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Abstract

We develop a variationally consistent eddy viscosity model, given
by [18] for convection diffusion equation, for the Navier-Stokes equa-
tions. We also prove that the new model is equivalent to a variational
multiscale method. The new method removes the restriction that the
fluctuations are quasi-stationary. We then give a complete error anal-
ysis. The error analysis is optimal and uniform in Reynolds number
in all terms except for those arising from the reaction term in the
linearized error equation. In particular, we show that error in the
method for the Oseen problem is uniform in the Reynolds number.

1 Introduction

This report gives a numerical analysis of a special subgrid scale eddy viscosity
method/model for the Navier-Stokes equations at higher Reynolds number.
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In this method, variationally consistent eddy viscosity is introduced acting
only on the discrete fluctuations. This technique is inspired by earlier work
in Guermond [9], Hughes [12], Layton [18]. It can also be thought of as an ex-
tension to general domains and boundary conditions of the spectral vanishing
viscosity idea of Mayday and Tadmor [22]. Specifically, these new method
insert eddy viscosity acting only on the smallest resolved mesh scales. We
will also show that the new method is equivalent to a variational multiscale
method.

Consider the incompressible, viscous Navier-Stokes equations

ut +∇ · (uu) +∇p− ν∆u = f, in Ω, for 0 < t ≤ T,

∇ · u = 0, in Ω, for 0 < t ≤ T, (1.1)

u(x, 0) = u0(x), in Ω, u = 0 on Γ, for 0 < t ≤ T,

where u is the fluid velocity, p is the pressure, f is the external force, ν is
the kinematic viscosity, and Ω ⊂ Rd(d = 2 or d = 3) is a bounded, simply
connected domain with polygonal boundary Γ. We also impose the usual
normalization condition that

∫
Ω

pdx = 0.

In (1.1) the control parameter is the Reynolds number, ν ∼ 1
Re

. As Re
increases, the flow becomes more sensitive to perturbations, more complex in
structure and eventually turbulent. Since many flows in nature occur at high
Reynolds number, this report considers the approximate solution of (1.1)
for small ν.

The idea we consider consists of stabilizing the discrete equations by
adding eddy viscosity in a variationally consistent way. To motivate this
approach, consider a first variational formulation of (1.1) in

X : = {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)dxd and v = 0 on Γ},
L : = {Sij ∈ L2(Ω)dxd : Sij = Sji},
Q : = L2

0(Ω) := {q ∈ L2(Ω) :

∫

Ω

qdx = 0}.

One nonstandard variational formulation of (1.1) is: find u : [0, T ] → X,
p : (0, T ] → Q and g : [0, T ] → L satisfying

(ut, v) + b(u,u, v)− (p,∇ · v) + (q,∇ · u) + ((2ν + νT )∇su,∇sv)

−(νT g,∇sv) = (f, v), for all v ∈ X, q ∈ Q (1.2)

(g −∇su, l) = 0, for all l ∈ L (1.3)
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where (., .) denotes the L2(Ω) inner product, b(u, u, v) : X ×X ×X :→ R

b(u, v, w) =
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) (1.4)

denotes the skew symmetrized trilinear form, νT denotes the eddy viscosity
parameter. We will prove that (1.2), (1.3) and the usual formulation of (1.1)
are equivalent to each other by verification of an inf-sup condition associated
with (1.3), (Lemma 2.1).

Next, this report considers finite element discretization of the Navier-
Stokes equation based on (1.2), (1.3) as follows. Construct a coarse finite
element mesh ΠH(Ω) and a fine mesh Πh(Ω), where h << H typically. Con-
forming velocity-pressure finite element spaces are constructed based upon
Πh(Ω) and ΠH(Ω). Let h, H be two mesh widths with H > h and let
Xh ⊂ X, XH ⊂ X, Qh ⊂ Q and LH ⊂ L be finite element spaces. Consider
the approximation (uh, ph, gH) based on the variational formulation (1.2),
( 1.3) : find uh ∈ Xh, ph ∈ Qh, gH ∈ LH satisfying

(uh
t , v

h) + b(uh, uh, vh)− (ph,∇ · vh) + (qh,∇ · uh)

+ ((2ν + νT )∇suh,∇svh)− (νTgH, ∇svh) = (f, vh) (1.5)

for all vh ∈ Xh and qh ∈ Qh where gH ∈ LH ⊂ L2(Ω) is defined by

(gH −∇suh, lH) = 0, for all lH ∈ LH . (1.6)

Different choices of LH give rise to different methods. The choice of LH =
{0} gives the usual artificial viscosity methods. On the other hand, when
∇XH ⊂ LH , (1.5),( 1.6) gives the usual (centered) finite element method.

The effect of the extra (bold term) terms in (1.5) can be seen by using
(1.6), to eliminate gH from (1.5) as follows. (1.6) implies that

gH = PLH∇suh

where PLH : L → LH denotes the usual L2 orthogonal projection. Insertion
of this into (1.5) and simplification using properties of orthogonal projection
shows that uh satisfies:

(uh
t , v

h) + b(uh, uh, vh)− (ph,∇ · vh) + (qh,∇ · uh) + (2ν∇suh,∇svh)

+ (νT (I − PLH )(∇suh), (I − PLH )(∇svh)) = (f, vh), (1.7)
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for all vh ∈ Xhand qh ∈ Qh. The formulation (1.5),( 1.6) thus introduces
implicitly the extra stabilization

(νT (I − PLH )(∇suh), (I − PLH )(∇svh)). (1.8)

