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ABSTRACT. Elliptic bursting arises from fast-slow systems and involves recurrent
alternation between active phases of large amplitude oscillations and silent phases
of small amplitude oscillations. This article is a rigorous analysis of elliptic bursting
with and without noise. We first prove the existence of elliptic bursting solutions
for a class of fast-slow systems without noise by establishing an invariant region for
the return map of the solutions. For noisy elliptic bursters, the bursting patterns
depend on random variations associated with delayed bifurcations. We provide an
exact formulation of the duration of delay and analyze its mean and variance. The
duration of the delay, and consequently the durations of active and silent phases,
is shown to be closely related to the logarithm of a distance function that is nearly
Gaussian and propotional to the amplitude of the noise. The treatment of noisy
delayed bifurcation here is a general theory of delayed bifurcation valid for other
systems involving delayed bifurcation as well, and is a continuation of the rigorous
Shishkova-Neishtadt theory on delayed bifurcation or delay of stability loss.

1.INTRODUCTION

In several brain areas, neurons have been observed experimentally to engage in
a rhythmic pattern of behavior referred to as elliptic bursting. In elliptic bursting,
neuronal activity alternates between active phases, characterized by large ampli-
tude oscillations, and quiescent phases, associated with oscillations of much smaller
amplitudes (see Figures 2 and 3). Neuronal examples are given in the context of

thalamic sleep rhythms and other neuronal systems in [6-8,17,23,28,39-40,52]. We
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study a model of elliptic bursting poposed by Rinzel [37] and considered previ-
ously both by numerical simulation and by fast-slow dissection in a singular limit
[37,39,53].

The complications involved in such systems are related to a dynamical phenom-
enon known as delayed bifurcation or delay of stability loss, defined by Arnold
[2]. Solutions stay close to a quasi-steady state as the O(e)-slow variable passes
through a threshold where linear stability is lost. Subsequently, after a substan-
tial O(1) delay, solutions jump away from quasi-steady state. These issues have
been studied by many authors [1-5,9-13,15-19,25-27,29-36,42-49]. When a system
can be reduced to a homogeneous system (i.e., zero is an obvious solution), the
delay can be attributed to a simple contraction of solutions. But in general, more
conditions are required for delay. In fact, in the case of slow passage through a
simple eigenvalue bifurcation where contraction is also present, the amount of de-
lay can be rather small and may vanish as the slowness goes to zero, as shown in
examples by Lebovitz [26-27], Ahlers [1] and Kapila [19]. The delay in slow pas-
sage through a Hopf bifurcation is generically more significant for systems that are
analytic in complex time, as shown by Shishkova [43], Neishtadt [31-36] and many
others [3,10,15,43-49]. Even in this case, however, the amount of delay still relates
to many factors, such as nearby singularities and, if external forcing is present,
the difference between intrinsic and forcing frequencies [3,36,47-49]. When noise
is added, numerical computations [3, 54] and asymptotic methods [22-23] suggest
that the amount of delay is signficantly reduced. These results clarify why delay

has not been observed in certain noisy environments [18].

When the delayed bifurcation is incorporated into a fast-slow system to model
bursting phenomena, chaotic behavior is expected. In fact, for a similar system
involving delayed bifurcation, Schecter [42] proved that the Poincaré map contains

a Smale horseshoe, among other properties. A recent study of Kuske and Baer [23]
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introduced noise of Brownian motion type into an elliptic bursting system. De-
pending on the amplitude of the noise, it was found that there are regular patterns
of alternations between a long active phase and a long silent phase, regular patterns
of alternations between short active and silent phases, as well as irregular patterns
of alternations of phases with various time durations (see in particularly Figure 3.2
(e-g) of Kuske and Baer [23]). When the noise amplitude is set to be extremely
close to zero, the irregular patterns give way to a pattern that strongly resembles
deterministic elliptic bursting. But even with a noise of quite small magnitude, the
irregularity is significant. Kuske and Baer [22-23] determine that this irregularity
follows from random variation in the delay of stability loss, based on an asymtptotic
approximation of the probability density function for the state of the system in the
silent phase and an asymptotic analysis of the effect of noise on transitions out of

the active phase.

This article is a rigorous analysis of elliptic bursting with and without noise.
We first prove the existence of elliptic bursting solutions for a class of fast-slow
systems without noise by establishing an invariant region for the return map of the
solutions. For noisy elliptic bursters, bursting patterns depend on random varia-
tions associated with delayed bifurcation. We provide an exact formulation of the
duration of delay and analyze its mean and variance. The duration of the delay,
and consequently the durations of active and silent phases, is shown to be closely
related to the logarithm of a distance function that is nearly Gaussian and propo-
tional to the amplitude of the noise. The treatment of noisy delayed bifurcation
here is a general theory of delayed bifurcation valid for other systems involving de-
layed simple eigenvalue or delayed Hopf bifurcation as well, and is a continuation of
the rigorous Shishkova-Neishtadt theory on delayed bifurcation or delay of stability
loss [31-36,43].

The phenomenon to be discussed here is different from the chaotic behavior
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caused by different initial positions of the deterministic dynamics as in [42]. Rather,
the irregular patterns are derived from solutions with the same initial position, as
noise properties are varied. Further, solutions with different initial positions behave
in similar ways.

The paper is organized in the following way. In Section 2, we state general
assumptions on an elliptic bursting model without noise and state the existence
result for deterministic bursting solutions. The proof of this result is presented in
Section 3. In Sections 4 and 5, we consider the dynamical behavior of the system
with noise and establish the relation between the bursting patterns and the amount
of delay due to the slow passage through a Hopf bifurcation. The amount of delay

will be random but is closely related to a normal distribution.

2.GENERAL ASSUMPTIONS AND RESULTS ON ELLIPTIC BURSTERS .

