 0115 = V(01 = 1))

o
TR ﬁll[m—ﬂivl]llﬁ,e (2.28)
e€l'l Ul

The jump term is bounded as follows:

o 1
> ﬁll[vl —Mvillg. <2 ). > HHW — 0[5

e€l'L Ul E€&} e€0FE

Passing to the reference element E‘, and denoting 9; = v o Fg(%), where Fg is the
affine mapping that maps E onto E, we have

1 . —_— R —_—
> HH’Ul ~ w15, < Cllor = Mvall] 5 < Clloy — Mwalf} 4,
ecoFE
owing to the trace theorem. Now (2.25) implies that on one edge é of E, we have

IRC II}v;) = 0. Therefore the gradient seminorm is equivalent to the full H!(E)
norm and

1 R —_—
> MHUI ~Ivillg. < Cloy - v 4

e€cOF

S Cl’Ul — H}L’Ulﬁ’E. (229)
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Similarly, denoting &} (T'12) the set of elements in &} that share an edge with the
interface I'1o, we have

Dol —Thwr) -7l < Y, Y ll(or —Mw1) - 7a2l3

e€l's EEEL(T15) e€OE
<C ) hlor-Muili g,
Ee&l(I12)
which, combined with (2.28) and (2.29), implies
o1 — w1 l|lx1 < CIV(v1 — w1 o0, < Chi™Hoilsn, (2.30)

using (2.24).

The bound (2.27) follows easily from the triangle inequality and (2.26) with s =1,
using that ||v1||x1 < C||lvill1,0, for vi € (H(Qy))%. O

We also recall the mixed finite element interpolant II7 : X N (H?(2))? — X7
for any @ > 0, satisfying [8], for any vy € X* N (H?(02))4,

bz(Hi’UQ — 'U2,q2) =0,Vg € Mg, (231)

/((H%’Ug —v3) n)ws-n, =0, Ve €2, Vws € X}. (2.32)

[
Moreover, 1'[,21 satisfies the approximation properties
[lv2 — IMjv2llo,e < Chilwalse, 1<s<ks+1, (2.33)
||V'(U2—H?L172)||0’E SChSE|V-’Uz|5,E, 0<s<lIly+1. (2.34)

It has been shown by Mathew in [24] for the Raviart-Thomas elements [25] that
0,9:); (2.35)

a result that can be trivially extended to the other families of mixed finite element
spaces. Recall the basic trace inequalities and Korn’s inequality on any mesh element
FE with diameter hg

”lez"’?”H(div;Qz,) < Cllvz2llo.0q0 + IV - 2

Voe H'(E), VeCOE, |4ll5.<Chg'l8ll§r+helélr) (2.36)
Vo€ H(E), VeCOE, [V¢-nlf,<Chllol}s+hel¢ls),  (237)
Vo € Py(E), VYeCOE, |V¢-nloe<Chy"|¢., (2.38)

V¢ € (PL(E)), |oli,e < ||D(P)llo,r < Clol1,E- (2.39)

Define the finite-dimensional space of functions on the interface A, = X,f -n1o and
let

th{’U:('Ul,’Uz)EXh: Z /17(1]1—’(12)'”12:0, V’l]EAh}.

e€lyp ¥ €

Defining a = a; +a» and b = by + by, the numerical scheme is: find (U, P) € V, x M},
such that

a(U,v) + b(v,P) = fi-v, YveV,, (2.40)
Q

bU,q)= | foa, Vg€ M. (2.41)
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In the rest of the section, we show that the solution of the coupled problem satisfies the
scheme up to an interface consistency error. We also prove uniqueness and existence
of the discrete solution.

