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Abstract

We study the processes of nucleation and growth of a new phase in a proto-
typical discrete model of a martensitic material. The model takes nonlocality into
account and exhibits all major phenomena observed during quasistatic loading of
shape memory wires including rate-independent hysteresis and formation of iso-
lated phase boundaries. We solve the associated finite difference problem exactly
and show that the presence of nonlocal interactions leads to the nucleation peak
phenomenon: the force at which nucleation takes place is higher than the force at
which a phase boundary can propagate. We show that the difference between the
nucleation and propagation thresholds persists in the continuum limit and tends to
zero as the nonlocality gets weaker. The model suggests specific relations between
the microscopic parameters of the lattice and the size of the nucleation peak which
we verify for cubic to monoclinic phase transformation in NiTi wires.

Key words: martensitic phase transitions, lattice models, nonlocal interactions,
Peierls-Nabarro landscape, nucleation

1 Introduction

Shape memory alloys and other martensitic materials undergoing diffusion-
less phase transformations are known to exhibit rate-independent hysteresis
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when subjected to quasistatic cyclic loading. The corresponding displacement-
controlled experiments often display the following characteristic feature: prior
to nucleation of the new phase, the load reaches a peak which is followed by a
plateau with a distinctly lower stress (Horikawa and Miyazaki, 1988; Lexcellent
and Tobushi, 1995; Shaw and Kyriakides, 1995, 1997b; Sun and Zhong, 2000).
The nucleation peaks are not unique to transformational plasticity and are
also routinely observed during initiation of a conventional plastic deformation
in mild (low carbon) steels; a sudden drop in stress is associated with the ini-
tiation of Lüders bands which then spread along the length of the specimen at
an essentially constant stress (Butler, 1962; Hall, 1970; Kyriakides and Miller,
2000). The presence of the nucleation peak in steels has been attributed to
the pinning of dislocations and the fact that the stress required to release the
trapped dislocations is higher than the stress needed to sustain their motion
(Cottrell and Bilby, 1949). Another theory links the sudden drop of stress
with the multiplication of dislocations and the fact that the stress required to
move dislocations decreases with their number (Johnston and Gilman, 1959).

Although in martensitic materials the phenomenon of nucleation-induced load
discontinuity appears to be similar to the drop from “upper” to “lower” yield
stress in steels, it has not been understood at the equally fundamental level.
Thus the nucleation peak has been detected numerically in 3D plasticity-type
models of shape memory alloys (Shaw and Kyriakides, 1997a; Kyriakides and
Miller, 2000; Sun and Zhong, 2000), however the phenomenological parameters
responsible for the size of the peak have not been identified. At a qualitative
level, the peak has been associated with the presence of sufficiently fine grains
and heuristically linked to the strong locking of phase boundaries and the
relative ease of their glide when released. To achieve the quantitative under-
standing of the factors contributing to the peak phenomenon, we develop in
this paper a prototypical model of a martensitic material which underlines
the important physical aspects of the problem and maximally simplifies the
unimportant ones. The proposed model supports the intuition developed in
plasticity theory and adapts it to the case when dislocations are replaced by
phase boundaries as the principal carriers of inelastic deformation.

According to our model, the main factors responsible for the appearance of
the nucleation peak are (i) discreteness, revealed through the presence of an
internal length scale, (ii) nonconvexity of the energy of the elementary trans-
forming units or bands, and (iii) the long-range or nonlocal coupling between
these units. The study of one-dimensional discrete chains of bi-stable springs
without nonlocal interactions has long demonstrated the ability of this class of
mechanical theories to capture many important properties of shape memory
alloys (e.g. Müller and Villaggio, 1977; Fedelich and Zanzotto, 1992; Fǎciu and
Suliciu, 1994; Puglisi and Truskinovsky, 2000, 2002a,b). In particular, these
purely local models generate sufficiently complex energy landscapes that are
compatible with the hysteretic behavior and the fine structure of inner loops.
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One common feature of these models is their permutational degeneracy: nu-
cleation of a new phase can occur anywhere in the chain. Most importantly,
the local models fail to predict the nucleation peak, at least in one dimension.
Numerical studies have shown that incorporation of nonlocal interaction be-
tween the bi-stable elements leads to additional features such as selection of a
particular number of interfaces and, in some cases, the nucleation peak (e.g. Ye
et al., 1991; Triantafyllidis and Bardenhagen, 1993; Rogers and Truskinovsky,
1997; Froli and Royer-Carfagni, 2000; Pagano and Paroni, 2002). None of the
nonlocal models, however, have been developed analytically to an extent that
they could explain the necessity of the nucleation peak and identify the micro-
parameters controlling its size.

The advantage of the prototypical model of martensitic material considered
in the present paper is that it contains all three required ingredients (i)-(iii)
and at the same time lends itself to a completely analytical treatment. Specif-
ically, we consider a finite system of particles connected by bi-stable springs.
To mimic the three-dimensional nature of the actual problem, we comple-
ment the anharmonic interactions between the nearest neighbors (NN) by a
harmonic interaction of the next-to-nearest neighbors (NNN). We then use
a piecewise linear approximation for the NN interaction which allows us to
obtain a fully analytical characterization of all metastable equilibria and ex-
plicitly reconstruct the non-equilibrium Peierls-Nabarro landscape. Consider-
ing a quasistatic displacement-controlled loading of the system and selecting
a maximally dissipative strategy for switching between metastable equilibria,
we demonstrate the necessity of the nucleation peak in the experimentally
feasible range of parameters. In addition, we show that the difference be-
tween the nucleation and propagation thresholds does not disappear in the
continuum limit, although it tends to zero as the nonlocality gets weaker. The
obtained exact solution of the discrete problem allows us to relate the size
of the nucleation peak and the associated propagation (or Peierls) stress to
the microstructural characteristics of the lattice. The model suggests specific
relations between microscopic and macroscopic parameters. We verify these
relations for the cubic to monoclinic phase transformation in NiTi wires. In
particular, we use the experimental value for the stress drop to obtain a bound
for the stiffness of the NNN springs and show that it is compatible with the
independent estimate based on the lattice model with Lennard-Jones particle
interactions.

In the final section of the paper we briefly compare our nonlocal discrete model
with the quasi-continuum strain-gradient approximation (Mindlin, 1965; Tri-
antafyllidis and Bardenhagen, 1993). As expected (e.g. Braides and Gelli,
2002), the strain-gradient model reproduces well the structure of the global
minimum of the energy in the continuum limit but misses the rich variety of
metastable equilibria. Although the nucleation peak is captured by the gra-
dient approximation, the resulting shape of the hysteresis loop is completely
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unrealistic. This suggests that the nonlocal coupling in the actual physical
system is weaker than what is required for the gradient approximation to be
applicable.