Our assumptions on the elliptic bursting model are quite general. Following
Rinzel [37] and Wang and Rinzel [53], assume the variables v (e.g., the voltage
across a neuronal membrane), w (e.g., the activation of a fast ionic current through
the membrane), and y (e.g., the activation of a slow ionic current) satisfy the

differential equations

(21&) v = fl(vaway)a
(21b) wl = f2(v,w,y),
(2.1¢) y' =eg(v,w,y)

where 0 < ¢ € 1 and fi, f2,9 are smooth (see (H4) below). The corresponding
system with € = 0 is called the fast subsystem (FS). Equation (2.1c) is called the
slow equation (SE).

Assume for the system (2.1) that

(H1) There exists an interval [y, y,] of y-values on which the set of equilibria of

(FS) is a curve of the form S = {Uy, = (vo(y), wo(¥),y) |yr <y <y,}.
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(H2) (FS) features a subcritical Hopf bifurcation along S, at py = (v, wWH,YH),
yr < yu < Yp, with a corresponding saddle-node of periodic orbits for y = y, €
(ym,Y,)- The outer periodic solutions, which we denote as P,(t) for each y, are sta-
ble, while the inner ones are unstable (see Figure 1). The family P = {P,(t) |yn <
y < yr} terminates at y = yp < yg (possibly in a homoclinic orbit or in another
Hopf bifurcation point). Our analysis will assume that trajectories do not enter the
vicinity of yp.

(H3) There exists a yr > y, such that for y € (yx,yr), the equilibrium curve S
belongs in the region {g < 0}. Along each periodic orbit P,, the motion of y follows
an averaged equation derived from (SE). Specifically, we have y(t) = yo(t) + O(e),
with yo a solution of the averaged equation yo' = £§(yo) defined later, and g(y) > 0
for each y € [yn,yr|, we further assume §(y) > 0 for the inner periodic branch when
y is near y,, which will prevent canard phenomena, as discussed in Section 3.
Remark 2.1: Define the y-nullsurface N = {(v,w,y) | g = 0}. This may intersect
S at y > yg, or not at all (as in [23]). In fact, the results below will hold if N
intersects S at some y sufficiently far below yg, as in [39-40]. We will comment
specifically on this case in Remark 3.3 below.

We make some additional assumptions that are necessary for delayed bifurcation
problems. These assumptions are satisfied by the FitzHugh-Nagumo equations and
by other neural models under consideration [3,7-8,22-23,38-39,44-45].

(H4) The vector functions f = (fi,f2) :R2 xR - R and g : RZ x R - R
have analytic extensions for |(v,w)| < 04, |y| < 7, in the complex plane for some
Oa,Ta > 0.

(H5) For each fixed y € (yx,y,), the equilibrium curve (vo(y), wo(y)) is analytic
in y for |y| < rq.

Now, consider the variational equations of (FS) about (v, wp)(y), namely

(2'2) 2t = f(v,w)((v07w0)(y)7y)za



6 SU, RUBIN AND TERMAN

a linear system with coefficients depending on the parameter y. Let A(y) =
Fw,w) ((vo, wo)(y), y)-

(H6) Assume that two eigenvalues of A(y), denoted by & (y) and & (y), are
complex conjugate to each other i.e., &(y) = &1 (y) for each y on the real axis and
|y| < rq. Further, near the Hopf bifurcation point ym, Re&;(y) < 0 wheny > ygm and
Re&;(y) > 0 when y < yg. To distinguish the two, we assume that Imé (yu) < 0.

. dRe€;
We further assume a transverse crossing occurs, so that —%(y)

=as > 0at yg.

We define an elliptic bursting solution to be a trajectory that alternates between
active phases spent in a certain neighborhood Np of P, where it undergoes large
amplitude oscillations, and silent phases spent in a certain neighborhood Ng of S,
where it undergoes small amplitude oscillations. Examples are shown in Figures 2
and 3. Under the assumptions (H1)-(H6), we derive the existence of elliptic bursting

solutions to (2.1).

Theorem 2.1 (Elliptic bursting).

a. There exists g9 > 0 such that the flow induced Poincaré map for equation
(2.1) possesses an invariant region Sy, consisting of elliptic bursting solutions, for
0 < e <eg. More specifically, Sg is a 2-dimensional ring-shaped invariant region

containing Py,,, and further Sy is an absorbing set.

b. Each loop time T, that is the time for an elliptic bursting solution to undergo
any complete loop from entry into Ng, to entry into Np, to re-entry into Ng,
can be calculated as T. = Ty + T + n(e), where Ty, T> are O(%) times associated
with passage through the silent and active phases, respectively (see equations (3.8),
(8.15), below), and lim,. o+ en(e) = 0.

c. Fix any elliptic bursting solution (0,w,y) and time t1 such that (0,w,7)(t1) €
Sg. When € < €, for any § > 0 sufficiently small and any solution (v,w,y) of

equation (2.1) such that (v,w,y)(0) € Sy and therefore y(0) = §(t1) = ym, there
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exists an M = M(g9) > 0 such that
(2.3) ly(t) —j(t +t1)| <6

for the time duration 0 < t < (m)(ﬂ + Ty + o(L)), corresponding to an

(m) number of elliptic bursting cycles. Therefore, elliptic bursting solutions

are at least metastable.

3.ANALYSIS OF DETERMINISTIC ELLIPTIC BURSTERS.

To understand the dynamics of equation (2.1), we construct neighborhoods Ng
for the equilibrium curve S and Np for the periodic family P. Let M > 0 be a
constant, and let

D = {(z,u,y) |2* +u® < (Me)?, |y| < 1},
Dy =Dn{y=—-1},
Ds =Dn{a® +u® = (Me)*},

DR=Dﬂ{y=1}.

Let E® denote (v,w,y)—phase space. The projection 7, : E> — E' is given
by my(v,w,y) = y. We define that ¢ : R> — E3? is a y-homeomorphism if ¢ is a
homeomorphism and 7y¢(z1,u1,y1) < Tyd(x2, u2,y2) when y; < yo.

