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Abstract

The problem of predicting features of turbulent flows occurs in
many applications such as geophysical flows, turbulent mixing, pollu-
tion dispersal and even in the design of artificial hearts. One promising
approach is large eddy simulation (LES), which seeks to predict lo-
cal spacial averages 1 of the fluid’s velocity u. In some applications,
often the LES equations are solved over moderate time intervals and
the core difficulty is associated with modeling near wall turbulence in
complex geometries. Thus, one important problem in LES is to find

appropriate boundary conditions for the flow averages which depend
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on the behavior of the unknown flow near the wall. Inspired by early
works of Navier and Maxwell, we develop such boundary conditions

of the form
u-n=0and B(6 Re,[d-7))u-7+2Re 'n-D@)-7=0

on the wall. We derive effective friction coefficients § appropriate for
both channel flows and recirculating flows and study their asymptotic
behavior as the averaging radius 0 — 0 and as the Reynolds number
Re — oo. In the first limit, no—slip conditions are recovered. In
the second, free—slip conditions are recovered. Our goal herein is not
to develop new theories of turbulent boundary layers but rather to
use existing boundary layer theories to improve numerical boundary

conditions for flow averages.

Keywords : large eddy simulation, near wall models, turbulence, boundary

layer

1 Introduction

In the late 1970’s, one author ( WL ) had the priveledge of hearing a lecture
by Professor George Fix. At the end of that lecture, George predicted that
the next 10 years of numerical analysis would be dedicated to computing
functionals of solutions of models accurately when it is impossible to com-
pute the solution itself accurately. Characteristically, George’s prediction
was scientifically accurate, but optimistic in both the starting point and the
completion date. In this paper, we consider a problem which fits within
George’s vision: approximate averages of turbulent flows accurately when
the fluid velocity itself cannot be accurately simulated.

The problem of predicting the behavior of turbulent flows is ubiquitous in
engineering applications. When only long time statistics are needed, carefully
calibrated conventional turbulence models are a useful tool. On the other

hand, when dynamic features of the engineering flow are needed, large eddy



simulation (LES) is the preferred technique. For LES, which seeks to predict
local, spatial flow averages above a preassigned length scale §, to be useful
as an engineering design tool, at least two fundamental improvements are
needed in current practice. First, for problems with delicate energy balance
that must be integrated over long time intervals, better subgrid models are
needed. Such problems often occur in geophysical applications. For problems
in complex geometries in which turbulence is caused by interaction between
the flow and the walls, better boundary treatments of near wall turbulence
are urgently needed. This latter type of problem is very common in engi-
neering practice. Further, if LES is to be used as a part of a design process,
the boundary treatments used should not require full griding and resolu-
tion of the turbulent boundary layers. Thus, the core difficulty of applying
LES usefully in engineering settings includes to a mathematical question of
finding appropriate boundary conditions for flow averages to be used in the
simulation. We consider exactly this problem herein.

There is a good deal of computational experience, e.g. [17], and some
mathematical support, [9], for the main claim of LES that it can accurately
predict the motion of the large (size > O(0)) eddies in a turbulent flow
with computational complexity independent of the Reynolds number and
depending only on the resolution, §, sought. For this claim to be true (and
within the classical approach to LES) two steps must be successfully carried
out. First, the Navier-Stokes equations are locally averaged and an accurate
subgrid scale model of the effects of the unresolved small eddies (<< O(4))
upon the mean flow w must be constructed. There has been an intense
interest and development of such models in LES community, see e.g. [16],
[17], and [2] for examples, and we will not consider this question herein.
Second, accurate boundary conditions (known as near wall models or NWM)
for the local flow averages @ of motions > O(d) must be found. If the
averaging radius 0(x) is decreased to zero as x — 05, then @ will posses Re—
dependent boundary layers and the overall computational complexity must

grow with Re, although not as rapidly as for the full Navier-Stokes equations,



see e.g. the work of Vasilyev et al. [19]. On the other hand, if § is fixed (or
bounded from below), then W is, in principle, computable with complexity
independent of Re. However, with fixed §, @ on the flow domain’s boundary
0 will depend (non-locally) on the unknown flow in a neighborhood of 0f2.