The structure of the paper is as follows. In Section 2 we formulate the discrete
problem and discuss the origin of instability of the trivial solution leading to
nucleation and growth of the new phase. The derivation of the general solution
of the discrete problem for an arbitrary phase configuration is outlined in
Section 3. We then discuss the energy barriers in Section 4 and construct the
associated Peierls-Nabarro landscape. In Section 5 we compute the magnitude
of the nucleation peak for the finite chain and then study the continuum
limit. In Section 6 we link the parameters of the model to the experimental
measurements in NiTi wires. Section 7 contains the comparison of the discrete
and strain-gradient models. The conclusions are summarized in Section 8.
Results of the technical nature are presented in the three Appendices.

2 The model

Consider a system of N+1 particles linked to their nearest and next-to-nearest
neighbors by elastic springs (see Fig. 1); an alternative interpretation of this
mechanical system would be a set of rigid (atomic) planes connected by shear
springs. Let uk, 0 ≤ k ≤ N , be the displacements of the particles with respect

ii−1 i+10 1 N−1 N

ε

2ε

NNN springNN  spring

Fig. 1. A finite chain of particles with nearest-neighbor (NN) and
next-to-nearest-neighbor (NNN) interactions.

to a load-free homogeneous reference configuration with spacing ε. If we denote
the strain in the kth NN spring by wk = (uk −uk−1)/ε, the total energy of the
system can be written as

Ψ = ε
N
∑

k=1

φ1(wk) + 2ε
N−1
∑

k=1

φ2

(

wk+1 + wk

2

)

+ ΨB(w1, wN), (1)

where φ1(w) and φ2(w) are the energies of the NN and NNN interactions,
respectively, and the term ΨB stands for the energy of the boundary elements
(to be specified below). We assume that the chain is placed in a hard device
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with the total displacement d:

uN − u0 = ε
N
∑

k=1

wk = d. (2)

Due to the nonlocality of the model, the boundary condition (2) may be com-
plemented by other constraints. For instance, to mimic an “extra hard device”
one can additionally impose w1 = 0 and wN = 0. Alternatively, one may con-
sider a “zero-moment device” which means that no additional conditions are
imposed and ΨB = 0.

Let fi(w) = φ′
i(w), i = 1, 2, denote the forces in NN and NNN springs, respec-

tively. By minimizing the energy (1) subject to (2), we obtain as necessary
conditions the equations governing the equilibrium of the interior particles
with 2 ≤ k ≤ N − 1:

f1(wk) + f2

(

wk+1 + wk

2

)

+ f2

(

wk + wk−1

2

)

= F. (3)

Here F is the total force in the system, the Lagrange multiplier associated
with the constraint (2). Unless the strains in the boundary elements with
i = 1 and i = N are constrained, the minimization over these variables gives
the following “natural” boundary conditions

f1(w1) + f2

(

w2 + w1

2

)

+
∂ΨB

∂w1
= F,

f1(wN) + f2

(

wN + wN−1

2

)

+
∂ΨB

∂wN

= F,

(4)

If we additionally assume that

ΨB = εφ2(w1) + εφ2(wN), (5)

the conditions (4) would mean that the boundary NNN springs are cut in half
and then reconnected parallel to the NN springs (see the dashed springs in
Fig. 1). The advantage of the latter choice is that the boundary equations
(4) can be naturally included into the bulk equations (3) which would then
hold for all 1 ≤ k ≤ N ; we must assume, however, that in this case there are
fictitious 0th and (N + 1)th springs with the strains satisfying

w0 = w1, wN+1 = wN . (6)

Another advantage of the boundary conditions (4) and (5) is that they sup-
press the boundary layers (Charlotte and Truskinovsky, 2002) and ensure the
existence of a trivial solution with the uniform strain distribution wk = d/L,
where L = Nε, Ftr = f1(d/L)+2f2(d/L) and Ψtr(w) = L(φ1(d/L)+2φ2(d/L)).
In the following we will deal exclusively with the boundary conditions (4), (5)

5



F

wwc

K

Kspinodal
region

a

phase I

phase II

Fig. 2. Nonmonotone force-strain relation in an individual NN spring (solid line)
and its bilinear approximation (dashed lines).

and only briefly consider the case ΨB = 0 (when the boundary layers reappear)
in Appendix C.

To model martensitic phase transitions, we assume that each NN spring has
a double-well energy generating a non-monotone force-strain relationship de-
picted in Fig. 2. The regions where the force increases with strain correspond
to two different phases of material; the domain of decreasing force is called the
spinodal region. We recall that in the continuum theory the spinodal region
is associated with the absolute instability of the homogeneous configuration
(Ericksen, 1975). To assess stability of the homogeneous (trivial) solutions in
the discrete model we need to study the conditions of the positive definiteness
of the matrix B = 1

ε
∂2Ψ

∂wi∂wj
. Let K(w) = φ′′

1(w) and γ(w) = φ′′
2(w)/2 denote

the tangential moduli of NN and NNN springs, respectively. The necessary
and sufficient conditions for stability can then be expressed in terms of these
moduli as (see Appendix A for the proof)

K + 4γ > 0, K + 4γ sin2 π

2N
> 0. (7)

Notice that in the limit of infinite N (7) reduce to the known conditions
K > 0, K + 4γ > 0 (e.g Mindlin, 1965). Stability conditions similar to (7)
were obtained in (Charlotte and Truskinovsky, 2002) for a finite chain with
“moment free” boundary conditions (ΨB = 0).

If the chain is stretched in the spinodal region and the stability conditions
(7) are violated, the trivial solution of the discrete problem becomes unstable,
leading to the formation of inhomogeneities. To specify the stable response of
the chain in this case, we need to find all nontrivial solutions of the equilibrium
equations (3) corresponding to either local or global minima of the energy. The
complete analytical treatment of this problem is possible when both the f1(w)
and f2(w) are piecewise linear. Therefore, following Fedelich and Zanzotto
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(1992), we choose the force-strain relation in NN springs in the form

f1(w) =











Kw for w < wc

K(w − a) for w ≥ wc.
(8)

Here the spinodal region reduces to a point: the phase state of the NN spring
depends on whether the strain is below or above the critical value wc. The
other parameters in (8) are the transformation strain a and the constant elastic
modulus K which is assumed to be positive and whose value is taken the same
in both phases (see Fig. 2). For the NNN springs we adopt the simplest linear
force-strain relation

f2(w) = 2γw (9)

with γ < 0. The latter inequality is justified for nonlinear interactions of the
Lennard-Jones type (see Section 6).