This is an eddy viscosity term acting on the scales between H and h, i.e.,the
small scales. The normal use of eddy viscosity (EV) models is in high
Re/turbulent problems (see e.g., Smagorinsky [23], Lewandowski [20], Iliescu
and Layton [15]) and thus we are specifically interested in the numerical anal-
ysis of (1.5),( 1.6) for higher Re /smaller ν. Normal EV models have often
been noted to be too diffusive and over damp in the large flow structures
(large eddies). Indeed, the physical interpretation of EV models is that they
model energy lost around the cut off lengthscale due to inertial effects (eddy
breakdown to below the meshwidth size). Normal EV, however, removes
energy strongly from all resolved scales. Thus, the method (1.5),( 1.6) is of
special interest because (i) the eddy viscosity does not act on the large struc-
tures and (ii) it is introduced in a variationally consistent manner. Another
consistent stabilization technique is the variational multiscale method (VMM
hereafter) of Hughes and co-workers [11](see also [3, 12, 14, 13, 16]). In the
VMM, the original problem is decomposed into two subproblems for the
small scales and the large scales. This coupled system is then discretized.
This report will give a complete and systematic analysis of the finite ele-
ment method (1.2),( 1.3) for small ν and establish a connection between new
method and variational multiscale methods.

The general idea of using two-grid discretizations to increase the effi-
ciency of methods was pioneered by J. Xu (see, e.g., Marion and Xu [21])
and developed by Girault and Lions [7], [6]. This plus the physical ideas
underlying eddy viscosity models and previous work [4] on stabilizations in
viscoelasticity lead very naturally to the present method.

In Section 2, we present the notation and recall some basic results used
throughout this paper. In Section 3, we describe a natural extension of
Hughes’ variational multiscale method and prove equivalence between gener-
alized variational multiscale methods and the new method (1.5),( 1.6). This
connection is known for linear convection diffusion problems, [16]; we show
in Section 3, it holds in the more interesting Navier-Stokes case as well. Sec-
tion 4 gives a fully mathematically rigorous analysis of the method, proving
convergence to solutions of (1.5),( 1.6). In Section 5, we show the error in
the new method for Oseen problem is uniformly in Reynolds number.
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2 Notation and Preliminaries

We use standard notation for Sobolev spaces Adams [1]. The L2(Ω) norm and
inner product of scalar, vector and tensor valued functions will be denoted
by ‖.‖ and (., .). Hk(Ω), k > 0, denotes the Sobolev space of real-valued
functions with square integrable derivatives up to order k equipped with
usual norm which we denote by ‖.‖k. Since the case of scalar, vector or tensor
functions will be clear from the context, we will not distinguish between
these cases in the notation of Hk(Ω). The H1(Ω), norm is defined by ‖v‖1 =√
‖v‖2 + ‖∇v‖2 and is equivalent to ‖∇v‖ and ‖∇sv‖. The norm of dual

space H−k(Ω) = (Hk(Ω) ∩H1
0 (Ω))∗ is defined by

‖f‖−k = sup
v∈(Hk(Ω)∩H1

0 (Ω))d

|(f, v)L2|
‖v‖k,Ω

.

As usual, V denotes the space of divergence free functions

V := {v ∈ X : (∇ · v, q) = 0, for all q ∈ Q} .

We assume that the velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q
satisfy the discrete inf-sup or Babuska-Brezzi condition:

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖q‖h ‖∇vh‖ ≥ β > 0. (2.1)

This condition is now well understood and numerous example of attractive
finite element spaces satisfying (2.1) exist, e.g.,Gunzburger [10], Girault
and Raviart [8]. Recall that under this condition, the space of discretely
divergence -free functions V h,

V h :=
{
vh ∈ Xh : (∇ · vh, qh) = 0, for all qh ∈ Qh

}
(2.2)

is well-defined and the natural formulations of the discrete Stokes problem
in (Xh, Qh) and V h are equivalent. Further, if (2.1) holds and u ∈ V then
(see Girault and Raviart [8]),

inf
vh∈V h

∥∥∇(u− vh)
∥∥ ≤ C(β) inf

vh∈Xh

∥∥∇(u− vh)
∥∥ .

Since (1.3) naturally occurs as a constraint associated with (1.2), well-
posedness of the continuous reformulation depends upon another inf-sup con-
dition, which we verify next.
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Lemma 2.1. (Inf-Sup Condition) The formulation (1.2),( 1.3) satisfies fol-
lowing inf-sup condition:

inf
l∈L

sup
(g,v)∈(L,X)

| (∇v − g, l) |
(‖g‖2 + ‖∇v‖2)

1
2 ‖l‖

≥ 1 (2.3)

Proof. Picking v=0 and g=l establishes the required inequality.

Corollary 2.1. The continuous problem (1.2), (1.3) is equivalent to the usual
variational formulation of the Navier-Stokes equations in (X,Q).

We assume that the following approximation assumption, typical of piece-
wise polynomial velocity-pressure finite element spaces of degree (k, k-1)
holds : there is k ≥ 1 such that for any u ∈ (Hk+1(Ω))d ∩ X and p ∈
(Hk(Ω) ∩Q) :

inf
vh∈Xh

{∥∥u− vh
∥∥ + h

∥∥∇(u− vh)
∥∥} ≤ Chk+1 ‖u‖k+1 ,

inf
qh∈Qh

∥∥p− qh
∥∥ ≤ Chk ‖p‖k .

Note that skew symmetrized trilinear form b(u, u, v) introduced in (1.4)
has the following properties:

b(u, v, w) = −b(u,w, v) and b(u, v, v) = 0 for all u, v, w ∈ X. (2.4)

We will use the following lemma in Section 4.

Lemma 2.2. Let Ω ⊂ R3,i.e.,d = 3.

b(u, v, w) ≤ C(Ω)
√
‖u‖ ‖∇su‖ ‖∇sv‖ ‖∇sw‖ .