In this report, we develop an improved near wall model for LES along
ideas of [5]. Our goal is to develop a physically appropriate NWM which is
appropriate not only for simple turbulent channel flows but also will improve
LES’s performance in more complex heterogeneous mixtures of laminar, tran-
sitional and turbulent flows including recirculation. We shall see in section
6 that recirculation will require non-linear boundary conditions.

To develop the ideas, we consider solutions (u, p) of the non—dimensionalized

incompressible Navier—Stokes equations

W, —2Re 'V -Du) + (u-V)u+Vp = £ in (0,7] xQ,
u =0 on [0,7]xI=0Q,
Veou = 0 in [0,T]xQ,
u(t=0) = u.

(1)

Here, Q C R?, d = 2,3, is a bounded domain, u : [0,7] x Q — R? is the
velocity, p : (0,7] x Q — R is the pressure and Re is the Reynolds number.

The velocity deformation tensor is given by

g = _ -7 < <d.
D;; (u) 5 A@ﬁ. + mcﬁ.v for 1<i,j7<d

Let 42
R v 2
9500 = (5=) " exp (—Ix[3) 2)
be the Gaussian filter, where v > 0 is typically chosen to be v = 6. Having

extended all functions outside 2 by zero, the ”large eddies” are then defined

by convolution

a:=gs*xu, p:=gsxp, f:=gsxf, etc.

Several other filters are also commonly used, see e.g. [17], [16]. Although
the correct NWM must ultimately depend on the filter selected, the approach
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we use can easily be extended to other filters and the Gaussian is the most
complex case. When the Navier—Stokes equations are convolved with gs
and a subgrid scale model is used to replace the Reynolds stress tensor R :=
uu—uu with a tensor depending only on 1, a closed system of LES equations

results. To solve any such system, u at 02 must be specified.

laminar boundary
layer in fluid region

Q

boundary

exterior

0 u

Figure 1: Averaging the velocity at the boundary does not give homogeneous

Dirichlet conditions.

The most commonly used boundary condition is @ = 0 on 0€2. It is easy
to see that this is not consistent, see Figure 1. It also does not agree with our
physical intuition of large eddies : hurricanes and tornadoes do slip along the
ground and lose energy as they slip ! Motivated by this example and earlier
work of Navier [14] and Maxwell [13], we will construct herein NWM’s of the
form :

u-n=0and fu-7+2Re 'n-D(T) -7 =0 on 99, (3)

where n is the outward unit normal, {7y, ...,7;_1} is an orthonormal system
of tangential vectors and f is the effective friction coefficient which must
be specified. We stress that the boundary condition (3) does not enforce
equilibrium: time fluctuations of the normal stress at the wall will result
through (3) in time fluctuations of the slip velocity.

The boundary conditions (3) can be implemented easily into a finite el-

ement code, see [8]. In this paper, also numerical studies of two and three



dimensional channel flows across a step are presented which study the influ-
ence of the friction parameter on the position of the reattachment point and
the reattachment line, respectively, of the recirculating vortex.

The condition (3) is a mathematical expression of no—penetration and
slip with resistance. It is called often Navier’s slip law, [14]. In 1879, J.C.
Maxwell [13] derived the Navier-Stokes equations from the kinetic theory of
gases by an averaging process and recovered the boundary condition (3). In

Maxwell’s derivation, the friction coefficient 5 was found to be

macroscopic length scale

pr~ microscopic length scale’
which is exceedingly small (O(mean free pass)) for molecular viscosity in a

gas. This early work of Maxwell suggests that for LES we should expect a

friction coefficient [ scaling like

L
[~ mmlwﬁ L = diam(9Q).

Such a scaling seems very reasonable since the boundary conditions (3) tend
to no-slip conditions as 6 — 0 for fixed Re and to free-slip conditions as
Re — oo for fixed 6. For more recent analysis including the boundary con-
ditions (3), see [9], [6], [4], [15].