LEMMA 2.2. If (u,p) € X X M solves the coupled Stokes-Darcy flow problem
(2.1)-(2.10), such that u; = ulo, and p; = p|q,, then (u,p) satisfies the variational
problem:

Z /p2('Ul — ’Uz) ‘N9, Vv e Vh, (242)

a(u,'u) + b(’U,p) = .fl ‘U1 —
! e€l2 V€

b(uaq) = f2q7 VCI € Mh- (243)

Proof. Multiplying the Stokes equation (2.1) by v; € X7}, and integrating by parts
over one element F,

/T(Uhpl) 3V171—/ T(u1,p1)nE - v1 :/ Ji-v
E 8E E

Summing over all elements F,

> [ erI+2uD@) : Voi = 3 [[(=mT + 20D () -0y

1 [
eel';,

- Z (=p1I + 2pD(u1))n12 - v1 — Z (—=p1 I +2uD(uy))n - vy

e€l2 V€ e€l’; 7 ¢

= fi-v
Q1
It is easy to show that
D(’U,l) : V’Ul = D(ul) : D(’Ul), I: V’Ul =V V1
Thus, the equation becomes
Z/ (2uD(u1) : D(’Ul) —p1V . ’01)
o JE

=% [tnI+mD@in [0 = ¥ [l-nT + 2D G)n - {or)

eel; € eel;, €
- Y [ (pI+2uD(u))naz-v1 — Y [ (—=piI + 2pD(ur))n - vy
e€lyp ¥ € e€l’y ¢

= fi-v
Q
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By regularity of the true solution, we have

Z/ (2[LD(’U,1) : D(’Ul) —p1V - 'U1)
- Z /{ —piI +2puD(u1)}n. - [v1] + € Z /{2,uD (v1)}ne - [uq]

ecl'y, € ecl'y ¢
— Z / p1I+ 2/1,D(U1))TL12 U1
e€lp ¥ €
—2/ —p1I + 2uD(u,) n'ul+62/2uD'uln (3
ecl'y ecl'y

fi-v
1951

Let us now consider the interface term

(=p1I+2puD(u1))ni2 = —prria+2u(D(ur)n12) T12)T12+(2u(D(u1)n12)-n12)N12,

which, combined with
v1 = (V1 T12)T12 + (V1 - M12)N12,
gives
(=p1I +2uD(u1))nis - v1 = —p1(v1 - Ma2)
+2u(D(u1)n12) - T12(v1 - T12) + 2pu(D(u1)n12) - n12(v1 - Ni2)
Thus,
- Z / pi I +2uD(up))n - vy = Z / —p1 + 2p(D(u1)n12) - n12) (V1 - N12)

e€l ¥ € e€lp V€

- Z /2/1, (u1)ni2) - T12(v1 - T12)

e€l'i2
With the interface conditions (2.9) and (2.10), we obtain

—Z/ —p1I +2uD(uq))n - vy = — Z/ —p2)(v1 - M12)

e€l'1o ecl'12

E /U1 7'12 1)1 7'12)

eEFm €

Thus
Z/E(Q/LD(’U,l) : D('Ul) —p1V - 'Ul)
-y / {(-pi I+ 2D} - [or] +e 3 / {2uD(v1)nc} - [ur]

ecl; Ul € e€l'L Ul €

—I—Z /p2U1 n12—|—— Z /’Ul T12V1 " T12 = fi-v
Q1

e€lp V€ e€F12
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which is equivalent to
a1 (u1,’U1)+b1(’U1,p1 Z /p2’01 12 —/ fl v, Vv, GXh. (2.44)
e€l2 V¢
The Darcy’s law (2.5) can be rewritten as
K_l’u,z = —sz.

As usual, multiplication by v, € X7 and integration by parts on the Darcy region
yields

K 'uy vy = — sz-'uzz/ sz"Uz—/ P2v2 M
Qo 1923 (923 (o192
:/ sz'vz—/pﬂiz n+2/pz1)2 n12
2 eclia
Or equivalently,
a3 (u2,v2) + ba(v2,p2) — Y /pg'vg ni2 =0, Vv, € X}, (2.45)
e€lp 7 ¢

Adding (2.44) and (2.45) yields the equation

a(u,v) +b(v,p) = f1 v — Z /p2 v —v2) N2 Yo € V.

e€l'12
Clearly, the equation (2.2) and the regularity of the solution gives
bl(ul,q)=0, vqui
Finally, a simple integration in (2.4) yields

b2(u27q) = f2q7 VQ € M’%?
Qo

and adding to the previous equation gives the result. O

Next, we prove a coercivity lemma that holds true under the following condition.
Hypothesis A: In the definition of the bilinear form a; (-, -), let us assume that either
the condition (a) or (b) holds true.
(a) e =1 and o, > 0 for all edges in ', UT;. For instance, one may choose o, = 1.
(b) e = —1 and o, > g¢ > 0 for o¢ large enough.