Proof. By Lemma 2.1 p.12 of Temam [24]

b(u, v, w) ≤ C(Ω) ‖u‖1/2 ‖v‖1 ‖w‖1 .

The Poincaré-Friedrichs and Korn’s inequality implies

‖v‖1 ≤ C ‖∇sv‖ , ‖w‖1 ≤ C ‖∇sw‖ .

Lastly, an interpolation inequality implies

‖u‖1/2 ≤ C(Ω) ‖u‖1/2 ‖u‖1/2
1 ≤ C(Ω) ‖u‖1/2 ‖∇su‖ .
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For the error analysis, we assume regularity in time ‖∇u‖ ∈ L4(0, T ) i.e.
T∫
0

‖∇u‖4 dt < ∞. With this assumption, it is known that the usual Leray [19]

weak solution of the Navier-Stokes equations is unique, Ladyzhenskaya [17].
It will be important to introduce the notion of means/large scales and

fluctuations/small scales that we use. We shall use over-bar and prime no-
tation to denote large and small scales, respectively. If XH ⊂ Xh, we can
decompose uh ∈ Xh into discrete means and fine mesh fluctuations via

uh = uH + u′h, u
H ∈ XH u′ ∈ X ′

h, (2.5)

where XH , X
′
h denote the coarse mesh space and small scale space. The

space for fluctuations X ′
h and the decomposition (2.5) are determined by

specifying how uH ∈ XH is determined from uh.

Definition 2.1. (Elliptic Projection) PE : X → XH is the projection opera-
tor satisfying

(∇s(u− PEu),∇svH) = 0 for all vH ∈ XH . (2.6)

Definition 2.2. (Stokes Projection) PS discrete Stokes projection operator
PS(u, p) = (uH , pH) is defined by (uH , pH) ∈ (XH , QH) satisfying

(∇s(u− uH),∇svH)− (p− pH ,∇ · vH) = 0, for all vH ∈ XH

(∇ · (u− uH), qH) = 0, for all qH ∈ QH . (2.7)

If u ∈ V (i.e.∇·u = 0), this is equivalent to the following: uH ∈ V H satisfies

(∇s(u− uH),∇svH)− (p− qH ,∇ · vH) = 0, for all vH ∈ V H .

In Section 3, to present new method (1.5),( 1.6) in a variational multiscale
framework, we consider the decomposition of deformation tensor as in . Let
the spaces LH ⊂ L, XH ⊂ Xh ⊂ X as defined in Section 2. For the
multiscale decomposition of the deformation tensor define ∇suhDh write

Dh = ∇suh, for all uh ∈ Xh,

and split Dh = DH + Dh where DH = PLHDh and D′ = (I − PLH )Dh.

Lemma 2.3. Assume that XH ⊂ Xh and LH = ∇XH . Then,

Dh = ∇s(I − PE)uh and PLHDh = ∇sPEuh

where PE = P̄ is the elliptic projection operator into XH .
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Proof. From DH = PLHDh, it follows that

(Dh −DH , lH) = 0, for all lH ∈ LH .

Also, DH ∈ LH ⊂ L and LH = ∇sXH . Thus, DH = ∇swH for some wH ∈
XH . This yields:

(∇s(uh − wH),∇svh) = 0 for all vh ∈ XH . (2.8)

Then, consider the elliptic projector operator PE : X → XH . From this map,
define PEuh = wH . Then, ( 2.8) can be written as:

(∇s(uh − PEuh),∇svh) = 0 for all vh ∈ XH .

This implies that PLHDh = ∇sPEuh and (I − PLH )Dh = ∇s(I − PE)uh.

We shall assume that the finite dimensional space LH = ∇XH satisfies
an inverse-type inequality of the form. Then, from Lemma 2.3

∥∥PLH∇φh
∥∥ = ‖∇(PE)XH‖φh ≤ CH−1

∥∥(PE)XHφh
∥∥ ≤ CH−1

∥∥φh
∥∥ . (2.9)

where φh ∈ V h and PLH , PE is the L2 orthogonal projection, elliptic projec-
tion, respectively.

3 The Connection to Variational Multiscale

Methods

The Variational Multiscale Method (VMM) is a finite element method for
multiscale problem introduced by Hughes [12], which simultaneously dis-
cretizes coupled systems of both the large and small scales. The usual 1-scale
semi discrete variational formulation of (1.1) is : find u : [0, T ] → X, p :
(0, T ] → Q satisfying

(ut, v) + b(u,u, v) + (2ν∇su,∇sv)− (p,∇ · v) = (f, v), for all v ∈ X, (3.1)

(q,∇ · u) = 0, for all q ∈ Q.

The usual 1-scale semi-discrete finite element method for (3.1) arises by
choosing appropriate finite dimensional subspaces Xh ⊂ X and Qh ⊂ Q and
determining uh and ph satisfying (3.1) restricted to Xh, Qh. In turbulent
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flows the effects of small scales velocity in X \ Xh upon the large velocity
uh ∈ Xh are widely thought to be critical for a realistic simulation. Thus,
Hughes’ the variational multiscale method seeks to incorporate as follows.
Following Hughes [12], the velocity and pressure spaces are decomposed
into means and fluctuations

X = X̄ + X ′ and Q = Q̄ + Q′ (3.2)

where X̄ ⊂ X, Q̄ ⊂ Q denote closed subspaces of large velocity and pressure
scales. In this decomposition as noted Hughes, X̄ is chosen as a standard
finite element space i.e. Xh. Associated with X̄, Q̄ is a projection operator:
P̄ : (X, Q) → (X̄, Q̄). The space of fluctuations (X ′, Q′) is the complement of
X̄, Q̄ in X, Q, respectively. Then (X ′, Q′) := P ′(X,Q) where P ′ = (I − P̄ ).
By using (3.4), u and p defined as:

u = ū +u′ and p = p̄+ p′, where (ū, p̄) = P̄ (u, p), (u′, p′) = P ′(u, p). (3.3)