(A) The steady branch and its dynamics.
The trajectories of the solutions near the steady branch S can be described as

follows.

Proposition 3.1. There exists es > 0 and M(es) > 0 such that for 0 < ¢ < eg,
there erists a y-homeomorphism ¢s : D — E® for which Ns = ¢s(D) forms a
neighborhood of the steady branch S with the following properties:

a) S C Ng, and the Hopf bifurcation point yg corresponds to z = 0 at the center

of the tube D,
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b) Ns C M_ = {g <0},

¢) my(65(Dr) = 4y,

d) if v(to) € ¢s((0D\ Dr)N{z > 0}) is on the boundary of Ns at y = yo > ym,
then (t) enters and remains within Ng in forward time until it exits Ng with
y = y° < yg at a time Ty + O(e), where both y° and the time duration Ty are

functions of yo.

Proof of Proposition 3.1. We make the change of variables & = v — v(y), 4 =
w — wo(y), which translates the steady branch S to the origin of (FS) for each
y, and then diagonalize the system, using (Z,4) = B(y,&)(z,u). Near the steady

branch, equation (2.1) thus becomes

(3.1a) ' =& (y)z + g1 (z,u,y) +chi(y,€),
(3.1b) u' = &(y)u+ g2(, u,y) +eha(y, €),
(3.1c) y' = egl(vo(y), wo(y)) + Bly,e)(x,u),y] = —egs(x,u,y,¢)

where B(y,¢) is a diagonalizing matrix , u = Z, g2 = g1, and he = hy, with

(3.2a) g1 = 0(e)z + O(*)u + O(|z|*, [ul*),

(3.2b) g2 = O(e)u + O(eH)z + O(|z|?, |ul?),

and h; = O(1). The different orders in equation (3.2) occur because when we
diagonalize the right hand side of (3.1), a higher order off-diagonal term arises from
differentiation of B(y,e)(x,u) with respect to y. For slow equation (3.1c), we have
0 < g3 = g4(y,€) + o(Jz| + |u|), which is positive when (z,u) is small by (H3). We

introduce y as the new independent variable and change equation (3.1) into
(3.3a) exy = M)z + Gz, u,y) +eHi(y, ),

(33b) Euy = _Xl (y)u + é2 (‘Z'7 u, y) + EH2 (y7 E)'
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The higher order terms satisfy

(3.4a) G1 = 0(e)z + O(*)u+ O(|zl, |ul?),

(3.4b) G2 = 0(e)u + 0>z + O(|z|?, |ul?)

and H; = O(1). By (H6), the eigenvalues satisfy Re);j(y) < 0 when y > ym;

Re);j(y) > 0 when y < yg; and ImA;(yg) < 0. Further, a transverse crossing

—%y"(y) = a3 > 0 at the Hopf bifurcation point y = ypg.

occurs so that

There are numerous discussions [1-5,9-13,15-19,25-36,42-49] on the behavior of
solutions to equation (3.3). Most of the previous work considers how y increases
past yg, while in our case, y decreases past yg. We keep the minus sign in front

of A1 in equation (3.3) to preserve the consistency of notation with other related

works. We summarize some relevant results in the following theorem.

Theorem 3.2 [32-33,44-45]. Let (z,u)(y,e) be any family of solutions of equa-
tions (8.3-3.4) with initial conditions that satisfy |(z,u)(yi,€)| < Mie for yi > yu
and some My > 0. Then there exist M = M (M) > 0,y, = yo(M1, M) < yu,es =
es(My, M) such that

(z,u)(y,e)| < Me

whenever y; >y > y,,0 < e < eg. Further, if y; is close enough to yu, then y, and
y; satisfy the relationship

(3.5) / " Ren(r)dr = 0.

Thus, we can simply choose My > 0, find M (M;) and es(M, My) from Theorem
3.2, and for any 0 < ¢ < egset D = {z? +u? < (Me)?,y; <y < y,} where y; < ym
is the point satisfying

(3.6) / " Rea(r)dr = 0.

1
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If (z,u,y) enters D at y = yo, then it must exit D at y = y°, where y° < yy is the

point such that

(3.7 /y ReAi(1)dr = 0.

0

The time duration can be calculated from the slow equation (3.1c),

0

(38) /yj m dy =eT + 0(62).

With these results in hand, the rest of the argument in Proposition 3.1 follows
easily. In fact, there exists a y-diffeomorphism ) : D — E® such that under 1, the

slow equation has the canonical form
(3.9) y' = —c.

O

Remark 3.1: Fix a solution (%, 4)(y,e) described in Theorem 3.2, such that (3.5)
holds, but with y; as far away from yp as possible. Let (X,U) = (z,u)— (&, @)(y, €).

This transforms equation (3.3) into a homogeneous system for (X, U), namely

(3.10a) eXy = -MWX +G1(X,U,y,e),
(3.10b) eU, = =M (y)U + G2(X,U,y,¢)
where

(3-11a) G1 = 0(e)X +0(E)U + O(| X%, |U?),
(3.11b) Go = 0(e)U + O(*) X + O(| X%, |U%).

Since U = X, we write equation (3.10) in the complex form

(312) EXy = _)\l(y)X + GI(X7X7yJE)7
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where G has the form G; = ea(y,e)X + 0(e?)X + O(X?, X - X, X?) and equation

(3.12) has an analytic extension into the complex plane z,

(3.13) eX. = =M (2)X (2) + G1(X (2), X(2), 2,€),

where X (Z) is the analytic extension for X (7). This will be important in Section
5.
(B) The periodic branch and its dynamics.

The behavior of solutions near a family of periodic orbits, terminating at one
end in a Hopf bifurcation and at the other end in a homoclinic bifurcation, was
discussed in detail by Terman [50-51] (see also Rubin and Terman [40]), and we use
similar ideas here.