LEMMA 2.3. Assuming Hypothesis A, there exists a positive constant Cy such
that

Collv||% < a(v,v), Ywe X,:V-v=0ae in Q.

Proof. Let v € X,. Then v = (v1,v2) with v; € X’,;,i = 1,2. Using (2.13) and
(2.15),

vv—QHZ/Dvl v1) + /[1

Eecég} eeF1 ur,

2(1 —€)p Z /{D v1) I, - [v1] +— Z/ - T12)? K™ 'v; - vy

eel'lur, €€F12 22
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Using Korn’s inequality (2.39) and the bound on K (2.7) gives

Oe
aw,0) 2 2l Volo, + Y T [l

e€l'} Ul
. 1 .
—2(1—ep Y /{D(Ul)}ne foi] + % Do [ (wiT) + k—||172||5,92
e€l'} Ul ¢ e€l'yp V€ !
If € = 1, then the result is straightforward. If e = —1, we have from trace inequality

(2.38)

20— Y. [{D@)ine-[n]<4p Y h11’2||w1||o,Ee%)l/ﬂum]no,e

eeriur; © ¢ eel'tuly
1 ~ 1
<gValo+C Y o [wF
e€lLuly ¢
Thus, we obtain if e = —1

3 Je—é
o) 2 VLo, + Y T [l
e

EEF;UFl

n 1
ta > /(vl “T19)? + k—1||172||3,92 > Co([lv1[%: + [lv2ll3 0,)

e€l12 V€

with Cy positive constant, if o, is large enough (o, —C > C > 0). O
We are now ready to prove that the discrete scheme (2.40)—(2.41)
LEMMA 2.4. If Hypothesis A holds, then there exists a unique solution to the

problem (2.40)—(2.41).
Proof. Since the problem (2.40)—(2.41) is finite-dimensional, it suffices to show
that the solution is unique. Set f; = 0 and choose v = U and ¢ = P. Then

a(U,U)=0
In addition,
b(U,q) =0, Vg€ M,

which, implies that V- U = 0 in Q,, since V- X2 = M 2. Therefore Lemma 2.3
directly implies that U = 0. Thus, the pressure satisfies

b(v,P)=0, YveVy.

The inf-sup condition (3.1) proved below implies that P = 0. O

3. A Discrete Inf-sup Condition. In this section, a discrete inf-sup condition
is proved.
THEOREM 3.1. There exists a positive constant 8 such that

inf sup b(vh,qn)

_Oonan) (3.1)
neMy o v, llvallx llanlln
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Proof. Let g, € M}, be given. Then there exists [16, 17] v € (H*(Q2))¢ such that
V-v=—qp, inQ, v=0 on 01,
satisfying
lvllLe < Cllgnllo.o-

Note that
bo0) = = [ (V-0 = lanl
which, together with the above & priori bound, implies

1
b(v,an) 2 & l[vllLe llanlla-

Next, we need to construct an operator 7, : X' x (X? N (H'(Q2))%) — V,
satisfying

b(mpv —v,qn) =0, V g € My, and [|mpv||x < C|v||1,0. (3.2)

Let mpv = (mjv,m3v) € X}, x X5. We take mpv = I} vy where I}, : X' — X is
the quasi-local interpolant defined in (2.21). Clearly, due to (2.27),

Impollx: < Cllvllg,- (3-3)

To define v, consider the auxiliary problem

V-V =0, in Qy, (3.4)
Ve-n =0, onIs, (3.5)
V- -niy = (W,ll’l) —v) - N2, on [y, (3.6)