Inserting this decomposition into (3.1) and setting first (v, q) = (v̄, q̄) then
(v, q) = (v′, q′) gives the following coupled equations for ū and u′ :

(ūt + u′t, v̄) + b(ū + u′, ū + u′, v̄)− (2ν∇s(ū + u′),∇sv̄)

− (p̄ + p′,∇ · v̄) = (f̄ + f ′, v̄) for all v̄ ∈ X̄

(ūt + u′t, v
′) + b(ū + u′, ū + u′, v′)− (2ν∇s(ū + u′),∇sv′)

− (p̄ + p′,∇ · v′) = (f̄ + f ′, v′) for all v′ ∈ X ′.

After rearranging, these coupled system yields

(ūt, v̄) + b(ū, ū, v̄)− (2ν∇sū,∇sv̄)− (p̄,∇ · v̄)− (f̄ , v̄)

= (f ′, v̄)− a(u′, v̄)− (p′,∇ · v̄) (3.4)

where

a(u′, v̄) = (u′t, v̄) + b(u′, u′, v̄) + b(ū, u′, v̄) + b(u′, ū, v̄) + (2ν∇su′,∇sv̄)

and

(u′t, v
′) + b(u′, u′, v′)− (2ν∇su′,∇sv′)− (p′,∇ · v′)− (f ′, v′)

= (f̄ , v′)− a(ū, v′)− (p̄,∇ · v′) (3.5)
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where

a(ū, v′) = (ūt, v
′) + b(ū, ū, v′) + b(u′, ū, v′) + b(ū, u′, v′) + (2ν∇sū,∇sv′).

A variational multiscale discretization from (3.4),(3.5) begins by selecting a
finite dimensional subspace X̄ := Xh for the approximate mean flow ū ∈
X̄, p̄ ∈ Q̄ and finite dimensional spaces X ′

h, Q
′
h for the fluctuation. Note that

ideally X ′
h ⊂ X ′ but usually X ′

h ( X ′.

Definition 3.1. (Hughes et al., [12]) The VMM approximation to (1.1) is
a pair (ū, p̄) : [0, T ] → (X̄, Q̄) and (u′h, p

′
h) : [0, T ] → (X ′

h, Q
′
h) satisfying

ū(0) = P̄ u0, u
′
h(0) = P ′u0 and

(ūt, v̄) + b(ū, ū, v̄) + (2ν∇sū,∇sv̄)− (p̄,∇ · v̄)

+ (q̄,∇ · ū)− (f̄ , v̄) = (f ′, v̄)− a(u′h, v̄) + (p′h,∇ · v̄′h), (3.6)

where

a(u′h, v̄) = (u′h,t, v̄) + b(u′h, u
′
h, v̄) + b(ū, u′h, v̄) + b(u′h, ū, v̄) + (2ν∇su′h,∇sv̄),

for all v̄ ∈ X̄, q̄ ∈ Q̄ and

(u′h,t, v
′
h) + b(u′h, u

′
h, v

′
h)− (2ν∇su′h,∇sv′h)− (p′,∇ · v′) + (q′h,∇ · u′h)

+ (νT∇su′h,∇sv′h)− (f ′, v′) = (f̄ , v′h)− a(ū, v′h) + (p̄,∇ · v′h) (3.7)

where

a(ū, v′h) = (ūt, v
′
h) + b(ū, ū, v′h) + b(u′h, ū, v′h) + b(ū, u′h, v

′
h) + (2ν∇sū,∇sv′h)

for all v′h ∈ X ′
h, q′h ∈ Q′

h and where νT is the turbulent viscosity coefficient
in a small scale artificial viscosity type stabilization term.

Remark 3.1. The work of Hughes (and co-workers) [12] has explored the
choices

• the projection operator P̄ as L2 projection,

• (X̄, Q̄) = standard velocity-pressure finite element spaces, (X ′
h, Q

′
h) =

spaces of bubble functions vanishing on element edges,

• νT = (µH)2 | ∇su′h |, a Smagorinsky eddy viscosity term.
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Remark 3.2. Different choices of X ′
h have been explored. In the case of peri-

odic boundary conditions, X ′
h is often constructed as the span of the next few

exponentials [13]. For bounded domains,(motivated by Residual Free Bub-
ble(RFB) [3] theory) the choices (X̄, Q̄) = standard velocity-pressure finite
element spaces, (X ′

h, Q
′
h) = spaces of bubble functions vanishing on element

edges have been explored. One important question which is actively being
investigated is how rich the space X ′

h must be.

The VMM has been developed and connected with the other popular
methods. For the practical approximation the choice of bubble functions to
model fluctuations imposes the following assumption: the small scales exist
only in the interior of element boundaries of the element domains. This as-
sumption leads to localizing calculations for the small scales in the sense that
the problems are elementwise uncoupled. This choice of (X

′
h, Q

′
h), is made

for the same reason as in RFB methods (Hughes [12]). Thus with VMMs,
the small scales’ equation can be solved element by element and inserted into
large scales’ equation. The introduced terms then closely represent the effect
of the modelled small scales on the large scales.

Definition 3.2. (Generalized VMM) A generalized VMM is determined by
alternate choices of

• projection operator P̄ defining large scales,

• the discrete spaces X̄, Q̄, X ′
h, Q′

h where X ′
h, Q′

h are the complements
of X̄, Q̄, respectively,

• the small scale stabilization term

(νT∇su′h,∇sv′h)

is added on the right hand side of (3.7)
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Subgrid Eddy Viscosity and VMM

One result of (3.1) is that (1.5),( 1.6) is a suitably generalized VMM in
the sense of Definition 3.2. To present this we use the Lemma 2.3.