Recall that each Py (t) is an asymptotically stable periodic solution. For each
y € (yn,yr), we seek a compact neighborhood of Py(t) in E®* = (v,w,y) phase
space. In particular, let

A={(z,u,y): 1 —2Me <2 +u? <1+4+2Me, -1 <y < 1},
Ap = {(z,u,y) : 1 —=2Me < 2® +u? < 14 2Me,y =1},

Ap = {(r,w,y) 1= 2Me <a* +u* <14 2Me,y = -1},

As = {(z,u,y) : 2 +u> =1—-2Me, orz® +u®> =1+ 2Me, —-1<y<1}.

Proposition 3.3. There exists ep > 0 and M(ep) > 0 such that for 0 < e < ep,
there erists a y-homeomorphism ¢p : A — E* for which Np = ¢,(A) forms a
neighborhood of the periodic branch P with the following properties:

a) P C Np and the right knee of P at y = y, is at the right end of Np corre-
sponding to z = 1; that is, 7(¢p(AR)) = yr,

b) Np C My = {g >0},

¢) my(¢p(AL)) = yx,

d) if v(to) € ¢pp(0A\ AR) is on the boundary of Np aty = y(to), then y(t) enters

Np in forward time and remains there until it exits at the right end Np N {z =1}
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at time Ty +tg + O(e), where the duration time Ty is determined by the initial value

y(to)-

Proof. The proposition follows from the stability properties of the periodic solutions

of (FS). To apply the averaging method [41], we solve

(3.14a) V= fi (V,W,Y (t)),

(3.14b) W' = f(V,W,Y (1)),

(3.14¢) Vi=e é,) / " Py(), Y ) ds = (V. WY,
0

(3.14d) (V,W,Y)(to) = (v(to), w(to),y(to))

where 7(Y") is the period of the periodic solution P,(t) of (FS) with y = Y and
(v, w,y) denotes a solution to equation (2.1).

Fix ep > 0 sufficiently small such that the averaging theorem holds and let
M > 0. Assume that in equation (3.14d), (v(to), w(to),y(to)) € dp(OA\ Ag). Let
(V=(t), W.(¢), Y-(t)) denote the corresponding solution to (3.14), describing aver-
aged motions, where the motion of Y. is determined by the slow equation (3.14c),
with § > 0 by (H3). Then (v(t),w(t),y(t)) stays O(e) near (V. (t), W.(t), Yz(t)) for
an O(1) time by the averaging theorem [41]. Further, we can choose M(ep) > 0
such that for 0 < € < ep, (Vo(¢), We(t),Ye(t)) in turn stays O(e) close to P =
{Py}, since P is attracting. Therefore, the trajectory remains inside Np and
exits Np at z = 1, which is the right knee of P.

The time duration T5 is basically the time span on the periodic branch from the
time entering Np at y = y(to) to the time when the trajectory exits Np at y = y..

This is determined by the slow equation (3.14d) which yields the integral relation

vr 7(y) 2
(313) /y(to) T (P, (s),y) ds vt O
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Remark 3.2: Using Fenichel coordinates [14] with Np, we find that the averaged

equation (3.14) can be reduced to the canonical form

(3.16a) r'=—(r-1),
(3.16b) 0" =c(y) >0,
(3.16¢) y' =ego(y) > 0.

We shall use this form for the proofs below and for the study of the noisy case.

Proof of Theorem 2.1. We construct a region that is invariant under the Poincaré
map induced by the flow of (2.1). Since the slow motion for y is oscillatory, rather
than monotonic, along the periodic banch P, the Poincaré map needs to be carefully
defined, using the averaged motion (3.14), for which the slow flow is monotonic.
To start, let ¢ < min{eg,ep}, although & may be decreased below, and let

M =min{M (es), M(ep)}. In terms of the Fenichel coordinates (3.16), let

Su=Npn{y=yu}={00,y);|r—1] < Me,0 € Ry =y}

See Figure 2b. Let () be any trajectory of equation (2.1) with v(0) € Sg. It
is possible that v(t) does not exit Sy transversally, or v(t) exits to either the
y < yg side or the y > yg side of Sy and then returns to Sy within an O(1) time.
Equation (3.16c), however, ensures that the averaged motion I'(t) of (¢) goes in
the direction of increasing y. Thus, v(¢) eventually passes Sy and in fact exits Np
through ¢p(Ag) at y = y,.

We next need to ensure that v(t) enters Ng. Consider an extension of ¢p(A)
given by

op = {(v,w,y) | (v, w,y,) € pp(AR), yr <y < ys}

for some y;, > 0. By the continuity of g, there exists of a choice of y,, with

ys — yr» = O(1), and a choice of € > 0 sufficiently small in the definition of A such
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that

7(y)
% / g(0(t), w(t),y) dt > 0

for all y € [yr,ys]. Since the only attractor for (FS) for y > y, is the branch of
critical points S, the vector field of (2.1) points outward on d¢p N {y : y, < y <
ys}; y(t) exits ¢p through this set for some y < ys; and () cannot re-enter ¢p
without passing through Np again. (Note that we do not need to consider canard-
like passage along the unstable family of periodic orbits as long as the nullsurface
{§ = 0} is uniformly bounded away from P and the inner peiodic branch near the

periodic saddle node, as indicated in (H3).)

The exponential attraction of v(¢) to S, made explicit in equation (3.1), implies
that 7(t) enters Ng through the surface ¢s(Dg), in an O(|Ine|) time after leaving
ép. Even if y < y, occurs before this entry, the family of unstable periodic orbits,

the existence of which is given by (H1), acts as a separatrix that prevents v(t) from

entering Np instead.

Within ¢p, the behavior of (t) near the periodic saddle node is a subtle part of
this analysis, as this is comparable to the similar cases of saddle nodes of critical

points studied in [55].