Under the assumptions (8), (9) the total energy (1) reduces to

Ψ = ε

{

1

2
Bw · w − q · (w − wc)

}

, (10)

where B is a tridiagonal matrix presented explicitly in Appendix A (see (A.1)),
qk = Kaθ(wk − wck) is the vector prescribing the distribution of phases, θ(x)
is a unit step function and wck = wc, k = 1, ..., N . The equilibrium equations
(3) together with the boundary conditions (6) can then be rewritten in the
form

Bw = F + q, (11)

where Fk = F , k = 1, ..., N . Both the external force F and the phase inho-
mogeneity vector q contribute as sources in the equation (11), which remains
nonlinear since q depends on w. To ensure that the matrix B is positive defi-
nite, we assume that in addition to already stated conditions on elastic moduli,
K > 0 and γ < 0, the inequality K + 4γ > 0 is also satisfied, which implies
(7).

At this point it is convenient to rescale the variables and introduce nondi-
mensional parameters. Selecting the length of the chain L = Nε as the length
scale and choosing K as the force scale, we define the new variables

ūk =
uk

Nε
, d̄ =

d

Nε
, F̄ =

F

K
, Ψ̄ =

Ψ

KNε
, B̄ = K−1B. (12)

The rescaled problem contains the only nondimensional parameter

β =
4γ

K
. (13)

In what follows, we omit the bars and work exclusively with the nondimen-
sional variables, having in mind that after the rescaling ε = 1/N . Observe
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that in terms of β our assumptions on the moduli can be summarized as

−1 < β < 0. (14)

3 Stable and metastable equilibria

Due to the partial linearity of the force-strain relation, one can divide the
problem of finding the global minimum of the energy into two steps. First
for a prescribed distribution of phases q we need to solve the linear elastic
problem (11) and compute the equilibrium function Ψ(q, d). The resulting
equilibrium configurations are automatically local minimizers of the energy
Ψ (metastable equilibria), because by virtue of (14) the stiffness matrix B is
positive definite. Next, to obtain the global minimizers (stable equilibria), one
needs to minimize Ψ(q, d) with respect to the phase geometry q.

The solution of the linear system (11) can be formally written as

w = B−1F + B−1q = w0 + w1. (15)

The first term in (15) corresponds to the uniform configuration with all springs
in the first phase. Without explicitly computing the inverse matrix B−1 one
can show that

w0
k =

F

1 + β
. (16)

The second term in (15) is the non-uniform contribution to the strain field due
to phase transformation. In what follows it will be convenient to express w1

not in terms of the variables q, but in terms of their “derivatives” p defined
for 1 ≤ i ≤ N − 1 by

pi = qi+1 − qi. (17)

Notice that these relations can always be “integrated”, yielding

qk = q1 + a
N
∑

i=1

piθ(k − i − 1). (18)

The physical meaning of the variables pi is clear from the representation

pi =



























1 if wi < wc and wi+1 > wc (I to II phase switch)

0 if sign(wi − wc) =sign(wi+1 − wc) (no phase switch)

−1 if wi > wc and wi+1 < wc (II to I phase switch).

(19)

One can see that pi are nonzero (±1) only at the locations i1, i2, ..., in of the
phase boundaries. To simplify the subsequent formulas we also assume that
pN = 0.
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The explicit representation of w1 in terms of q1 and pi is derived in the Ap-
pendix B. Here we present the final result

w1
k =

q1

1 + β
+ ∆

N
∑

i=1

pi

{

sinh[(N − i)λ] cosh[(k − 1/2)λ]

cosh(λ/2) sinh(Nλ)

+θ(k − i − 1/2)

(

1 − cosh[(k − i − 1/2)λ]

cosh(λ/2)

)}

,

(20)

where
∆ =

a

β + 1
(21)

is the macroscopic transformation strain and

λ = 2arccosh
1

√

|β|
. (22)

Solution of (11) can now be obtained as the sum of (16) and (20). By applying
the constraint (2) we can also obtain the relation between the force F and the
total displacement d:

F = (β + 1)(d − ∆
l

N
), (23)

where l is the number of springs in phase II, related to q1 and p via

l =
Nq1

a
+

N
∑

i=1

(N − i)pi. (24)

Substituting (23), (24) into (15), (16) and (20) we obtain the general solution
of our discrete problem

wk =d + ∆
N
∑

i=1

pi

{

sinh[(N − i)λ] cosh[(k − 1/2)λ]

cosh(λ/2) sinh(Nλ)
+

i

N
− 1

+θ(k − i − 1/2)

(

1 − cosh[(k − i − 1/2)λ]

cosh(λ/2)

)}

.

(25)

To compute the total energy, let w̃ with components w̃k = wk − d denote the
p-dependent part of the strain field w̃. Then (10) can be rewritten as

Ψ =
β + 1

2
d2 − a(d − wc)

l

N
+ Ψ̃, (26)

where

Ψ̃ =
1

N

(

1

2
Bw̃ − q

)

· w̃ (27)

is the portion of energy due to phase changes (note that Ψ̃ = 0 at a trivial
solution). Observing that in equilibrium (Clapeyron’s theorem)

Ψ̃ = − 1

2N
q · w̃
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and using (18) to eliminate q, we finally obtain

Ψ = (1 + β)

{

1

2
d2 − ∆(d − wc)

l

N
+

∆2

2N
Jp · p

}

, (28)

where the kernel matrix J is given by

Jki =
sinh[(N − i)λ] sinh[λk]

sinh(Nλ) sinh λ
+k

(

i

N
−1

)

+θ(k−i−1)

[

k−i− sinh[(k − i)λ]

sinh λ

]

.

(29)

Notice that for a given distribution of phases the loading parameter d cannot
take arbitrary values due to the requirement that strains on different sides of a
phase boundary must correspond to different energy wells (wk < wc for phase
I and wk > wc for phase II). This leads to the constraint

pi(wi − wc) < 0, pi(wi+1 − wc) > 0 for i: pi 6= 0, (30)

which in turn generates specific bounds on d(i1, i2, ..., in). For example, for a
single-interface solution (|p| = 1) we must have d−(i) < d(i) < d+(i), where

d±(i) = wc + ∆

{

sinh[(N − i)λ] cosh[(i ± 1/2)λ]

cosh
λ

2
sinh(Nλ)

+
i

N
− 1

}

. (31)

Similar explicit bounds can be found for configurations with two or more
interfaces.

Formulae (23), (28) and (31) are illustrated in Fig. 3 which shows the ho-
mogeneous solution and solutions with a single phase boundary at various
locations. Each of the single-interface branches, parametrized by i - the num-

0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.5 1 1.5 2

-0.2

0.2

Ψ

d

F

d

i=0
i=1

i=10

(a) (b)

i=1

i=0

i=9

i=10

Fig. 3. The overall energy-strain and force-strain relations along the trivial (i = 0,
N) and the single-interface (1 < i < N) metastable solutions. Here N = 10,
β = −1/2, wc = a = 1.

ber of springs in phase II, begins at d = d−(i), where wi = wc, and ends at
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d = d+(i), where wi+1 = wc. In the interval d−(i) < d < d+(i) the force gener-
ated by these nontrivial solutions increases linearly with d, while the energy
is parabolic. Notice that due to the symmetry of the problem, the ith branch
presented in Fig. 3 with phase II located to the left of the interface is indis-
tinguishable from the (N − i)th branch with phase II located to the right of
the interface.