As noted above, the behavior of @ on 02 depends on the behavior of u
near 0§2. Our analysis presupposes the accuracy of the description of near
wall flows. After briefly collecting some needed formulas in Section 6, to
introduce the ideas and methods, we consider the 2d laminar case in Section
2. Since laminar flows can also be under-resolved, this case is not without
interest and can help to optimize parameter selection in the penalty methods

of [12]. In the laminar case, we give the optimal 5 in (10) and show

B9, Re) ~ %%H@Q, Re), (4)

where ® is a function which is uniformly positive and bounded in both ¢ and

Re. Section 3 considers the important question of near wall modeling for



3d turbulent flows. The optimal friction coefficient is calculated in (19); its
asymptotics are again (4) as 0 — 0 for fixed Re and Re — oo for fixed 0,
Proposition 3.1 . This analysis is for a flow over a flat plate (and thus also
over a smoothly curving surface whose curvature is negligible).

Section 4 considers recirculating flows. In such flows there can be a wide
variation in local Reynolds numbers. For example, the recirculating flow
downstream of a step is much slower than the mean velocity above it. Such
flows require a NWM based instead upon the local Reynolds number, giving
a non—linear friction law. Section 4 performs this extension.

It is important to understand the built in limitations of any model and
our near wall models are no exception. First, we are replacing an essentially
nonlocal condition by a local condition (3) for W. Very little is known about
well-posedness of nonlocal boundary conditions for the Navier—Stokes equa-
tions, so this seems necessary. Next, our derivation of the friction coefficient
£ depends on some knowledge of u near the walls. Herein we presuppose the
accuracy (in the mean) of boundary layer theory. There are situations where
simple boundary layer theory should be modified and thus § recalculated.
These include flows against a pressure gradient, geometries for which the
curvature K of T' is non negligible at stagnation points. Another possibility
is to calculate 8 by post-processing DNS data or via a calculation of the
Navier—Stokes equations near I', coupled to an LES model away from I', see
e.g. [10].

2 A laminar boundary layer with uniform suc-
tion in 2-D

Near wall models are useful in underresolved laminar as well as turbulent flow.
Further, the laminar case provides a convenient first validation step and in-
dustrial flows often begin laminar and become turbulent through interaction
with boundaries. Thus, it is useful to tabulate the friction coefficient in the

laminar case, which we do next.



We consider the model situation that Q C R? is the half plane

Q= {(z,y),y >0}

The wall law of a laminar boundary layer on a flat plate is given by

u = Uy (1—-exp(—|Vh|Rey)) fory >0
v = V) for y > 0,

(5)

see Schlichting [18, (14.6)], where Uy is the free stream velocity and 1} is a
negative constant.

Our aim is to compute the friction coefficient §(d, Re) for the boundary
layer model (5). To this end, u is extended by zero into the lower half plane
{y < 0} and v is extended by V4. The outward pointing normal vector on
0 ={y =0} isn=(0,—1) and we choose the tangential vector 7 = (1,0).

Hence,
_ _ T e _,0u
u-7=u and n'(2Re "D(m)) -7 = —Re Em
)
and the friction coefficient can be computed by

ou

——(2,0)
B(6, Re) = Re ! 9\? R (6)

We start by computing u(x,0). Inserting (5), we obtain

u(z,y) = g5 * u(z,y)

= Uy P\ exp Nwﬁal&vmv%m.

; exp A %A \vwv dy' — \08 exp A| AW@ —y')? + |Vo| Re @\vv mi .

This integral can be evaluated using (28), (29) and (32) leading to

st = 22 { o vt (3) .

swm%% _s_m&E
|®um~u A%l_s_mmw& Hl@ﬂ% ﬂlﬂ@ .
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In particular, we have

e~ o () (WO

The numerator in (6) can be computed directly from (7) using (30). We

obtain
MWM?S
|wm exp ASMMWMM% — [Vp|Re @v exp | — A:\m_% - %@vm

which gives
ou Uso Vi Re?5? |Vo|Re ¢
— = — — ) |l —ef | ——— ] | .
o .0) = Sl exp (HE et (158 )
The friction coefficient for the laminar boundary layer wall law is, using
(8) and (9)

B(6, Re) = [V : —13. (10)

2 252
| )

Note that 5(d, Re)/|Vo| depends only on |Vy|Re §/(2,/7).