In ¢p, since P = {P,} depends smoothly on y, we can define a new polar
coordinates (r,6) near the periodic saddle node at y = y, such that {P,} and the
inner periodic branch correspond to {r = r4(y),0 < 8 < 27} and {r =r_(y),0 <

0 < 2x}, respectively, with ro smooth in y. The periodic saddle node is at r =

r(yr) =7-(yr) = ro.

Near y = y,., under the new Fenichel coordinates, system (2.1) can be expressed
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by Taylor’s Theorem as:

r' = a1(0)(r — o) + a2 (0)(r —70)> + Y an(8)(r —ro)" + bi(6)(y — yr)+

n>3
(3.17a)
S bik®@ -y (r —mo)t,
3>1,5+k>2

(3.17b)

0'=C(r,6,y) >0,
(3.17¢)

y' =eg(r,0,y)

where a;(0),b;(0),b;,x(6) are 27-periodic. When € = 0, both the outer periodic
branch and the inner periodic branch are equilibria of equation (3.17a) for fixed y,
independent of the angle . Therefore they satisfy the angle-averaged amplitude

equation as well:

0=r"=F(r,y) = a1(r —ro) + aa(r —ro)> + Z Gn(r —ro)"+
n>3

(3.18)

biy—y)+ D> by —u) (r—ro)*
F>1,+k>2

27

where a; = 1/(2m) [2" a;(6)d6,j = 1,2, and by = 1/(2x) [" b1(6) df are in fact
the 0'-order terms of the Fourier series. Under the standard hypothesis [55-56]

on the saddle node of quadratic type, we assume that FT|(r ”) )y = a =0,

=(r0,y»

F,, =d; <0 and F| )=o) = b < 0.

|(T,y)=(7‘o,yr)

To establish the behavior of a solution (r,y) to the full equation (3.17) fore — 0,
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we consider the solution (#,§) of the averaged equation:

(3.19a)

P=a(F—r0)’ + ) an(F—r0)" + b (@ —y)+ D bk -y ) (F —ro)F,
n>3 j>1,j+k>2

(3.19b)

§' =¢eg(7,9) >0,

(3.19¢)

(7, 9)|e=0 = (r,9)]e=0

where (7, §j) is the averaged value of g(#, 6, §j), assumed to be positive in ¢p by (H3)
to avoid the complication of canards. Since (7,§) — (r,y) = O(e) for t < O(1/¢) by
the averaging theorem [41], we consider the separation of (7,§) from the periodic
saddle node instead. Since system (3.19) is exactly the case of a slow passage
through a quadratic saddle node, the estimates of [55-56] imply that § and hence
y can drift at most O(¢2/3) beyond y, before exit from ¢p.

Once 7(t) is inside of Ng, Proposition 3.1 implies that it exits Ng with y = 3% <
yg after time T + O(g). The attraction of P implies that (¢) enters directly, in
O(|Inegl) time, into Np, where Proposition 3.3 describes its behavior.

Thus, v(t) returns to Sy after a time T, = Ty + T+ 0o(1/e). We therefore define
the Poincaré map as the map II from ~(0) to y(Z%), and Sy is an invariant set for
II. Further, since P is attracting, it can be shown that there exists a neighborhood
Sg of Sy such that if v(0) € Sg, then v(t) will enter Np in forward time and then,
after one excursion of time ¢ > T; + T» + o(1/¢), enter Sg. Hence, Sy is also an
absorbing set.

This establishes parts a. and b. of the theorem.

To obtain the result in c., we only need to prove that there exists M = M (gg)
such that after (¢,w,9) complete a loop and return to Sy at t1 + T = t1 + (T4 +
T> + o(1/¢)), the difference in |y(t) — §(t)| < Me|lne|,0 <t < T.. Then part c.

follows by repeating the steps times.

90
Me|lne|
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Accordingly, we calculate the difference in y and g during one loop. When both
solutions belong to Np, they are O(g) close to the corresponding averaged solutions
in equation (3.16). We can verify directly any two solutions of equation (3.16) of
same initial y value will maintain equal y-value. Therefore y and § remain O(e)-

close until they exit Np.

When both solutions enter <;~5p, y and § are O(e)-close to the averaged solutions
in equation (3.19). Now it was shown in [56] that although the y- values of the
solutions of equation (3.19) can drift away from y,. to y, + O(e>/?) before exit from
#, the solutions remain close together in a narrow strip of values of y of width

O(e~¢/),¢ > 0, when they exit ¢p. So y and § are still O(e)-close to each other.

During the exponential decay to Ng near y = y,. and the exponential growth from
Ng to Np near y = y;, the total change of y can be calculated to be O(e|In¢|),
see [44]. Equation (3.7) allows the computation of the y-value upon exit from Ng
based on the y-values at entry into Ng. This implies that within Ng, the difference

of y-values can grow by at most an O(g) amount.

In summary, for 9 > 0 sufficiently small and 0 < € < g, the errors accumulated
in the neighborhoods described above imply that there exists an M (gq) > 0 such

that |y(t) — 9(t)| < Me|lne| for 0 < ¢ <T..

Remark 3.3: If the y-nullsurface N intersects S at some y < yg, then the exis-
tence of elliptic bursting still follows as above. However, it is possible that y’' > 0
may occur during passage through Ng (but below yg). Thus, equation (3.7) no
longer gives an estimate for the y-value at escape from Ng, and in simulations, a
bursting trajectory may appeared to be pinned at some constant y-value during the
transition from Ng to Np, obscuring some of the delay in escape. This is shown in

Figure 3.

Remark 3.4: The contraction behavior of solutions of equation (3.3) can be char-
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acterized by the following proposition; we will use a stochastic version of this in

Section 5.