Equilibria with two interfaces and various arrangements of phases are shown in
Fig. 4 for a chain with six springs. Although the structure of the corresponding

0 0.5 1 1.5 2 d

0.05

0.1

0.15

0.2

1.2 1.25 1.3 1.35 1.4 1.45

0.057

0.058

0.059

d

(a) (b)

b

(-1 1 0 0 0 0)
(0 -1 1 0 0 0)
(0 0 -1 1 0 0)
(0 0 0 -1 1 0)

(-1 0 1 0 0 0)
(0 -1 0 1 0 0)
(0 0 -1 0 1 0)
(1 0 0 0 -1 0)

(-1 0 0 1 0 0)
(0 -1 0 0 1 0)
(1 0 0 -1 0 0)
(0 1 0 0 -1 0)

(-1 0 0 0 1 0)
(1 0 -1 0 0 0)
(0 1 0 -1 0 0)
(0 0 1 0 -1 0)

(1 -1 0 0 0 0)
(0 1 -1 0 0 0)
(0 0 1 -1 0 0)
(0 0 0 1 -1 0)

(0 -1 0 1 0 0)


(-1 0 1 0 0 0)


p =Ψ Ψ

Fig. 4. (a) Energy-strain relation for the homogeneous solution (thin line) and
two-interface solutions with various locations of the interfaces (various p, thick
lines). (b) The blow-up of (a) around configurations with p = (0 −1 0 1 0 0) and
p = (−1 0 1 0 0 0). Parameters: β = −1/2, wc = a = 1, N = 6.

energy-strain diagram is similar to the one shown in Fig. 3a, the two-interface
branches are located higher than the branches with a single interface. Observe
that unlike the case with no NNN interactions (e.g. Puglisi and Truskinovsky,
2002b), in which the energy of an equilibrium configuration is determined
solely by the volume fractions of the phases, in the nonlocal model the actual
locations of the interfaces play an important role. For example, the blow-up
in Fig. 4b shows that the energy of the branch with p = (0 −1 0 1 0 0) (phase
II for k < 2 and k > 4 and phase I for 2 ≤ k ≤ 4) is higher than the energy
of a branch with p = (−1 0 1 0 0 0) which has the same volume fraction of
phase II, but different phase geometries.

Inside the family of metastable solutions with a given number of interfaces n
one can now select the global minimizers of Ψ(i1, ..., in, d). The resulting curves
Ψ̂(n, d), n ≤ 4, are shown in Fig. 5 for a chain with six springs. We observe
that among the nontrivial optimal equilibria, single-interface solutions have
the lowest energy, which is an expected result for large N (Carr et al., 1984;
Triantafyllidis and Bardenhagen, 1993). In the limit of small γ branches with
different number of interfaces tend to overlap, and single-interface solutions
eventually lose their special status.

Finally, we remark that the structure of of local minimizers obtained an-
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n = 4
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Ψ

Fig. 5. Energy-strain relation for the global minimizers of the families of solutions
with up to four interfaces. Here N = 6, β = −1/2, wc = a = 1.

alytically in this section is very similar to the numerical results of Rogers
and Truskinovsky (1997) for a discrete model with nonlocal interactions that
spread beyond next-to-nearest neighbors.

4 Energy barriers

In this section we go beyond the analysis of local minima and reconstruct the
relevant sections of the energy landscape for our discrete system. In partic-
ular, we fix the loading parameter d and find the energy barriers separating
the neighboring metastable states. This information will be used in the next
section where we discuss different strategies of switching between metastable
configurations in the quasistatically loaded system.

For simplicity, we restrict our attention to the configurations with at most
one phase boundary, which is consistent with experimental observations (e.g.
Krishnan, 1985) at a very slow loading (see Appendix C for the treatment of
the case where two-interface solutions may become relevant). More precisely,
we assume that at a given d, the chain can be equilibrated in either homoge-
neous state (i = 0 or N) or in a variety of two-phase states with a single phase
boundary at k = i. The generic picture is illustrated in Figure 6a where we
see that at d = 0.5 a chain with N = 10 can assume metastable configurations
with i = 2 (or 3), i = 1 (or 4), i = 0, i = 5 and i = 6, where the equilibria are
listed in the order of increasing energy.

To evaluate the barriers separating neighboring local minima, consider a generic
one-interface equilibrium configuration wk(i), with all springs to the left of
the ith particle stretched in phase II and try to connect it with another one-
interface equilibrium, wk(i + 1), having one extra spring in phase II. Notice
that in order to switch between wk(i) and wk(i + 1), the system must follow
some non-equilibrium path along which the (i + 1)th spring changes phase.
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Fig. 6. (a) Energies of the single- and zero-interface branches of equilibria available
at d = 0.5. (b) Peierls-Nabarro energy landscape along the path wk(ν) connect-
ing various metastable equilibria at d = 0.5. Parameters: N = 10, β = −1/2,
wc = a = 1.

Among infinitely many possible paths connecting the configurations wk(i) and
wk(i + 1), we are interested in the one passing through the minimal energy
barrier. To generate such a path, it is natural to choose the strain wi+1 as the
order parameter and minimize the total energy with respect to all “nontrans-
forming” variables wk with k ≤ i and k ≥ i+2 for a fixed wi+1. The necessary
conditions of this constrained equilibrium take the form

(1 +
β

2
)wk +

β

4
(wk+1 + wk−1) =











F + a for k ≤ i

F for k ≥ i + 2,
(32)

Note that equations (32) must be supplemented by the boundary conditions
(2) and (6).

To show that the configurations satisfying (32), (2) and (6) have the lowest
energy among all constrained states with a given wi+1 we need to check the
positive definiteness of the matrix B(i+1) obtained from (A.1) by deleting the
(i+1)th row and the (i+1)th column. In the generic case when 0 < i < N −1
the matrix B(i+1) is indeed positive definite as can be easily seen by writing
the quadratic form

B(i+1)w · w = (1 + β)
N−1
∑

k=1

w2
k −

β

4

(

N−2
∑

k=1,k 6=i

(wk+1 − wk)
2 + w2

i+1 + w2
i

)

,

and applying the condition that β is in the range (14). Then, if i = N − 1
the first N − 1 principal minors of B coincide with the principal minors of
B(i+1) = B(N) and the positive definiteness of B(i+1) follows from the positive
definiteness of B. By symmetry, the same argument applies to the matrix B(1)

(i = 0).
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The general solution of (32), (2) and (6) can be represented in the parametric
form

wk(ν) =















d − ∆
{ ν

N
− 1 + C1(sinh(λk) − sinh(λ(k − 1)))

}

, k ≤ [ν] + 1

d − ∆
{ ν

N
+ C2(e

λk − eλ(k−1) − eλ(2N−k) + eλ(2N−k+1))
}

, k ≥ [ν] + 1.