Remark 3.3. Lemma 2.3 shows that the natural definition of means of ∇su
is by L2 projection and means of u is by elliptic projection.

Remark 3.4. The VMM discretization of the incompressibility constraint is:

(∇ · (uH + u′h), v
H) = 0, for all vH ∈ XH

(∇ · (uH + u′h), v
′
h) = 0, for all v′h ∈ X ′

h. (3.8)

At this point an algorithmic choice must be made. If uh = uH + u′h is to be
discretely div-free with respect to Qh then (3.8) is imposed (as stated) as a
coupled system. In this case uH may not be discretely div-free with respect
to QH . This is the choice we make herein; it leads to the use of the elliptic
projection operator PE. If uH is to be discretely div-free with respect to QH ,
then (3.8) uncouples and u′h will not (in general) be discretely div-free with
respect to Q′

h nor will uh be discretely div-free with respect to Qh. With this
choice PE be should be replaced in our error analysis by the discrete Stokes
projection PS. This issue does not arise in spectral discretization of periodic
problem since spectral basis functions are chosen to be exactly div-free.

Theorem 3.1. Assume that XH ⊂ Xhand LH = ∇XH . Then (1.5),( 1.6)
is a generalized VMM wherein:

• the projector operator PE : Xh → XH a elliptic projection operator
function. Thus, uH = PEuh.

• X ′
h, is the complement of XH , in Xh ,respectively, given by X ′

h = (I −
PE)Xh. Thus, u′h = (I − PE)uh.

• the stabilization term is given by (νT (∇suh)′, (∇svh)′).

Proof. From Lemma 2.3, the extra term in equation (1.8) can be written
as

(νT (I − PLH )(∇suh), (I − PLH )(∇svh)) = (νT (∇suh)′, (∇svh)′).

12



Thus, the new method is equivalent to: find (uh, ph, gH) ∈ (Xh, Qh, LH)
satisfying

(uh
t , v

h) + b(uh, uh, vh)− (ph,∇ · vh) + (qh,∇ · uh) + (2ν∇suh,∇svh)

+ (νT (∇suh)′, (∇svh)′) = (f, vh) (3.9)

for all vh ∈ Xh and qh ∈ Qh. In equation (3.9) write uh = uH + u′h, and set
alternately, vh = vH and vh = v′h. Similarly, as in (3.6), (3.7) this gives the
following coupled equations:

(uH
t , vH) + b(uH , uH , vH) + (2ν∇suH ,∇svH)− (pH ,∇ · vH)

+ (qH ,∇ · uH)− (fH , vH) = (f ′, vH)− a(u′h, v
H) for all vH ∈ XH , qH ∈ QH ,

(3.10)

where

a(u′h, v
H) = (u′h,t, v

H) + b(u′h, u
′
h, v

H) + b(uH , u′h, v
H)

+ b(u′h, u
H , vH)− (p′h,∇ · vH) + (2ν∇su′h,∇svH),

and

(u′h,t, v
′
h) + b(u′h, u

′
h, v

′
h)− (2ν∇su′h,∇sv′h)− (p′,∇ · v′) + (q′h,∇ · u′h)

+ (νT∇su′h,∇sv′h)− (f ′, v′) = (fH , v′h)− a(uH , v′h) for all v′h ∈ X ′
h, q′h ∈ Q′

h,
(3.11)

where

a(uH , v′h) = (uH
t , v′h) + b(uH , uH , v′h) + b(u′h, u

H , v′h)

+ b(uH , u′h, v
′
h)− (pH ,∇ · v′h) + (2ν∇suH ,∇sv′h)

As noted before, the Hughes’ VMM uses the assumption that fluctuations
vanish identically on the boundaries of the element. This is clearly not viable.
Fortunately, this new method (1.5),( 1.6), fluctuations allows to be nonzero
across boundaries. Indeed, let choose span of linear basis function with vertex
in ΠH , for coarse mesh ΠH and span of linear basis function with vertex in
Πh not in ΠH for the complement of XH i.e. for the fluctuations. It is clear
that with this new VMM’s approach, fluctuations can be nonzero across
mesh edges.
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4 Convergence Analysis

The first important question in the method (1.5),( 1.6) is how the two scales
and the eddy viscosity parameter h, H, νT should be coupled. The second
important question in the method is the dependence of the error upon ν
(i.e., Reynolds number). To answer the first question, this section considers
the questions of stability, consistency and convergence of the method. We
show convergence of the usual semi-discrete finite element approximation
of the model as the mesh widths h,H → 0 and give an estimate of the
error. This error estimate in Theorem 4.1 then reveals the correct coupling
between h,H, νT . The semi-discrete approximation is a map uh : [0, T ] → V h

satisfying

(uh
t , v

h) + b(uh, uh, vh) + (2ν∇suh,∇svh)

+ νT ((I − PLH )∇suh, (I − PLH )∇svh) = (f, vh), for all vh ∈ V h (4.1)

where V h is the space of discretely divergence-free functions given by (2.2).

Proposition 4.1. [Stability of method (1.5),( 1.6)] The approximate solu-
tion of uh of (1.5- 1.6) is stable. For any t > 0,

1

2

∥∥uh(t)
∥∥2

+

t∫

0

(2ν
∥∥∇suh

∥∥2
+ νT

∥∥(I − PLH )∇suh
∥∥2

)dt′ (4.2)

≤ 1

2

∥∥uh(0)
∥∥2

+

t∫

0

(f, uh)dt′.

In particular, sup
0≤t≤T

∥∥uh
∥∥ ≤ C(f, u0).