Proposition 3.4. Assume that (x,u)a and (x,u)p are two solutions of equation
(8.3) on y1 < y < y2, and |(z,u)a(y)| < Mae, |[(z,u)B(y)] < Mae whenever
y1 <y < yo. Then there exist Mz = M3(Ms) > 0, eg = €9(M2) > 0 so that for
0<e<e,

LT Reni(n)dr |(z,u)a(y2) — (z,u)B(

B
(320) M3 - |($‘,U)A(y1) - (IL',U)B(

Y| o g e 022 Rennir
yol ~

)

Proof. See [44-45]. We note that there is no restriction on whether y; and y, are

above or below yg. O

Note that the map II is in general not a contraction. Therefore the existence
and stability of a truly periodic solution remains open. In fact, the structure of the

maximal attractor for the map can be quite interesting.

4.GENERAL ASSUMPTIONS AND RESULTS ON NOISY ELLIPTIC BURSTERS.

We now turn to the effect of a random force to the elliptic bursters. We consider

the system

(4.1a) dv = fi(v,w,y)dt + ol (y)dW (y),
(4.1b) dw = fo(v, w,y)dt + e2ahy(y)dW (y),
(4.1c) dy = eg(v,w,y)dt

where the noisy term is modeled in similar terms by Baer et al. [3] and Kuske
and Baer [22-23]. The magnitudes h; are assumed to be positive. The Brownian
motions W (y) are based on the usual hypotheses:

(1) W(y1) — W(y2) is Gaussian N(0,/|y1 — y2|),

(2) W(y1) — W(y=2) and W (ys) — W (y4) are independent if intervals which ended

at y1,y2 and y3, y4 are disjoint.
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The parameter o is ranged from exponentially small at O(e~ <) to O(1).

We consider the dynamic behavior of the elliptic burster under such a random
noise. Particularly we are interested in the time durations 77 on the steady branch
and T on the periodic branch. We see that motions near the periodic branch are
not affected much by the noise because the periodic orbits are attracting, although
the time duration 75 does depend on the y value where the trajectory enters Np.
A short T7 will be followed a short 7> and a longer T} will be followed by a longer
T>. In brief, 77 completely determines T>, as we will show below. The duration
T, spent inside Ng is therefore a key to understanding the patterns of the elliptic
burster.

We study the time duration 77 through a rigorous analysis of the distribution of

the jumping point Y; where the solution exits Ng and heads for Np.

Theorem 4.1 (Main Theorem). There ezists €9 such that for 0 < € < &,
equation (4.1) possesses bursting solutions for which the loop time T.(t) satisfies
the relation T, (t) = Ty +To+0(1/€), where Ty, T are the times spent inside Ng near
the steady state curve S and inside Np near the periodic orbit family P, respectively.

The random variables T;,i = 1,2 are determined by the jump point Y; through the

relations
Y; 1 )
4.2 / ————dy =T, +O(e
“2) v 9(U(y);e) Y 1+ 0E)
and
Yr
(43) / ) ) dy =T + O(e*).
Vi o 9(Py(s),y)ds

The jumping point Y; is a random variable and is related to a random distance

function A by the formula f;:; Reli(y)dy = eln(A/M) + O(e|lne|). The distance
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function A is a random variable dominated by a normal distribution N(0,8;) with

mean E(A) = 0+0(ce®) and variance V(A) = 6, +O(02e3) where 8, = 023 0(1).
Therefore, only when o < O(e~C/¢) for large enough C is there a reqular pattern

of long bursts. When O(1) > o > O(e™),n € N, there is a pattern of short bursts

e—C €

! )) of long bursts. When o falls in range

with a very small probability (< O(%—

between O(e=C/%) and O(e™), there will be a nontrivial distribution of bursts of

different lengths.

Remark 4.1 To be more specific, when o > O(e"),n € N, the points of exit from
Ng are Y; = yg — O(eln(e)), located very near the bifurcation point Yz, and we
see a short period of large spikes in active phase as well as a short period of small
oscillations in silent phase. When o < O(e~/¢), Y; = yg — O(1), and longer
periods in each phase are exhibited. See Figures 4a and 4b. For the values of o
in between O(e~¢/) and O(e™), the mixed patterns of different phase lengths are
related to a distribution that is nearly Gaussian, as illustrated in Figure 4c. Note
that we write —O(...) here to emphasize the fact that the jump out of Ng occurs
after y drops below ym, in all cases. In the statement of the Theorem and in the
proof below, we use the conventional notation and write +0(...), even when we

know that the higher order terms are negative.

5.ANALYSIS OF NOISY DELAYED BIFURCATIONS AND ELLIPTIC BURSTERS.
We use the same transformations used to derive equation (3.12) from equation
(2.1) to transform the equation (4.1) into a system

(5.1) eX, = -\ ()X + Gi(X, X,y) + 20 H(y)dW,

where G has the expression G1 = ea(y,e)X + O(e2)X + O(X?, X - X, X?).
We need some technical lemmas to start, proceeding initially in analogy to the

treatment of the determinstic case in [44-45].
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Lemma 5.1. Let M; > 0 and let X = X (y,¢) be a family of solutions of the system
(5.1) with initial conditions at y = y; satisfying |X||y:y, = \/E(XX')|y:y, < M€e?

for y; > yu. Then there exist My = My(My) and g9 = g9(M1) > 0 so that when

0<e<e,
(5.2) E(XX) < Mye®/?

foryi >y >yn.

Sketch of the proof. Lemma, 5.1 for equation (5.1) without the random terms was
shown in [44-45]. For the stochastic equation (5.1), the situation is similar. The

integral formulation for equation (5.1) is

“1 gy v, _ .

(5.3) X(y) = X (yi)e = Jui M()ds / e® [P NG (GQ (X, X, 7)dr +e2H(r)dW).
Yi

By using the new norm |X| = /E(X X) and following the stability theorem for

stochastic differential equations in [21,24], we derive the estimate

(5.4) X ()] < 1X(ya)| + |e* H (y))

provided Re);(y) < 0 . As in [44-45], except for the definition of the norm, we
distinguish two cases.

Case 1 corresponds to yg + /2 < y < y;, for which Re);(y) < —ci14/e. We use
the inequality (5.4) to derive |X| < O(e%/2).