(33)
where [ν] = i and [ν] denotes the integer part of ν. It can be directly checked
that (33) solves (32) for k ≤ [ν] and k ≥ [ν]+2, with the Lagrange multiplier
F given by

F = (1 + β)
(

d − ν

N
∆
)

. (34)

Now, by matching the strains at k = i + 1 = [ν] + 1 and imposing (2), we
obtain

C1 =
2{e(2N−[ν])λ[ν − [ν] − eλ(ν − [ν] − 1)] − eλ([ν]+1)[ν − [ν] − 1 − eλ(ν − [ν])]}

(e2λ − 1)(e2Nλ − 1)

and

C2 =
2{(ν − [ν]) sinh[([ν] + 1)λ] − (ν − [ν] − 1) sinh[[ν]λ]}

(e2λ − 1)(e2Nλ − 1)
.

In particular, we have

w[ν]+1(ν) = d − ∆
( ν

N
− 1

)

+ C1(sinh[([ν] + 1)λ] − sinh[[ν]λ]). (35)

which furnishes a relation between the order parameters wi+1 and ν. Observe
that parameter wi+1 oscillates as the function of i with period 1, while ν in-
creases monotonically. We also notice that the integer values of ν correspond
to the metastable equilibrium configurations. The energy Ψ(ν) obtained by
substituting (33) in (26) can be interpreted as a Peierls-Nabarro (PN) land-
scape for our discrete system with the valleys at ν = i.

One can see that in order to move from one local minimum of the PN landscape
at, say, ν = i, to the next one at ν = i + 1 the system must climb a Peierls
barrier located at ν = νi which is defined by

wi+1(νi) = wc. (36)

The height of the Peierls barrier is then given by δΨi→i+1 = Ψ(νi)−Ψ(i) and
can be explicitly computed using (26) and (27).

A typical structure of the PN landscape is illustrated in Fig. 6b. One can see
that due to piecewise linear structure of the model the PN landscape consists
of a set of parabolae with local minima at ν = i (metastable equilibria) and
sharp local maxima at ν = νi (saddle points of the original energy). The
corresponding strain profiles are shown in Figure 7.
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Fig. 7. Strain profiles associated with nucleation and incremental growth of the new
phase. Configurations with ν = 0, ν = 1 and ν = 2 are metastable equilibria. The
saddle point configurations have ν = ν0 and ν = ν1. Parameters are the same as in
Fig. 6.

The dependence of the height of the Peierls barriers on d is illustrated in Fig. 8.
One can make a general observation that for a given i, the Peierls barrier
between the ith and (i + 1)th metastable branches is maximal at the point
of their intersection and decreases to zero at the end of the branch, where νi

coincides with i. We also observe that at sufficiently large |β| the Peierls barrier
for the transition 0 → 1 is higher than for several subsequent transitions. For
example, at N = 10 and β = −1/2, the barrier for the transition 1 → 2 is lower
than the barrier for the transition 0 → 1 (see Fig. 8). Notice that the barrier
1 → 2 vanishes at d+(1) and beyond this point, the branch i = 1 does not
exist any more. Therefore the transition 0 → 1 deteriorates into the transition

0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0.02

0.03

0.04

δΨ

d

0     1

2     3

3     4

1     2

0.85 0.9 0.95 1

0.001

0.002

1     2

0     1

0     2

2     3

Fig. 8. Peierls barriers for several transitions i → i + 1 parametrized by d. The
dashed lines indicate the intervals where the transition is energetically unfavorable.
The insert is the blow-up of the selected region. Parameters: N = 10, β = −1/2,
wc = a = 1.

0 → 2 with the barrier vanishing exactly at d = wc. A similar calculation for
N = 20 and β = −1/2 shows that the Peierls barrier for the transition 0 → 1
is higher than two subsequent barriers for the transitions 1 → 2 and 2 → 3;
as the last two barriers vanish at sufficiently large d, the transition 0 → 1 first
transforms into 0 → 2 and then into 0 → 3. In general, as we show in the next
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section, the number of springs involved in the first nucleation event increases
with N and tends to infinity in the continuum limit.

5 Nucleation peak and hysteresis

We have shown that if the chain, driven by external loading d, is constrained
to stay in the global minimum of the energy (Maxwell strategy), it has to
overcome maximally high energy barriers during each switching event. Alter-
natively, the system may be constrained to stay in a given local minimum
until the minimal energy barrier around this local minimum reaches a critical
threshold. In particular, the maximal delay strategy would require that the
system follows each metastable branch until the minimal barrier is equal to
zero (so that the corresponding state becomes absolutely unstable) and then
switches to the nearest local minimum by following a path of the steepest
descent. For chains with only local (NN) interactions, various aspects of these
strategies and their relation to the dynamical extensions of the model are dis-
cussed in Puglisi and Truskinovsky (2002a,b). Here we generalize these results
for the case when the system is nonlocal.

Suppose that the branch switching takes place when the energy barrier equals
a certain critical value H which is determined by the level of fluctuations or
imperfections in the system. Two of the resulting paths are shown in Fig. 9
which illustrates the overall behavior of the NNN chain subjected to the qua-
sistatic loading in a hard device. One can see that as d increases from zero,

0.5 1 1.5 2

-0.2

0.2

F

d

H = 0

H = 0.003

Fig. 9. Branch-switching sequence for the path of maximal delay, H = 0, and for
the path with a finite critical energy barrier H = 0.003. Parameters: β = −1/2,
N = 10, wc = a = 1.

the system initially stays in the trivial (homogeneous) configuration with all
springs in phase I. As the energy barriers decrease with d, the chain eventually
reaches the state when the smallest energy barrier in the vicinity of the trivial
metastable equilibrium becomes equal to H. At this moment nucleation takes
place and the system escapes from the local minimum through the first saddle
point with a subcritical height. As the loading continues after the nucleation
event, the phase boundary propagates along the chain in a stick-slip fash-
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ion, with the system getting temporarily trapped in each of the metastable
equilibria (parametrized by i). The resulting graphs of the force F (d) exhibit
serrations which are due to the discreteness of the system and smoothen in
the continuum limit.

Although the overall behavior of the nonlocal (NNN) system is in many re-
spects similar to the case of the local (NN) system, there are also some no-
ticeable differences. The most important one is the presence of the nucleation
peak: the force required for phase nucleation is distinctly higher than the av-
erage force at which subsequent propagation of a phase boundary takes place.
Observe also that along both paths shown in Fig. 9 the first two springs change
phase simultaneously, which never happens in the NN system. Such massive
nucleation occurs when the energy barrier for the transition 0 → 1 is higher
than the barriers for several subsequent transitions which takes place only
when NNN interactions are sufficiently strong (high enough |β|) and the total
number of springs is sufficiently large. Notice, however, that after the first nu-
cleation event the subsequent propagation of the interface in the NNN system
takes place at the smaller average force but involves, exactly as in the NN
system, only one spring changing phase at a time.