Proposition 2.1 Let (4, Re) be given as in (10). For fized Reynolds num-

ber Re, we have

lim §3(9, Re) = Ev consequently lim (9, Re) = oo, (11)
0—0 Re 0—0
and for fized filter width 6,
: 2 : B
mWW:oo Ref(0, Re) = V consequently www:oo\ma Re) = 0. (12)



Proof: Since

lim exp E 1 —erf _S_E =1,
530 Ay 2./7
the denominator in the first term in (10) tends to zero. To prove (11),
multiply 3(6, Re) by § and write the product as one fraction. Then, (11)
follows by an application of the rule of Bernoulli-I"Hospital.
To prove (12), we first note that an application of the rule of Bernoulli—
I’Hospital gives

a:wwo exp(2?) [l — erf (v)] = 0, (13)
lim xexp(2?) [1 — erf (z)] = F (14)

T—00 /\m

First, multiply 3(0, Re) by Re ¢/(2,/7) and write the product as one fraction.
Using (13) with = = |Vy|Re 6/(2,/7), one obtains that the denominator of
this fraction tends to one. The numerator has such a form that (14) can be

applied. [

— friction coefficient for fixed Re — friction coefficient for fixed &
,,,,,,, asymptotic - _asymptotoic

HOO L L L HO\N L L

10 10 10 10 10 10 10
[ Re

Figure 2: Laminar boundary layer : left : behavior of 5(d, Re) with respect
to ¢ for constant Re(= 1),y = 6,Vy = —1; right : behavior of 3(d, Re) with
respect to Re for constant §(=1), vy =6, Vj = —1

The asymptotic behaviors are illustrated in Figure 2.
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Remark 2.1 The friction laws we derive herein and in the following section
are linear and thus not appropriate for recirculating flows. Nevertheless, they
are necessary steps to deriving in Section 4 the non—linear friction laws for
recirculating flows.

The formulas (11) and (12) agree with the formula 8 ~ mmLm of Mazwell.
Further, they give important insight into parameter selection in penalty meth-
ods for imposing the no—slip condition weakly. Formula (11) suggests that the
penalty parameter € in the methods of, e.g., [11], [12] should be

€ 2 (hRe)™ (V/70)

where h is the local mesh width near L.

3 The 1/a—th power law in 3-D

Next we consider the case of a turbulent boundary layer. There are various
theories of turbulent boundary layer, e.g. [3], [18], [16]. Although the calcu-
lation can be done for other descriptions, we perform it herein for power law
layers (which is in accord with current views in the subject, [3]).

Consider the flat plane {(x,y,2) : x > 0,y = 0} C R*. The velocity
u = (u, v, w) obeys the 1/a~th power law, o > 1, see Schlichting [18, (21.4)],
provided (time or ensemble averages of) the velocity is given by:

y 1/a
U= Uso n ’ oM@M:“@HSHOmoﬁoMF
Uss, n<y

where the boundary layer thickness n = n(z) is given by [18, (21.8)],

n(z) = 0.37z (UszRe)™* >0

and Uy is the free stream velocity. One of the most common laws is given
by a =T7.
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We consider the model situation of a reference plate of non-dimensional
length one. Let Q C R?® be the half space

Q={(z,y,2) eR*, y > 0}.

and the flat plane {y = 0}. In order to handle this situation, we have to
eliminate the x—dependence in 7 by averaging in the x—direction. Since the
problem is non—dimensionalized, the x—length is thus one. Define an averaged

boundary layer thickness by

H wq
n= \o n(z)de = ﬂwoAQoomva\m = ¢,Re™!/5. (15)

Now, we define a x—averaged velocity by

y <

N
Il
=
8
/N
S
N——
=
Q
(aw]
VAN
fatl

yo=w=0for 0 <y.
Usos n<y

Let n = (0, —1,0) be the outward pointing normal vector with respect to
Qon {y =0} and 74 = (1,0,0), 7, = (0,0,1) be an orthonormal system of
tangential vectors. All velocity components are extended by zero outside 2.
We have obviously 7 = w = 0 and the slip with friction boundary condition
(3) thus simplifies to

B(9, Re)u — NQHWM =0 on {y =0},
thus, 3
W|M©yo“ z)
_ p—1
B(0, Re) = Re 2@.0.7) (16)

12



We obtain, using (27), (28) and (35)

u(z,0,2) = (g5 % u)(z,0, 2)

U+ (7z Lg

q va exp T%@%v dy' \8 exp T%ng dz’ \|8 exp TWQE d'

) " exp T%@%v dy \M Qwﬂ%@%v dz’ \M exp AOM%IMSNV i
-0 () ) (w0 o

e ()]}

To compute the numerator in (16), we note first that differentiation and
convolution commute because the functions have been extended off the flow

domain so as to retain one weak L? derivative, i.e.,

- 5@ ) @) e

The slip coefficient 3(6, Re) given in (16) can now be computed by (17)

13



B(5,Re) = Re ' 1. (19)
" (5e) (e (57)
P50 (5 () ) O e O]

Remark 3.1 Considering the 1/a~th power law in 2-D under the same geo-

metric situation as in Section 2 gives the same results as in 3-D, i.e. u(x,0)

is equal to expression (17) and 0u/dy(x,0) is equal to expression (18).