The problem is well posed, since
/ (w,ll'u —v)-n2 =0,
T2

due to (2.25). Let 2 = V. We note that the piecewise smooth function 7}v - n12 €
HY(T'y5) for any 0 < § < 1/2. By elliptic regularity [22],

Izllo,0; < Cll(myv = v) - nazllo—1/2,r,,, 06 <172, (3.7)

Let w=v+ 2. Clearly V-w =V -v in s and w - ni2 =7r,1l'u-n12 on I'1». We now
define 7}v := M w, where TI; : X N (H?(Q,))% — X is the mixed finite element
interpolant defined in (2.31). Note that, using (2.31),

b2(7T]2l’U,Qh) = b2(H}2{w:(1h) = bz(w,Qh)

=—/ (V-w)qh=—/ (V-0)qn = bo(0,qn), Van € M2,
Qs Qo

thus the so constructed mpv = (7}v,72v) satisfies

b(mpv —v,qn) =0, V qn € Mp.



12 B.RIVIERE, I. YOTOV

It is easy to see that m,v € V. Indeed, for every e € I'}? and 1 € Ay, using (2.32)
and the fact that Ay, = X7 - n1o,

2 2 1
/ﬂ'h’U SN = /th SNy = /w SN = /ﬂ'h’U - N2M,
e e [ e

It remains to show the bound in (3.2). Using (2.33), (2.34) and (3.7),

Imhollx> = [MRw]lx=
< |ITTRo(1x2 + [ TT; 2] x2
< Cllvlla, + llzllo.0.)
< Clollie, + l(mhv — ) - mlr,,)

The last term can be bounded as follows. For every e € T'i2, and edge (face) of
E € &}, using (2.36) and (2.24),

[(mhv =v)-maslle < C (b |Imhv—vllo,p+hy Imhv—vl1 5) < Chyl*|vl1 () (3.8)
Therefore
I2ollxz < CllvllLa,

which, combined with (3.3), implies the bound in (3.2). Now using (3.2),

b(v,qn) _ b(mav,qn) < b(mrv, qn)
lvll1e lvlle — Sllmavllx

1
5||qh||M < , for all g, € My,

which proves (3.1). O

4. A Priori Error Estimates. In this section, optimal error estimates in the
energy norm are obtained for the velocity field. Also, optimal error estimates in the
L2 norm of the error for the pressure are obtained. We start with an approximation
result for the weakly normal-continuous velocity space V.

LEMMA 4.1. For v € (H'(Q))? such that v|q, € (H*T1(Q1))¢ and v|q, €
(H*+1(Qy))?, and V -v|q, € (H211())?, there exists © € V', such that

blv—12,9) =0, Vq€ My, (4.1)
Ve e T UT), /[f;] g=0, Vge (Py_(e) (4.2)
[
lv-3]lx <C {hf1|v|k1+1,91 + W52 Mo gyr1.0, + RETHV - ﬂ|z2+1,91} . (43)

Proof. We will show that the interpolant v constructed in Theorem 3.1 satisfies
the above conditions. Indeed, (4.1) and (4.2) follow directly from the construction of
mpv. To show (4.3), we first note that (2.26) implies that

Ilo = mhollxs < O ol 1,0, (4.4)
Next,

lv = mnollx2 = [lv — wl|x> < [lv - ol|x2 + [T (w — v)|x2 (4.5)



COUPLING OF DG AND MFE FOR STOKES AND DARCY FLOWS 13

For the first term on the right in (4.5), using (2.33) and (2.34),
o — I3 o[lx> < Ch5* olkyr1.0, + BTV - )10, (4.6)
The last term in (4.5) can be bounded as follows, using (2.35), (3.7), (3.8), and (2.24),
1T, (w — v)llx= = M2l x> < ll2ll.0.
< Cll(mhv — v) - nazllorss < Chf1+1/2|v|k1+1,91. (4.7)