The physical reason for the appearance of a nucleation peak is the nonlocal
character of interparticle interactions leading to the formation of the internal
boundary layers around the phase boundary (see a different nonlocal model
exhibiting similar behavior in Rogers and Truskinovsky (1997)). Thus, before
the first nucleation event all springs are stretched uniformly, whereas after the
nucleation, the springs in phase I that are closer to the phase boundary have
higher strain and hence are closer to the critical threshold than the springs
far away. This helps to trigger the subsequent switching events and results
in the smaller force required for the propagation of a phase boundary than
the associated nucleation force. In the limiting case of no NNN interactions
(β = 0), all springs outside the interface are stretched uniformly, and therefore
the propagation of the interface does not take place until the critical strain is
reached in all non-transformed springs simultaneously. Thus in this case phase
propagation effectively reduces to successive nucleation events in the shorter
and shorter chains which requires the same critical force.

To obtain an analytical upper bound for the size of the nucleation peak, we
restrict our attention to the barrierless path (maximum delay strategy, H = 0).
Recall that in the present piecewise linear model the barrierless nucleation
event occurs when the force reaches the spinodal limit Fmax = (β + 1)wc. On
the other hand, the jump of the interface from k = i to k = i + 1 takes place
at F (i, N) = FM + FP(i, N), where

FM = (β + 1)wc −
a

2
(37)
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is the Maxwell force and FP(i, N) is the Peierls force given by

FP(i, N) = F (d+(i), i) − FM = a

(cosh
[(1

2
+ i
)

λ
]

sinh[λ(N − i)]

cosh
λ

2
sinh(Nλ)

− 1

2

)

. (38)

Numerical computations show that the function FP(i, N) has almost no de-
pendence on i except in the narrow boundary layers near i = 1 and i = N −1.
In the limit of infinite N the Peierls force (38) approaches the limiting value

lim
N→∞

FP(i, N) = FP =
a

2

√

1 + β. (39)

One can see that as NNN interactions get weaker (β approaches zero), the
Peierls force tends to the spinodal limit Fmax − FM and the nucleation peak
disappears.

The limiting configuration of a hysteresis loop in the continuum limit is shown
in Fig. 10. Notice that although the serrations disappear, the nucleation peak
remains finite and the force drops by the amount

τ = (1 + β)wc − FP =
1

2
a

(

1 −
√

1 + β

)

. (40)

This quantity is positive as long as −1 < β < 0 and is always less than a/2
- the difference between the spinodal and Maxwell forces. The half-height of

F

d

∆

τ

FM

Fmax

wc

FP

Fig. 10. The maximum hysteresis loop in the continuum limit for the nonlocal (NNN)
model with −1 < β < 0.

the narrow part of the limiting loop is then given by FP from (39).

To estimate the number of springs participating in the nucleation event in
the continuum limit we begin with a finite N and recall that barrierless the
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nucleation takes place at d = wc. Therefore we must find the first equilibrium
branch with nonzero i which is defined at this value of d. Setting d± from (31)
equal to wc, we obtain the equation for i

sinh[(N − i)λ] cosh[(i ± 1/2)λ]

cosh
λ

2
sinh(Nλ)

= 1 − i

N
. (41)

Now, for N >> i and sufficiently large i the left-hand side of (41) can be
approximated by (1 + e−λ)−1. Hence the number of springs changing phase
during nucleation in a sufficiently long chain is given by

inuc =

[

N

1 + eλ

]

+ 1. (42)

This implies that in the continuum limit the number of springs involved in
nucleation is infinite. The size of the transformed portion of the chain, however,
is finite and equals to

l0 =
1

1 + eλ
. (43)

Formula (43) gives the upper bound for the size of the martensite band
formed during the nucleation event. When nonlocal interactions are absent
(NN model, β = 0, λ = ∞) the nucleus contains only one spring and hence
l0 = 0.

6 Verification of the model

We now use the explicit formulae from the previous section for the interpreta-
tion of the experiments reporting the height of the nucleation peak. The goal
is to obtain a bound on the value for the nonlocality measure γ and compare
it with results of the independent estimates. The expression for γ from (13)
and (40) takes the form

γ =
E

4

[

1 −
(

1 − 2τ

E∆

)−2]

, (44)

where E = K + 4γ is the macroscopic elastic modulus of the homogeneous
chain and ∆ is the macroscopic transformation strain. The magnitude of the
stress drop at the peak τ and the transformation strain ∆ are available from
the data of Shaw and Kyriakides (1995) on NiTi wires. Thus, in the experiment
conducted at 70◦ and the loading rate 4×10−5 s−1, the measurements gave τ =
0.039 GPa, and ∆ = 3.97%. The Young’s moduli of austenite and martensite
material phases are different, EA = 56.7 GPa and EM = 27.5 GPa at 70◦,
respectively. Since our model assumes equal moduli in the two phases, we can

19



obtain only upper and lower bounds for γ. By using separately the moduli
for austenite and martensite, we estimate γ to be between −1.1 and −1 GPa,
which implies that β is in the range −0.137 < β < −0.068. Similar estimate
in Truskinovsky and Vainchtein (2003) for CuAlNi yields β = −0.0299.

One can independently estimate γ by assuming that the interactions between
particles are governed by the Lennard-Jones potential. In this case we have
εφ1(

r
ε
− 1) = 2εφ2(

r
2ε

− 1) = U(r), where φ1(w) and φ2(w) are the energy
densities for NN and NNN springs, respectively, and U(r) has the form

U(r) =
Kε

72

[(

ε

r

)12

− 2

(

ε

r

)6]

. (45)

The coefficients in U(r) are selected in such a way that elastic modulus in the
potential well located at r = ε equals K. Linearizing around the unstretched
homogeneous state with the spacings r = ε and r = 2ε, we obtain (Charlotte
and Truskinovsky, 2002)

β =
4U ′′(2ε)

U ′′(ε)
.

This yields β = −0.0177. With the Young’s modulus EA = 56.7 GPa, this
is equivalent to γ = −0.255 GPa which despite the rather rigid form of the
potential (45) is within a reasonable range from the values obtained above
from the experimental data.

Finally, one can use the above estimates of β and our formula (43) to predict
the initial size of the martensite band L0. The range −0.137 < β < −0.068
obtained above yields 0.001 < L0/L < 0.005, where L is the size of the
specimen. While we could not find direct experimental measurements of L0

in the literature, this parameter was estimated (Sun and Zhong, 2000) to be
on the order of the specimen’s diameter D. This appears to be roughly in
agreement with our own estimate in the case of thin NiTi wires where in a
typical sample D/L ∼ 0.0025 (Leo et al., 1993)).