Proposition 3.1 Let (0, Re) be given as in (19). If Re is constant, then

/\l r AMQV —
W_lﬂw 05(, Re) = CReT Agiv consequently W_lﬂw B(d, Re) = 0. (20)

If 0 is constant, then

27
mwmﬂoommma Re) = Vs consequently m_m_wdoo\ma Re) = 0. (21)

Proof: From (34) and by the definition of the Gamma function follows

T

wﬁw (C(a) = T(a,x)) = Wlﬁ exp(—t)t*"tdt = 0, (22)
hwwo (C(a) = T(a,x)) = hmwo osmxwﬁlﬂv%iﬂ =T'(a). (23)

Let Re be fixed and consider the last factor in (19). The application of
(23) gives that the numerator tends to I'(1/(2«)) as 6 — 0 and the first term
of the denominator tends to I'((«v + 1) /(2«v)). Applying three times the rule

of Bernoulli-1'Hospital proves

1\ e a
ti (1) [1-et(9)] =0, a0
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Thus, the second term in the denominator tends to zero and hence the last
factor in (19) tends to I'(1/(2«))/T'((«w + 1)/(2cx)). This proves (20).

Also, (21) can be proved by the rule of Bernoulli-I’'Hospital. The differ-
entiation of the Gamma and the incomplete Gamma function uses (34) and
the rule for differentiating integrals with respect to the upper boundary. The
derivative of the error function is obtained by (30). If the numerator and
the denominator of the fraction, which is obtained as result of the rule of
Bernoulli-I’Hospital, are multiplied with an appropriate power of Re, (21)
follows by collecting terms. [

The asymptotic behaviors in the case a = 7 are illustrated in Figure 3.

— friction coefficient for fixed Re — friction coefficient for fixed &

,,,,,,, asymptotic - asymptotic

Figure 3: 1/7-th power law boundary layer : left : behavior of 5(d, Re) with
respect to ¢ for constant Re(= 1),7(= 1); right : behavior of 3(d, Re) with
respect of Re for constant §(= 1); (7 = 6)

Remark 3.2 [t is interesting that the limiting forms of the optimal linear
friction coefficient are similar in the 3— D turbulent case to ones in the 2— D
laminar case. In some sense, this dimension independence indicates that the
slip with friction condition (3) is the approzimate one and 0 and Re are the

correct variables for the analysis.
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4 A Near Wall Model for Recirculating Flows

The previous sections derived linear near wall models (i.e., friction coefficients
() based upon a global Reynolds number. In recirculating flows, there are
usually large differences between reference velocities in the free stream and
in the recirculation regions. Thus, a linear NWM will tend to overpredict the
friction in attached eddies and underpredict it away from attached eddies.
The solution of this difficulty is to base the NWM upon the local Reynolds
number as follows.

The derivations in Sections 2 and 3 reveal that the predicted local slip
velocity, u - 7, is a monotone function of Re. Thus, the relationship can
be inverted and inserted into the appropriate place in the derivation of the
NWM to give a  dependent on the local slip speed, 5 = 3(4, [u - 7]).

To carry out this program, we suppose the 1/7 - th power law holds.
The calculations in Section 3 reveals that the tangential velocity (17) can be

written in the form

o = 5070 FQ e
(

= g(¢) (24)

with

One finds

2 ws0 =5 () () 0 ()

This proves the following lemma.

Lemma 4.1 Let -1 be given by (24). Then, @- 1 is a strictly monotone
decreasing function of & hence a strictly monotone increasing of Re. Thus,

an inverse function & = g7 ([a- 11|) exists.

16



An ideal NWM can thus be obtained by inverting this inverse function
for Re in (19): 8= (6, g7 (J[u- 7).