A combination of (4.4)—(4.7) completes the proof. O

THEOREM 4.2. Let (u,p) € X x M be the solution of the coupled problem (2.1)-
(2.10). Assume that ulg, € H¥*T1(Q;) fori =1,2. Assume that pla, € H* (Q1) and
that pla, € H211(Qy). Assume that hypothesis A holds. Let (U, P) be the discrete
solution of (2.40)-(2.41) Then, the following estimate holds:

lu—Ullx < Ch{* (Julky41,0, + [Plri,2:) + ChE> T ufka1,00
l
+C(RET + B2 2R pl g .-

Proof. Let @ be the interpolant of w defined in Lemma 4.1 and let p be the
interpolants of p, satisfying (2.17)-(2.20). From (2.42), (2.43) and (2.40), (2.41), the
error equation is

a‘(U - ’&,’U) + b(UaP _ﬁ) = a(u - ﬁav) + b(’U,p _ﬁ) (48)
— Z /p2(vl — ’02) “MNi9, Yo < Vh; (49)

eclp 7 ®
b(U —a,q) =blu —a,q), Vg€ M,. (4.10)

Note that (4.1) implies that b(U — @, q) = 0, Vg € M}, which implies that

V- (U —a)=0in Qy,
since V - X2 = M}. Define x = U — @ and £ = P — p. Choose v = x and ¢ = &.
Then,

a0 + b0 €) = alu— 5, 3) +bxp—5) = 3 [ malx = x) -z,

e€lyp ¢
b(x,€) = 0.
Equivalently,
A x) = alw-x) + -0 = 3 [m0—x) ma (@11
e€lp V€

The first term on the right can be estimated as follows:

mm—mxpﬂuz:/pm_m;pu) (4.12)
Ee&} o

2 Y [{D@w-a@)n.-[x]+2pe Y [{D()In.-[u-a] (413)

e€riur; ¢ e€riur; ¢
+ 3 %/E[u—ﬁ]-[x]ﬁ—gz (=) roxrn @1y

e€l'L Ul e€lo

=T+ +T; (4.15)
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Using Cauchy-Schwarz inequality, and the approximation result (4.3), we have

_ 1 _
Ty <2u ) IV(u=@)lo.slVxllor < gIVXlsa, + ClIIV(w - @30,
Eecé&}

1
< SIVxI3 o, + R fulf 1 0,

Let Lp(u) denote the standard Lagrange interpolant of degree ki defined in ©; and
let us insert it in the second integral term. Note that Ly (u) satisfies the optimal error
estimates

|Lh(u) —u|m,E SChZTm|u|S,E V2<s<k+1, m=0,1,2. (4.16)
For e a segment of '} UT'y, we have

/ (D(u—a)}n. -] = / (D(u— Ly(w)}n. - [x] + / (D(Ln(u) — @)}n, - [x].

Expanding the first integral, we obtain from the trace inequality (2.37) and from the
fact that the Lagrange interpolant satisfies (4.16)

> / {(D(u — Ly(w)}ne - [x]

ecriur, ”®
0. e[/
< X el gD - Ln@)ino.
eel'lur,
1
< 8 Z le |||[X]||06+C Z 1|U—Lh(u)|iEéz+he|u—Lh(u)|§,E;2)
EGF}LUr‘l EEFI ur, Te
1 o i
S 8 Z ﬁll[x]llﬁ,e +Chj k11,0,

e€l'} Ul

Similarly, using the trace inequality (2.38), triangle inequality and (4.3)

N 1
> [ -anc sy ¥ i
ecriur, ¢ ecTlur,
+C Z |’& - Lh(u)liEy
eel'tury
1
S g Z ‘ |||[X]||0€+Ch2k1|u|k1+1 Qq°
e€F1 ur'y
Therefore,
1
L<y X T |||[x1||o O u? o

eEl"1 ury

The third term vanishes because of the continuity of u and property (4.2) of @:

Ts = 0. (4.17)
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Using Cauchy-Schwarz inequality, the jump term is bounded by virtue of (2.24) and
(2.36):