7 Comparison with the strain-gradient model

In this section we compare the exact results for the discrete model with the
predictions of a strain-gradient quasi-continuum approximation which retains
the length scale of the discrete model while simplifying its dispersive prop-
erties. The formal derivation of the strain-gradient model from the discrete
model can be found in Mindlin (1965). By neglecting the terms of third and
higher order in ε, we obtain the energy functional (up to a null Lagrangian)

Ψ =
∫ 1

0
[φ(w) +

1

2
αε2(w′)2]dx, (46)
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where

α = − 1

12
(1 + 4β). (47)

This functional must be minimized subject to the constraint

∫ 1

0
w(x)dx = d. (48)

The natural boundary conditions

w′(0) = w′(1) = 0 (49)

represent the continuum analog of the boundary equations (6) in the discrete
problem. The Euler-Lagrange equations resulting from this quasi-continuum
formulation can be written in the form φ′(w) − αε2w′′ = F (analog of (3)),
where φ′(w) = (β + 1)w − aθ(w − wc).

The variational problem (46), (48) is well posed when α is positive which
implies β < −1/4. Observe that the estimate for β obtained in the previous
section from experimental data is outside this range which implies that at
least some features of the relevant physical situation may be misrepresented
by the quasi-continuum approximation.

It is instructive to compare the general structure of the metastable solutions
in the discrete model with the corresponding solutions in the strain-gradient
approximation (46). As shown in Carr et al. (1984) the strain-gradient model
allows for local minima with at most one interface. For the piecewise linear
model all these metastable configurations can be obtained analytically (Truski-
novsky and Zanzotto, 1996). A representative picture is shown in Fig. 11, with
the parameters chosen to match those for the discrete model with N = 20. We
observe that while the quasi-continuum approximation captures the structure
of the absolute minimizers of the discrete problem, it fails to reproduce the
rich structure of the metastable equilibria which in the quasi-continuum model
all collapse into a single branch. This is the reason why the strain-gradient
approximation does not generate a realistic hysteresis.

Observe that while all multiple-interface equilibria of the discrete model are
metastable, configurations with more than one interface are absolutely un-
stable in the quasi-continuum approximation. This difference is due to the
fact that in the discrete model one cannot vary the volume fraction of phases
continuously, and thus certain perturbations that make multiple-interface so-
lutions unstable in the continuum case are impossible in the discrete model.

While stability of configurations with multiple interfaces is common to both
the NN and the NNN models, strong coupling among the bi-stable elements,
reduces the number of metastable states and narrows the hysteresis. Moreover,
as the coupling gets stronger, the quasi-continuum approximation becomes
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Fig. 11. The energy-strain and the force-strain relations for the absolute energy
minimizers (thick line) and the metastable single-interface solutions (thin lines) for
the discrete chain with N = 20 (a) and for the strain-gradient approximation, with
ε = 1/20(b). Other parameters: β = −1/2, wc = a = 1. Unstable single-interface
solutions are shown by dashed lines.

more and more appropriate and the hysteresis asymptotically approaches the
shape predicted by the strain gradient model. This is clearly seen in the nu-
merical experiments reported by Ye et al. (1991).

8 Conclusions

In this paper we studied the effect of the harmonic coupling between bi-stable
elements on the macroscopic force-strain response of a discrete chain placed in
a hard loading device. The choice of the piecewise linear constitutive relations
allowed us to obtain explicit solutions describing inhomogeneous metastable
configurations with an arbitrary number of phase boundaries. While the gen-
eral response was found to be similar in both local and nonlocal systems,
we have also indicated important differences. The main feature of the system
with nonlocal interactions is that the elements around the phase-boundary are
“pre-conditioned” due to the presence of the boundary layers. This results in
smaller energy barriers for the propagation of the phase boundary compared
to what one obtains in the local model. Another important difference is that
in the nonlocal model more than one element may have to be deformed during
the nucleation event. This leads to the appearance of a nucleation peak which
has been experimentally detected not only in shape memory alloys but also
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in mild steels. The fact that the propagation of the phase boundary following
the nucleation takes place at a lower load than the nucleation itself is one of
the main signatures of the nonlocal models. We showed that the nucleation
peak persists in the continuum limit where it manifests itself through an in-
stantaneous formation of a finite band scaled with the length of the sample.
The availability of the exact formula relating the size of the nucleation peak
to the microscopic parameters of the lattice allowed us to estimate the value
of the stiffness of the NNN springs which produced results compatible with
the independent lattice computations. We have shown that the strain-gradient
continuum approximation captures the global minimum of the discrete prob-
lem but fails to predict a realistic hysteresis. This systematic discrepancy
points towards the importance of alternative quasi-continuum techniques that
would result in the models capable of capturing local minimizers.
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Appendix

A Necessary and sufficient conditions of stability for the trivial
solution of the discrete problem

The trivial (homogeneous) solution of the problem (3), (2) and (6) is stable if
and only if the N × N tridiagonal matrix

B =
1

ε

[

∂2Ψ

∂wi∂wj

]

wk=w

=





























K + 3γ γ 0 . . . 0

γ K + 2γ γ
. . . 0

0
. . .

. . .
. . . 0

... 0 γ K + 2γ γ

0 . . . 0 γ K + 3γ





























(A.1)

is positive definite. We now show that the conditions (7) are both necessary
and sufficient for stability.

First consider the case γ ≤ 0. Then K + 4γ sin2(π/(2N)) ≥ K + 4γ, and it
suffices to show that (7)1 is necessary and sufficient. Indeed, in this case if
K + 4γ > 0 both terms in the quadratic form

Bw · w = (K + 4γ)
N
∑

k=1

w2
k − γ

N−1
∑

k=1

(wk+1 − wk)
2. (A.2)
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are positive (unless w = 0), implying positive-definiteness of B. Conversely,
if the trivial solution is stable, we have Bw · w > 0 for all nonzero vectors
w. Choosing wk = δ/

√
N 6= 0, we obtain Bw · w = (K + 4γ)δ2 > 0, which

implies (7)1.

Now, if γ > 0, we have K + 4γ sin2(π/(2N)) ≤ K + 4γ and we need to show
that it is (7)2 which is both necessary and sufficient. First observe that in this
case K > 0 is sufficient for stability. This follows from writing the quadratic
form (A.2) as

Bw · w = K
N
∑

k=1

w2
k + γ

N−1
∑

k=1

(wk+1 + wk)
2 + 2γ(w2

1 + w2
N).