However, this is not easily used in practical calculations. Thus, we shall
develop an accurate and simple approximate inverse to ¢g(&) which still cap-
tures the correct double asymptotics.

The idea to obtain a usable non-linear friction coefficient consists in find-
ing an approximation g(&) of g(§) which can be easily inverted and replace
¢ and Re in (19) by ¢ '(T- 7).

A careful examination of g(&) reveals that an appropriate approximation

over 0 < ¢ < oo is of the form

Uso
ﬂ.JRw@%AIQva a,b > 0.
This gives
1 2 1/b ye >
= (o (mm)) o ome= (%)

The constants a and b have to be chosen such that the approximation is the

best in least squares sense : Find a,b > 0 such that

s £ 7 7

2

+[1 —erf(&)] —exp Alam@v d§ — min. (25)

\ D) (r()-r(le
&

The left boundary & and the right boundary &, of the integral have to
be specified on the data of the given problem. If they are given, the optimal
parameters can be approximated numerically. Such an approximation can
be obtained in the following way. The interval [§,&,] is divided into N
equal distance subintervals [§;, &1 1] with & = & and £y = &,. Then, (25) is
replaced by : Find a,b > 0 such that

N 1/2

E N
Y1) (6) (F(G)-r(Ge))+i-aterew(a)
=0 ’

17
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The necessary condition for a minimum, that the derivatives with respect
to a and b vanish, leads to a non-linear system of two equations. This can
be solved iteratively, e.g., by Newton’s method. We give some examples for
optimal parameters for some intervals in Table 1. These parameters were
computed with N = 50000 using Newton’s method. An illustration of the
approximation is presented in Figure 4.

& &r a b
0 0.1 ] 0.142864 1.00312
0 110.137149  0.961851
0 10 | 0.154585  0.497275
0 100 | 0.238036  0.268180
0 1000 | 0.342360  0.174579
0 10° | 0.689473 0.0812879
1 10 | 0.170289  0.444825

Table 1: Optimal parameters in (25) for different intervals [&;, &, ].

1 T

T 1 T

— tangential velocity — tangential velocity
-+ exponential approximation -+ exponential approximation
0.981 4

0.961 1

0.94r 1

0.88r b}

Figure 4: The function (24) and its exponential approximation according to
Table 1, [&,&:] = [0, 1] (left), [&, &:] = [0, 100] (right), Uy = 2.
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5 A Numerical Test

It is known that in flow with potential body forces and laminar initial con-
ditions all vorticity is generated at the boundary. Thus, practical turbulent
flow simulations only need to replicate three effects: 1) generation of eddies
at walls, 2) interaction of eddies, and 3) decay of eddies. Obviously, the wall
model used has the most critical role in the first. Thus, we study herein a sim-
ple, underresolved flow with recirculation caused by flow—boundary interac-
tion: flow over a step. The most distinctive feature of these flows is a recircu-
lating vortex behind the step, see Figure 11 and Figure 12 for an illustration.
We will present the results for Smagorinsky model with no-slip condition
and Smagorinsky model with boundary condition (3) (Smagorinsky-SWF)
conditions. We study the dependency of the position of the reattachment
point in 2 — D. The number of degrees of freedom for various levels are given
in Table 2.

Levels || Velocity | Pressure | Total
0 || 294 64 358
1| 1100 256 1356
2 || 4248 1024 5272
3 || 16688 4096 20784
4 || 33378 12288 | 45666

Table 2: The number of degrees of freedom for various levels

The domain of the two dimensional flow across a step is presented in
Figure 5. Here we present results for a parabolic inflow profile, which is
defined by u = (u,v)T, with u = y(10-y)/25, v = 0.

On the top and bottom boundary as well as on the step, slip with friction
and no-slip boundary conditions are prescribed. The flow leaves the domain

by an outflow boundary condition on the right side of the channel. The
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Figure 5: Domain of two dimensional channel with a step.

computation were performed on various grids. For instance, for the fully
resolved NSE+NoSlip simulation, which is our “truth” solution, we used
the finest grid (level 4) presented in Figure 9 whereas the coarsest mesh
(level 1) has been used for NSE+SMA+SWF, NSE+SMA+NOSLIP and
NSE+SWF boundary conditions as in Figure 6. The point is obviously to
compare the performance of the various options in underresolved simulations

by comparison against a “truth” / fully resolved solution.