1 .
S g Z | ||| ||0€ +C Z | |||[’U, ]”(2),6
e€l'} Ul e€l'} Ul
1
S g Z | |||[ ]||06+0h2k1|u|k+1 Q-
e€l'} Ul

The last term is bounded as follows, from the trace inequality (2.36)

T <& 3 fu—dlocllx- Tzl

e€l'12

W . .
_G Z lIx - TlZ||Oe+CZ ol = all§ g + helu — alf g)

e€l2 e€l'y

1 Z 2k
S G ||X ’ Tl?”%,e + Chl ! |’u’|i1+1,91
e€l'1a

Let us now estimate az(u — @, x), using the result (4.3)

. _ . 1 Y’
mu=wx) = [ K- x < GIK X0, + 3l
2

Let us now estimate by (x, p—p). By property (2.17) and (2.19) and the trace estimate
(2.36)

=9 == [0-pV-x+ ¥ [-plbkne (419)

FEe&y eEFIUF1
_ /{p—ﬁ}[x]-ne (4.19)
erjury ©°
1
<3 > T D+ ORIl (4.20)
eF1UF1

Now estimate bs(x, p—p) using Cauchy-Schwarz’s inequality and approximation result
(2.20)

) _ 1
br(x;p—P) = — A (p=PV-x < lIVxlo0, + Ch3*?|plf, 41,0,
2

It remains to bound the last term in (4.11). Since x belongs to V', we have
Z /p2 - X2) "Mz = Z /pz = P5) (X1 — X2) - M2,
e€lp V€ e€lyp * €

where p§ € Ay, is the L? projection of p» with respect to the L? inner product on the
edge e. Therefore, by definition of the projection and since A = X i - N2, we have

> /(Pz —P5)Xz M2 = 0.
e€l2 V€
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We also note that for any edge e and any constant vector ¢, we have

Z /P2—P2 X1 M2 = Z /(P2—P2 Ce) - M2

ecl12 V€ e€l2 ¥ €

< Z llp2 = B5llo,ellx1 — cello,e
e€l12

Assume that each edge e of I'15 is shared by the elements E! € £} and E? € &7

Then, from the approximation properties and the trace inequality (2.36), we obtain

lo+1/2
[ =50 mar < Bl (s = ellos + Y19 o),
thus

~ l
Y [0 min < 3 K bl 2 019X oy + 19X o)

e€l2 V€ ecl'12

1 25+1
< SIVXIGa, + Chs*  halpali, i 0.

Combining all bounds above yield
1 9 3
a(x. %) < 7IVxla, +5 D ” |||[x 15, + Z lIx - 71203 .
e€l'L Ul 6€F12
1 _ k 1 l
+ 1K x8 0, + 2 fulky .0, + OB + B3 h) plE, 11 0,
+Ch3* |U|i1+1,91 +Ch™ |P|%1,Ql-
Equivalently,
a(x, x) < Ch 2 ulf, 1y g, + C(h3*? + 13" ha)lplf, 11 g,
k
+OR (|ulf, 11,0, + PR, 0,)
Now, since V - x = 0 in {22, the coercivity Lemma 2.3 implies

lu —Ullx <[lu—alx +||U - alx

< flu—allx + 12

1
750 a(x,Xx)

which concludes the proof, using (4.3) O
THEOREM 4.3. Under the assumptions and notation of Theorem 4.2, we have

Hp - P”O,Q < Ch‘llcl(|u|k1+1,91 + |p|k1,91) + Ch‘l262+1|’u’|k2+1,92
+C(REH + hy ™2 )bl 41,0,

where C' is a constant independent of hy, hso.
Proof. The error equation (4.9) can be written as

YoeVy, a(U—u,v)+blv,P-p)=>blv,p—p)— Z /p2 (v1 —v2) -n12. (4.21)
e€lp 7 €
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From the discrete inf-sup condition (3.1),

b’Uh,P—~
1P — p||09< sup bwn, P — p)