By the same argument as above K + 4γ > 0 is again necessary. Therefore, we
consider the range

{K < 0, K + 4γ > 0} (A.3)

and compute the principal minors Dn of (A.1). Recalling the recursion relation
between principal minors of a tridiagonal matrix (e.g., Gelfand and Fomin
(1963)), we obtain

D1 = K + 3γ, (A.4)

Dk = (K + 2γ)Dk−1 − γ2Dk−2, 2 ≤ k ≤ N − 1, (A.5)

DN = (K + 3γ)DN−1 − γ2DN−2. (A.6)

Seeking solutions of the difference equation (A.5) in the form Dk = ρk, we
obtain the characteristic equation ρ2 − (K + 2γ)ρ + γ2 = 0, which implies

ρ1,2 =
1

2
(K + 2γ ±

√

K(K + 4γ)). (A.7)

In the parameter range (A.3) both ρ1,2 are complex and we can write

ρ1,2 = −γe±iω,

where

ω = 2arccos

√

−K

4γ
. (A.8)

The principal minors Dk, 1 ≤ k ≤ N − 1, can then be written in the form

Dk = (−γ)k(c1 cos(ωk) + c2 sin(ωk)).

Using D0 = 1 and (A.4) as the boundary conditions to determine c1 and c2,
we obtain

Dk = (−γ)k cos(ω(k + 1
2
))

cos ω
2

, (A.9)

where 1 ≤ k ≤ N − 1. Finally, (A.6) and (A.9) together yield

DN = −2(−γ)N tan
ω

2
sin(ωN). (A.10)
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The trivial solution is stable if and only if all principal minors of B are positive.
Observe that (−γ)k is positive at even k and negative otherwise. It is easy to
show that 0 < ω < π in the range (A.3), so that cos ω

2
and tan ω

2
are both

positive. Hence stability conditions reduce to the requirement that cos(ω(k +
1
2
)), 1 ≤ k ≤ N−1, is positive for even k, negative otherwise and that sin(ωN)

is negative for even N and positive otherwise. In other words, we obtain the
following intervals of stability:

−π
2

+ 2πmk

k + 1
2

< ω <
π
2

+ 2πmk

k + 1
2

, for 1 ≤ k ≤ N − 1, even

π
2

+ 2πmk

k + 1
2

< ω <
3π
2

+ 2πmk

k + 1
2

, for 1 ≤ k ≤ N − 1, odd

π(1 + 2MN)

N
< ω <

2π(MN + 1)

N
, for N even

2πMN

N
< ω <

π(1 + 2MN)

N
, for N odd,

where the choice of the integers mk, MN makes the above inequalities com-
patible with 0 < ω < π. It is not hard to see that all the above inequalities
are satisfied if and only if

ω >
π(N − 1)

N
.

By combining this inequality with (A.8), we obtain (7)2.

B Explicit general solution for the discrete problem

To find the function w1, we observe that in the interior nodes (2 ≤ k ≤ N −1)
w1

k must satisfy the difference equation

(1 +
β

2
)w1

k +
β

4
(w1

k+1 + w1
k−1) = q1 + a

∑

i

piθ(k − i − 1). (B.1)

We seek the general solution of (B.1) in the form

w1
k = wh

k + win
k , (B.2)

where wh
k satisfies the homogeneous equation and win

k is a particular solution of
(B.1). The general solution of the homogeneous problem can be represented as
a linear combination of ρk

1 and ρk
2, where ρ1,2 are the roots of the characteristic

polynomial (Mickens, 1990)

βρ2 + 2(2 + β)ρ + β = 0 (B.3)
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By writing ρ1,2 = e±λ, where λ is given by (22) we obtain

wh
k = C1e

λk + C2e
−λk, (B.4)

Here the constants C1 and C2 are to be found from the boundary conditions
(6).

Next, we construct a particular solution of (B.1) with q1 = 0 and pj = 0 for
all j except j = i. Observe that in this case the right hand side of (B.1) is
zero for k ≤ i and constant for k ≥ i + 1. Therefore we can seek the solution
in the form

wpi

k =















wp−
k = A1e

λk + A2e
−λk for k ≤ i

wp+
k = A3e

λk + A4e
−λk +

api

1 + β
for k ≥ i,

, (B.5)

and then “glue” both sides by requiring that

wp−
i = wp+

i , wp−
i+1 = wp+

i+1. (B.6)

Since we are looking for a particular solution, we may let A1 = A2 = 0, and
thus consider wp−

k = 0. Solving (B.6) for A3 and A4, we obtain

wpi

k = ∆

{

θ(k − i − 1/2)

[

1 − cosh[(k − i − 1/2)λ]

cosh (λ/2)

]}

,

with ∆ defined by (21). Finally, by superposition, we obtain the particular
solution of (B.1)

win
k =

q1

1 + β
+ ∆

N
∑

i=1

piθ(k − i − 1/2)

[

1 − cosh[(k − i − 1/2)λ]

cosh(λ/2)

]

. (B.7)

The general solution of (B.1) is now given by (B.2), (B.4) and (B.7). Applying
the boundary conditions (6), we obtain (20).

C Effects of the boundary layers

To study the effect of the boundary layers on the nucleation phenomenon in
general and the magnitude of the nucleation peak in particular, we can replace
the special boundary conditions (6) aimed at suppressing boundary layers by
the “zero-moment” conditions (4) with ΨB = 0. In this case, due to the missing
NNN springs on the boundary the zero-interface solution is no longer trivial
and possesses two symmetric boundary layers illustrated in Fig. C.1b. Next,
consider the process of quasistatic loading of the chain originally in phase I.

26



0.6 0.7 0.8 0.9 1 1.1

0.3

0.4

0.5
A

B

C

2 4 6 8 10 12 14

0.5

1

1.5

2

A

B

C

d

F wk

k

(a) (b)

{}
{7,8} {13} {12} {6,9} {11}

Fig. C.1. (a) The fragment of the force-elongation plane near the nucleation peak
representing: single-interface (solid lines) and two-interface (dashed lines) solutions
and (b) the corresponding strain profiles. The numbers in curly brackets indicate
locations of phase boundaries for configurations with phase I in the left end of the
chain. Parameters: N = 15, η = −1/2, wc = a = 1.

When the critical value of the average strain d = d+(0) is reached, at least
one spring in the middle of the chain passes the critical threshold w = wc

and the one-phase solution becomes unstable (point A in Fig. C.1). This may
lead to the formation of either two symmetric interfaces in the center (point
C in Fig. C.1 with two phase boundaries located at k = 6 and k = 9) or of
a single interface near one of the the boundaries (point B in Fig. C.1 with
one phase boundary at k = 12). The computation shows that configuration
B with a single interface has a slightly lower energy than the two-interface
configuration C. However, the transition from A to B may require overcoming
a higher barrier than in the case of the transition from A to C. Indeed, during
the transition from A to C only two springs (7th and 9th, which are both
slightly below wc in A) must transform into phase II: the 8th spring is already
at the critical strain. At the same time the transition from A to B requires
at least three springs, that are initially much below the threshold to change
phase. This suggests that in the presence of symmetric boundary layers the
nucleation may takes place in the interior of the chain and this possibility
can be investigated rigorously. For the subject of this paper, however, it is
important to notice that the nucleation peak will survive in both cases (see
Fig. C.1a).
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