Figure 6: Two dimensional channel with a step on coarsest mesh (level 1).

The reattachment point is defined by the change of the sign of the tan-
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Figure 7: Two dimensional channel with a step coarse mesh (level 2).

Figure 8: Two dimensional channel with a step finer mesh (level 3).

gential velocity on the bottom boundary. For comparison, we will use the

Smagorinsky model, widely used.

vr = csd” [D(w)]| (26)

where D(u) is the deformation tensor and c¢g € [0.01,0.1], e.g., see Sagaut
[17]. During our calculations, we fixed the Smagorinsky constant c¢g to be
0.01.

Although the Smagorinsky model is widely used, it has some drawbacks.
These are well documented in the literature, e.g., see Zhang [20], John [7].

For instance, The Smagorinsky model constant cg is a priori input, and
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Figure 9: Two dimensional channel with a step, finest grid (level 4).

this single constant is not capable of representing correctly various turbulent
flows. Another drawback of this model is that it introduces too much diffusion
into the flow. We shall give some numerical tests on this as seen in the figures
11 and 12. However, keeping the closure model fixed and testing various
NWM’s leads to a valid conclusion while varying both would lead to a lot of

data with no clean comparison.
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The results pictured in figure 10 are very interesting and give strong,
although admittedly very preliminary, support for the general form of the
NWM. Indeed, the Smagorinsky + SWF test replicates exactly the reattach-
ment length until the true eddy separates and the Smagorinsky eddy remains
attached. Most remarkably, the underresolved NSE + SWF simulation pro-
duces over time a more accurate description of reattachment length than the
Smagorinsky + NoSlip simulation.

Clearly, the Smagorinsky model is too stabilizing: eddies which should
separate and evolve remain attached and attain steady state. However, re-
garding the main point of study, the NWM (3), it is also clear that the SWF
near wall model (3) improves the estimate of reattachment length in all the

simulations. Further study and test of this approach are thus well-merited!

6 Appendix

The appendix provides of collection of some formulas which have been used
in the derivation and the analysis of the friction coefficients.
It holds

2

where erf () denotes the error function. Recall that

b
\ exp(—az?)dr = = Mm% (bWa), a>0, (27)
0

oo H_y o.¢]
\o exp(—az?) = m/\wu \|8 exp(—az?) = M (28)
and
o 1
\ exp (—a(z — b)?) dz = 3 M (1 + erf (bv/a)). (29)
0
The derivative of the error function is easily calculated from (4) to be
d 2
@m&?a +0b) = /\|W exp (—(az +b)?). (30)
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Figure 11: Two dimensional channel with a step, the streamlines of the
solution for No—slip condition on finest mesh (left) and Smagorinsky—No-slip
on coarsest mesh (right) at time t=40, Re=600.
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Figure 12: Two dimensional channel with a step, the streamlines of the solu-
tion for slip with friction condition on coarsest mesh (left) and Smagorinsky—
slip with friction on coarsest mesh (right) at time t=40, Re=600.
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A second useful type of integral is

o 1 b —4 b
\o exp (—(az® + bz + ¢)) dz = 3 M@@ Aﬁnv T —erf sz\mi :
(31)
with @ > 0, see Abromowitz and Stegun [1, Chapter 7.4]. It follows that

\08 exp (—(a(z — ¢)> + br)) dz

- w m@% Am - %v T — erf A}x : (32)

The third type of integral which will be needed has the form
b
\ exp(—az?)z°dr  with a,b > 0,¢ > —1.
0

The substitution ¢t = ax? yields

b ab?
1
\ exp(—az?)z dr = MQ?E\M\ exp(—t)t T2 gz, (33)
0 0

This integral can be evaluated by the Gamma function I'(d) and the incom-
plete Gamma function I'(d, z). By the definition of the incomplete Gamma

function, see Abramowitz and Stegun [1, Chapter 6.5], we have
I(d, z) = T(d) \ exp(—t)t dt d> 0. (34)
0

Combining (33) and (34) gives

b 1 1 1
\ exp(—az?)z‘dr = m@\ﬁntv\w T A?mr v -T Amw vg%i . (35)
0
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