Proof. Set uh = vh in (4.1), use triangle inequality gives:

1

2

d

dt

∥∥uh
∥∥2

+ 2ν
∥∥∇suh

∥∥2
+ νT

∥∥(I − PLH )∇suh
∥∥2 ≤ (f, uh).

The result follows from integrating over[0, t]. Stability then follows by ap-
plying Cauchy-Schwarz inequality on the right hand side.

Corollary 4.1. uh exist and is unique. If the discrete inf-sup condition (2.1)
holds then phexists and is unique.
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We note that by adding and subtracting terms, it is easy to see that the
true solution (u, p) satisfies

(ut, v
h) + b(u, u, vh)− (p,∇ · vh)

+ (2ν∇su,∇svh) + (νT (I − PLH )∇su, (I − PLH )∇svh)

= (f, vh) + (νT (I − PLH )∇su, (I − PLH )∇svh) for all vh ∈ Xh (4.3)

Theorem 4.1. (Convergence) Suppose ∇u ∈ L4(0, T ; L2(Ω)). Then with

C = C(Ω), there is a constant C∗(T ) = exp(
T∫
0

(7 + Cν−3) ‖∇u‖4)dt′) such

that

max
0≤t≤T

∥∥u− uh
∥∥2

+ C∗∗C(T )

T∫

0

[ν
∥∥∇s(u− uh)2

∥∥ + νT

∥∥(I − PLH )∇s(u− uh)2
∥∥]dt′

≤ CC∗(T )
∥∥u(x, 0)− vh(x, 0)

∥∥2
+ C1C

∗(T ) inf
vh∈Xh

(

T∫

0

[(H−2 + ν−1
T )

∥∥(u− vh)t

∥∥2

−1

+ ν
∥∥∇s(u− vh)

∥∥2
+ νT

∥∥(I − PLH )∇s(u− vh)
∥∥2

+ νT ‖(I − PLH )∇su‖2]dt′

+ ((H−2 + ν−1
T )

∥∥∇s(u− vh)
∥∥

L4(0,T ;L2Ω))

∥∥u− vh
∥∥

L4(0,T )
(‖∇u‖2

L4(0,T ;L2(Ω)) + 1))

+ CC∗(T ) inf
qh∈Qh

T∫

0

(H−2 + ν−1
T )

∥∥p− qh
∥∥2

dt′. (4.4)

Proof. Let e = u − uh and vh ∈ V h. Then, decompose the error into two
parts: e = η − φh, where η = u− vh and φh = uh − vh. Let vh ∈ V h denote
an approximation of u. Subtracting ( 4.1) from (4.3) yields,

(et, v
h) + [b(u, u, vh)− b(uh, uh, vh)] + (2ν∇se,∇svh)

+ (νT (I − PLH )∇se, (I − PLH )∇svh) = −(p,∇ · vh)

+ (νT (I − PLH )∇su, (I − PLH )∇svh). (4.5)
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By using (4.5) and setting vh = φh gives:

(φh
t , φ

h) + (2ν∇sφh,∇sφh) + (νT (I − PLH )∇sφh, (I − PLH )∇sφh)

= (ηt, φ
h) + [b(u, u, φh)− b(uh, uh, φh)] + (2ν∇sη,∇sφh)

+ (νT (I − PLH )∇sη, (I − PLH )∇sφh)− (p− qh,∇ · φh)

+ (νT (I − PLH )∇su, (I − PLH )∇sφh). (4.6)

Note that, since φh ∈ V h, (qh,∇ · φh) = 0, we can write

(p,∇ · φh) = (p− qh,∇ · φh), qh ∈ Qh.

We want to bound the terms on the right hand side of (4.6). Consider first
the convection terms in (4.6). Adding and subtracting terms yields:

b(u, u, φh)− b(uh, uh, φh) = b(e, u, φh) + b(uh, e, φh).

By writing e = η − φh, and using skew-symmetry, this reduces to

b(u, u, φh)− b(uh, uh, φh) = b(η, u, φh)− b(φh, u, φh) + b(uh, η, φh).

By using Lemma 2.1., Young’s inequality, the projection operator, PLH and∥∥∇sφh
∥∥2

= (
∥∥PLH∇sφh

∥∥2
+

∥∥(I − PLH )∇sφh
∥∥2

)
1
2 , the terms are bounded by

as follows:

b(η, u, φh) ≤ C ‖∇u‖ ‖η‖ 1
2 ‖∇sη‖ 1

2

∥∥∇sφh
∥∥2

≤ CH−2 ‖∇u‖2 ‖η‖ ‖∇η‖+
∥∥φh

∥∥2

+
νT

4

∥∥(I − PLH )∇sφh
∥∥2

+ ν−1
T ‖∇u‖2 ‖η‖ ‖∇sη‖

b(φh, u, φh) ≤
∥∥∇sφh

∥∥ 3
2
∥∥φh

∥∥ 1
2 ‖∇u‖

≤ ε
∥∥∇sφh

∥∥2
+

C

ε3

∥∥φh
∥∥2 ‖∇u‖4

b(uh, η, φh) ≤ C
∥∥∇uh

∥∥ 1
2
∥∥uh

∥∥ 1
2 ‖∇sη‖ ‖∇sφ‖

≤ (CH−2 + ν−1
T )

∥∥∇uh
∥∥ ‖η‖ ‖∇sη‖+

1

2

∥∥φh
∥∥2

+
νT

8

∥∥(I − PLH )∇sφh
∥∥2

The remaining terms in (4.6) are estimated by the Cauchy Schwarz, Young’s,
and Hölder inequalities as follows
∥∥(ηt, φ

h)
∥∥ ≤ CH−2 ‖ηt‖2

−1 +
∥∥φh

∥∥2
+

νT

4

∥∥(I − PLH )∇sφh
∥∥2

+ 4ν−1
T ‖ηt‖2

−1
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2ν ‖∇sη‖ ∥∥∇sφh
∥∥ ≤ 2ν ‖∇sη‖2 +