Case 2 corresponds to yr < y < ymg + /€. Here, we use equation (5.3) from
yrr + /€ to yrr and use the fact the interval is smaller than /z to get |X| < O(g%/?)

as well.

Lemma 5.2. Let M; > 0, let y* < yg be any point below the Hopf bifurcation point

y =ym, and let X = X (y,€) be solutions of equation(5.1) with initial conditions at
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y = y* which satisfy

(5.5) |X||y:yi < M;e?

for any € > 0. Then there exist eg = eo(M1), Ms = Ms(M7) so that for e < g,
(5.6) |X| < Mye®/?

whenever yg >y > yt.

Proof. If we replace the variable y by J = 2yg — y, then Lemma 5.2 follows imme-

diately by analogous arguments as in Lemma 5.1. O

We also see that the exponential growth property, specified in Proposition 3.4,

remains valid in this stochastic case.

Proposition 5.3. Assume that X4 and Xp are two solutions of (5.1) ony <y <
Y2, and | X A(y)| < Mae, | Xpg(y)| < Mae for some My, e > 0 whenever y; <y < ya.
Then there exist M3 = M3(Ms), €9 = e0(M>) so that for e < &y,

1 2tpr renmar  [Xa(y2) =X

- B(
SO A S [ Xaly) — Xnl

y2)| < M3e_71 Jy2 Rex(r)dr
y1)| ~

)

This again follows similarly to the deterministic case because | X4(y)| < Mae,

|XB(y)| < Mae.

Proof of Theorem 4.1. Using the eigenvalue A (y) from (5.1), define y; in analogy

to the determinstic case by

Y
/ ReMi(1)dr =0.
y

r

Let Xo(y) be the solution of equation (5.1) with the initial condition Xo(y,) = 0

and X°(y) be the solution of equation (5.1) with the initial condition X°(y;) = 0.
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These initial positions are at different sides of the bifurcation point yy as indicated
in Figure 2 in the determinstic case.

We observe from Lemma 5.1 and Lemma 5.2 that both Xq(y) for yg < y < y,

and XO(y) for y; < y < yg stay O(e3/?). Then from Lemma 5.3, the behavior

of the solution Xo(y) beyond the bifurcation point yy depends upon the distance

Xo — X% at y = yg; indeed, the jumping point Y; can be determined by

1 -1 Y | Xo(Y;) — X°(Y;)] -1 Y
5.8 — e Jui Reda(n)dr o J I« Mae= Juir Reda(m)dr
58 M; = [Xolym) = X°(ym)| =
We define the jumping point Y; as the first time at which the trajectory reaches
the boundary of N, such that for yir >y > Y;, | Xo(Y;) — X°(Y;)| < Me+O0O(%/?)
and at y = ¥j, [ Xo(¥;) = XO(¥;)| = Me + O(e%/2), since X°(¥;) = O(c%/2) by

Lemma 5.2. Therefore, from equation (5.8), we can determine Y; by the equation

Y;
(5.9) / ReAy(r)dr = ¢ 1n | Xo(yz) — X(ya)] + O(e| Ine]) -
YH
Since ReAi(7) > 0 for y; < 7 < ym, the point Y; is uniquely determined.
When |Xo(yu) — X°(yu)| = O(™),n € N, the delay will not be significant,

Y; —ya = O(e|lngl). Only if

ol

| Xo(yzr) = X (ym)| = O(e™ %),

then Y; — yg = O(1). In fact, with the help of Proposition 5.3, it can be shown
that all solutions of equation (5.1) with initial conditions |X(y.)| = O(e) (i.e.,
X (yr) € Ng) jump near the point Y; at Y; + O(e).

Let us study the distance A = Xo(yg) — X°(yg) which is random under the
random influence W (y). The distance A and the solutions Xy, X° are shown in

Figure 5.
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Consider v(y) to be a differentiable sample path of W (y). The solutions of
equation (5.1) under ¥(y) can be solved for in the following way. Let X (y,s,¢)

denote the solutions of (5.1) with such a sample path, such that
(5.10) eXy = M ()X + Gi(X, X,y) +*0H(y)Y (y),

with initial conditions X (y, s,€)|y=s = 0,41 < s < y;.

If we let n = %X(y,s,s), then

0 _ 0G,
(5.11a) ea—yn(y, 8,€) = —A(y)n+ ax
(511b) 77(2/: S7€)|y:s = _6Uﬂ(3)71(8)'

The solution for equation (5.11) can be expressed as

G,

(5.12) N(ya,s,€) = —eoH(s)y (s)e ™ 27 a(=53dr.

Then we derive that

Yr
A= X(ym,yr,e) — X(YH,Y1,€) = / n(ym,s,€)ds =
Y

1

Yr
= / —EO'I’:’(S)’)/I(S)e_Tl SIH (M (T)f%)d'rds
Y

1

1

Yr
(5.13) = sa/ —H(s)e_T1 fsyH()‘l(T)*%%)de'y(s).
y
Thus under noise W (y), the distance A can be expressed as

yr -1 ry 1
A= —50/ H(s)e= J: H(’\l(T)_%iX)deW(s) .
Y

From the estimate of G given in equation (3.11) and the fact that X (y, s,e) =

O(/?), we observe that for y; <y < y,,

26y

(5.14) 5

= ea(y,e) + G3(X, 5,¢) = ea(ym, e) + O(e%/?).
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Here we use equation (5.2) to derive the second equality.
Thus, we compute

(5.15)

Yr -1 ryg _ o
A=—co / H(s)e™ J27 () —salyme)d (1 4 O(/2))dW () = Ay + O(0=*2).
Y

1

The first part A; is Gaussian. We calculate the mean and variance of A

yr S =1 ryg _
(5‘16) E(Al) = EU/ —H(s)eT SYHE (A (7) Ea(yH,E))d-rE(dW(s)) -0

Y

from the properties of the Brownian motion. Thus E(A) = O(ce®/?). For any
partition on P on [a,b], say P = {a = 59 < 81 < 83 < --- < 8, = b}, we have the

general formula that

b b
E [ / £(s)dW¥ (s) / £(s)dW (s)

(5.17) = H}Li‘r‘gOE[Ei,jf(Si)(W(Si) — W(si-1))f(s;)(W(s;) — W(s;-1))]-
Since E[(W(s;) — W (si—1))(W(s;) —W(s;j_1))] = 0 for i # j due to independence
and E[(W(S,) — W(Szfl))(W(Sz) — W(Sifl))] = |8,’ — Si,1| , we have

(5.18)

b e b
E(/ f(s)dW(s)/ f(8)dW(s)) = lim Ei|f(s,~)|2E(W(si)—W(si_1))2:/ |f(s)[*ds.