4.22
B il (422

Using (4.21), for any vy, € Vi,

b(vn, P — ) = —a(U — u,v4) + b(ws, p — ) Z/pz (vm1 —h2) 7.
e€l1a

For the first term on the right,

a(U — u,vp) —ZMZ/DU u) : D(vy) + Z H [U — u] - [va)

Eecégl ecl; Ul
o Y /{D (U = w)n.} - [vn] + 2ue /{D oo} - [U — 1]
e€l'}l Ul e€F1UF1
+— Z /U Uu) - T12Vh - T12 + *1(U—u)-vh
eEF12
=@+ + QG

We now bound each @); term. From Cauchy-Schwarz’s inequality, the terms Q1, Q2, Qs
and Qg are easily bounded

@1+ Q2 + Qs + Qs < Cllonl|x[|U — ullx.
We now bound Q3.
a<c ¥ Epvw - w
e€l'} Ul €

Qs < Cllvallx( Y- (MlIVU = @)IF o + IV (w = @)]5.))"/

eEF}IUFl
~ 2k
Qs < Cloallx (IU = allx + Chi™ [ulf, 41,0,)"

Now, @4 is bounded similarly, from trace inequality (2.38)
Qi<C Y I{D@r)nc}Hloell[U - ulllo,e

EEF}I ur'y

Q<C Y h‘1/2||wh||o,E;z<ﬁ>1/2 Y2|[U = ulllo,e

eEFLUFl
Qa < Cllwnllx||U — ullx
Let us now estimate b(vy,p — p). From the property (2.17), it is reduced to

bonp-5)= Y. [{p=Hosl .

CEF}I ur'y

< 3 @l 14p - o

CEF;UFl

)2 lIoa]llo,e

< lloallx Ch* [ples 2,
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Finally, following the same approach as in the proof of Theorem 4.2, we bound the
interface integral

Z /Pz(vhl —Vp2) M2 = Z /(Pz — P3)Vh1 - M2

e€l2 V€ e€lyp ¥ ¢

< Cllonllxhg 2 hy 2l 1,0

Combining all the bounds with (4.22) yields

~ la+1/2,1/2
1P = Bllog < CUIU —ullx + B (Julk, 11,0, + Pliegn) + h2 202 |plls.0,)-

Using Theorem 4.2 concludes the proof. O

REMARK 4.1. The results proven in this section, are valid and unchanged in
three-dimensional domains, assuming there exist interpolants IT}, and IT; defined in
(2.21) and (2.31). The existence of IT}, for k¥ = 1 in three dimensions is given in [10].
The existence of IT} in any dimension is a well-known fact [8].

5. Implementation Issues and Conclusions. In this paper, the convergence
of a numerical scheme for solving the coupled Darcy-Stokes problem is proved. In
order to parallelize the implementation of the scheme, a Lagrange multiplier A € Ap
can be introduced. Defining the bilinear form on the interface,

A(’l],’U) = Z /"7('”1 _172) ‘n12, VYnE€ Ap, Vv e Xy,

ecl2 V€

the scheme can be rewritten as: find (U, P,\) € X x My, x Aj, such that U; = Ulq,

and P; = P|q, satisfy
al(Ul,’Ul)+b1(U1,P1)+A()\,’Ul) = fl -V, Vv, EX}“ (51)

1951
b(Ui,¢) =0, Vg1 € My, (5.2)
az(UQ,’UQ) + bz(’Ug,Pg) — A()\,'UQ) =0, Vv, € X%,
ba(Us, q2) = f2@2, Vgo € M}, (5.4)
Qo

A(’I],Ul - U2) =0, VneA. (5.5)

It can easily be shown that the two discrete formulations are equivalent. Formulation
(5.1)—(5.5) is suitable for a parallel implementation. In particular, using an approach
from [19], a non-overlapping domain decomposition algorithm can be formulated that
reduces the coupled system to a symmetric and positive definite interface problem for
A. In addition to its parallel eficiency, this approach allows for existing codes solving
the Stokes or the Darcy equations to be utilized.
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