ν

2

∥∥∇sφh
∥∥2

νT ‖(I − PLH )∇sη‖
∥∥(I − PLH )∇sφh

∥∥ ≤ 4νT ‖(I − PLH )∇sη‖2

+
νT

16

∥∥(I − PLH )∇sφh
∥∥2

νT ‖(I − PLH )∇su‖
∥∥(I − PLH )∇sφh

∥∥ ≤ 4νT ‖(I − PLH )∇su‖2

+
νT

16

∥∥(I − PLH )∇sφh
∥∥2

‖(p− qh,∇ · φh)‖ ≤ H−2
∥∥p− qh

∥∥2
+

∥∥φh
∥∥2

+ Cν−1
T

∥∥p− qh
∥∥2

+
νT

8

∥∥(I − PLH )∇sφh
∥∥2

.

Inserting these bounds into (4.6) and setting ε = ν/2 yields

1

2

d

dt

∥∥φh
∥∥2

+ ν
∥∥∇sφh

∥∥2
+

7νT

16

∥∥(I − PLH )∇sφh
∥∥2

≤ (C1H
−2 + 4ν−1

T ) ‖ηt‖2
−1 + C2(H

−2 + C3ν
−1
T ) ‖∇u‖ ‖η‖ ‖∇sη‖

+ C4(H
−2 + C5ν

−1
T )

∥∥∇suh
∥∥2 ‖η‖ ‖∇sη‖+ 2ν ‖∇sη‖2

+ 4νT ‖(I − PLH )∇sη‖2 + 4νT ‖(I − PLH )∇u‖2

+
∥∥φh

∥∥2
(
7

2
+ ν−3 ‖∇u‖4) + (H−2 + ν−1

T )
∥∥p− qh

∥∥2

Since by assumption ∇u ∈ L4(0, T ; L2(Ω)), Gronwall’s inequality implies

max
0≤t≤T

∥∥φh
∥∥2

+ C1(T )

T∫

0

[2ν
∥∥∇sφh

∥∥2
+

7νT

8

∥∥(I − PLH )∇sφh
∥∥2

]dt′

≤ C∗(T )
∥∥φh(0)

∥∥2
+ CC∗(T )[

T∫

0

(H−2 + ν−1
T ) ‖ηt‖2

−1 + ν ‖∇sη‖2

+ νT ‖(I − PLH )∇sη‖2 + νT ‖(I − PLH )∇u‖2

+ (H−2 + ν−1
T ) ‖η‖ ‖∇sη‖ (‖∇u‖2 +

∥∥∇uh
∥∥2

)]dt′

+ CC∗(T ) inf
qh∈Qh

T∫

0

(H−2 + ν−1
T )

∥∥p− qh
∥∥2

dt′
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where C∗(T ) = exp(
T∫
0

(7 + Cν−3) ‖∇u‖4)dt′ We can bound the remaining

terms by using Cauchy-Schwarz inequality in L2(0, T ) and Proposition 4.1.
Thus,

T∫

0

‖∇u‖2 ‖η‖ ‖∇sη‖ dt′ ≤ ‖∇u‖2
L4(0,T ;L2(Ω)) ‖∇sη‖L4(0,T ;L2(Ω)) ‖η‖L4(0,T ;L2(Ω))

T∫

0

∥∥∇uh
∥∥2 ‖η‖ ‖∇sη‖ dt′ ≤ C ‖∇sη‖L4(0,T ;L2(Ω)) ‖η‖L4(0,T ;L2(Ω)) .

Applying the triangle inequality we have the infimum taken over only V h

instead of Xh. Under the discrete inf-sup condition, it is known that if
∇.u = 0 the infimum over V h can be replaced by infimum taken over Xh,
Girault and Raviart [8],Theorem 1.1, p.59. Thus the final result follows.

The error estimates which are similar to Theorem 4.1. can be used
as guide to pick parameter scalings by balancing error terms in the case
of smooth solutions. To illustrate this let us consider the Mini-element of
Arnold, Brezzi and Fortin [2].

Corollary 4.2. Suppose u,p are sufficiently smooth. Assume that Πh(Ω) be
refinement of ΠH(Ω) (h << H). Let Xh, XH , LH := ∇XH , Qh denote a
finite element space of cubic bubble functions, piecewise linear on a coarser
mesh width H > h, piecewise constants on coarser mesh, piecewise linear on
a mesh width of h, respectively,

Xh :=
{
v ∈ C0(Ω̄) : v |∆∈ P3(∆) ∩H1

0 (∆), for all triangles ∆ inΠh(Ω)
}

XH :=
{
v ∈ C0(Ω̄) : v |∆∈ P1(∆), for all triangles∆ inΠH(Ω)

}

LH :=
{
lH ∈ L2(Ω)d : lH |∆∈ P0(∆), for all triangles∆inΠH(Ω)

}

Qh :=
{
v ∈ C0Ω̄ : v |∆∈ P1(∆), for all triangles ∆ inΠh(Ω)

}
.

With the choices
νT ∼ h, h ∼ H2,

the error in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) is bounded by C(u, ν)h.
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Proof. By using approximation assumptions given Section 2,

max
0≤t≤T

∥∥u− uh
∥∥2

+ C(T )

T∫

0

[
ν

2

∥∥∇s(u− uh)
∥∥2

+
νT

4
‖(I − PLH )∇su‖2]dt′

≤ C∗(u, p)((H−2 + ν−1
T )h6 + νh2 + νT h2 + νT H2 + H−2h3 + ν−1

T h3

+ H−2h3 + (H−2 + ν−1
T )h2).

For balancing term neglect higher order terms i.e., H−2h6, ν−1
T h6, H−2h3. It

can be seen easily that with the natural choice of νT ∼ h, H2 ∼ h the error
is order h.

Remark 4.1. If one consider Taylor-Hood element, with the choices

Xh :=
{
v ∈ C0(Ω̄) : v |∆∈ P2(∆), for all triangles ∆ inΠh(Ω)

}

XH :=
{
v ∈ C0(Ω̄) : v |∆∈ P2(∆), for all triangles∆ inΠH(Ω)

}

LH :=
{
lH ∈ L2(Ω)d : lH |∆∈ P1(∆), for all triangles∆inΠH(Ω)

}

Qh :=
{
v ∈ C0Ω̄ : v |∆∈ P1(∆), for all triangles ∆ inΠh(Ω)

}
.

νT ∼ h, h ∼ H2,

the error in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) is bounded by C(u, ν)h2.

5 Reynolds Number Dependence for the

Oseen Problem

Consider the solution of the time dependent linearized Navier-Stokes equa-
tions i.e. the Oseen problem

ut − ν∆u + b · ∇u +∇p = f, in Ω, for 0 < t ≤ T,

∇ · u = 0, in Ω, for 0 < t ≤ T, (5.1)

u(x, 0) = u0(x), in Ω, u = 0 on Γ, for 0 < t ≤ T,

where b(x) is a smooth vector field with∇·b = 0 and b = 0 on Γ. Simplifying
the proof from the Navier-Stokes case, we show semi-discrete approximation
of (5.1) for new method is convergent. Indeed, the variational formulation
of (5.1) is

(ut, v) + (ν∇u,∇v) + (b · ∇u, v)− (p,∇ · v) + (q,∇ · u) = (f, v). (5.2)
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for all (v, q) ∈ (X,Q). We consider the new method and the same finite ele-
ment discretization as Navier-Stokes case for Oseen problem. Thus, the semi
discrete finite element approximation is a map uh : [0, T ] → V h satisfying

(uh
t , v

h) + (ν∇uh,∇vh) + (b · ∇uh, vh)

+ (νT (I − PLH )∇uh, (I − PLH )∇vh) = (f, vh), for all vh ∈ V h (5.3)

where V h is the space of discretely divergence-free functions. For error anal-
ysis, we need a second equation including u. Multiply (5.1) by vh ∈ V h and
integrate over Ω. Rearrangements gives for any vh ∈ V h

(ut, v
h) + (ν∇u,∇vh) + (b · ∇u, v)− (p− qh,∇ · vh) (5.4)

+(νT (I−PLH )∇u, (I−PLH )∇vh) = (νT (I−PLH )∇u, (I−PLH )∇vh)+(f, vh).

Theorem 5.1. There is a constant C = eα(t−T ) independent of ν such that

max
0≤t≤T

∥∥u− uh
∥∥2

+ C

T∫

0

[ν
∥∥∇(u− uh)2

∥∥ + νT

∥∥(I − PLH )∇(u− uh)2
∥∥]dt′

≤ C
∥∥u(x, 0)− vh(x, 0)

∥∥2
+ C inf

vh∈Xh
(

T∫

0

[(H−2 + ν−1
T )

∥∥(u− vh)t

∥∥2

−1

+ ν
∥∥∇(u− vh)

∥∥2
+ νT

∥∥(I − PLH )∇(u− vh)
∥∥2

+ νT ‖(I − PLH )∇u‖2

+ H−2
∥∥PLHb(u− vh)

∥∥2
+ ν−1

T

∥∥(I − PLH )b(u− vh)
∥∥2

]dt′)

+ C inf
qh∈Qh

T∫

0

(H−2 + ν−1
T )

∥∥p− qh
∥∥2

dt′.

Proof. For the error analysis subtract (5.3) from (5.4) and set e = u−uh =
η− φh where η = u− vh and φh = uh− vh. Following the same procedure in
the proof of Theorem 4.1 gives the result.

Remark 5.1. One of the important property of this result is that new method
does improve its robustness with respect to Reynolds number. The Oseen prob-
lem captures the convection terms contribution to the linearized problem but
omits the reaction term. Thus, this error estimates shows the new method en-
sures the uniformly in ν in the error contribution from the convection terms.
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To show the advantages of this new method we consider also the error in
usual Galerkin formulation of Oseen problem (νT = 0). The usual Galerkin
variational formulation of Oseen problem is (5.2) and semi discrete approx-
imation is

(uh
t , v

h)− ν(∇uh,∇vh)− (b · ∇uh, vh) = (f, vh), for all vh ∈ V h. (5.5)

Then, if we subtract (5.5) from (5.2), we get the following theorem.

Theorem 5.2. Let uh be the usual Galerkin finite element approximation of
the Oseen problem. Then, there is a constant C such that

max
0≤t≤T

∥∥u− uh
∥∥2

+

T∫

0

ν
∥∥∇(u− uh)2

∥∥ ≤ C inf
vh∈Xh

(

T∫

0

ν−1
∥∥(u− vh)t

∥∥2

−1

+ ν
∥∥∇(u− vh)

∥∥2
+ ν−1

∥∥b(u− vh)
∥∥2

dt′) + C inf
qh∈Qh

T∫

0

ν−1
∥∥p− qh

∥∥2
dt′.

Remark 5.2. If we compare Theorem (5.1) and Theorem (5.2), it is clear
that the basic error estimate for the usual Galerkin formulation of Oseen
problem depends badly on ν. In contrast, this new approach leads to an error
estimate with error constants which are uniform in ν for the Oseen problem.
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