[IPl[—0

The last equality (5.18) is known as Ito’s lemma [20], derived from the properties

of Brownian motion as stated in hypotheses (1), (2) in Section 4.
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Thus, applying (5.18) to our situation, we get

E(AA) =

e202E (/yr [;T(S)e%l J¥E (A (T)—sa(yH,s))deW(S)/yT [A{(S)e%l SYH (A (T)—sa(yH,s))d‘rdW(s))
Yi Yi

=<'’ /yr |IA{(S)€_71 i (’\I(T)*EG(yH,E))dTFds
Yi
(5.19)

Yy

From the assumption of transversal eigenvalue crossing at the Hopf bifurcation,

stated in (H6) in Section 2, we observe that near s = yg,
Re); (s) —ea(ym,e) = —as(s —yu) + O(s —yu)? — calym,€),

for some a3z > 0 and

= [ @Ren(r) ~ 220(ym, ) dr = £ (~22a(yn, ) (5-yn) ~as(s -y +O(s—y)*).

s

Thus the distance function E(A;A;) in equation(5.19) can be bounded using the

integral

u )
/ e (=vm) s = O(y/E).
Yi

More specifically, from a direct calculation [49], we can estimate the magnitude of

the integral term in (5.19), as € — 0T, by

V20T [V (2Re (7) 2 d
|H(s)|2e [ (2Redi(r)—2ealym.e))dr g

Cl\/gﬁ/

Yt

(5.20) — /yT |I“{(s)|2e§(725a(yH,5)(sfyH)faz(sfyH)2+O((sfyH)3))ds < Oy /e
Y
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Therefore,
(5.21) C1e%%0% < E(AA) = E(A1Ay) + O(%0?) < Coed/?62.
Further, using (5.15), (5.16), and (5.21), we bound the variance of A by
C4e%%0% < B(|A — EA]?) = E(AA) — |E(A)]? < C3e®/?0°.

The rest of Theorem 4.1 follows from the properties of A. The time duration T} is
obtained as the time of passage inside Ns from y = y, down to y = Yj, under the
flow of the slow equation (4.1c). This yields equation (4.2).

When o = O(e™), the first standard deviation of the distribution of the random

variable A lies in a strip of width e”*3/4. In this case, the amount of delay will
be O(e|lne|), with a probability O(e™ %) to have a significant O(1) size delay.
When o = O(e’%), the delay will be significant almost surely. For the values in
between, there will be nontrivial distributions of different amount of delays which
are responsible for different patterns.
Remark 5.1: The treatment here is quite general and the analysis and result are
valid both for delayed simple eigenvalue bifurcations as well as for delayed Hopf
bifurcations, since the imaginary part of the eigenvalue A;(y) is not contributing
here.

The situation with the periodic branch is simpler due to the fact the periodic
solutions of FS are orbitally stable. By using the Fenichel coordinates [14], equation

(4.1) inside Np can be reduced to a perturbation to equation (3.16),

(5.22a) dr = —(r — 1)dt + 2hs(y, e)dW (y),
(5.22b) di = c(y)dt + £2hy(y, €)dW (y),
(5.22¢) y' =ego(y) > 0.

We can show easily that the solution (R,0,Y)(¢) of the stochastic equation

equation (5.22) and the solution (r,8,y)(t) of equation (3.16), with the same initial
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condition at t = t¢, satisfy the relations

(5.23) E(R,0,Y) = (r,0,y),
and
(5.24) E|(R,0,Y) — (r,0,y)> = O(e).

Thus the solutions (R,0,Y) will remain within Np and only exit when y =
yr +O(g|lnegl), the same as for (r,8,y). Therefore the time duration T5 is obtained
as the passage time from y = Y; to y = y, inside Np, using the slow motion for
the averaged form of system (5.22). But by construction, this is equivalent to the
passage time computed from the averaged form of system (4.1), which yields (4.3).
Finally, the passages from Ng to Np and from Np to Ng are to leading order

identical to the determinstic case.

Corollary. Any solution (v,w,y) of equation (4.1) with its initial position in Np

or Ng is an elliptic bursting solution as described in Theorem 4.1.

Proof. If (v(0),w(0),y(0)) € Np, then the corresponding solution (v(t),w(t),y(t))
of (4.1) enters Ng. Thus, without loss of generality, let the complex solution X (y)
correspond to (v, w,y), a solution of (4.1) with (v(0),w(0),y(0)) € Ng. The point

where the solution X (y) will exit Ng is determined by the distance function
(5.25) Ay = X(ynr) — X°(ym) = X(yu) — Xolym) + A.

Now, by Proposition 5.3 and in particular equation (5.7), there exists a constant

M > 0 such that
X (yrr) — Xo(ym)| < M|X () — Xo(ys)|e= o BN T < pre(e9),
we derive

(5.26) Ay =A+0(e?).



ELLIPTIC BURSTERS 29

The jumping point Y; for any solution will the same one as in Theorem 4.1, up to

a O(g|lnegl) error.

Remark 5.2: One additional consequence of the results in Sections 4 and 5 is that
when an elliptic burst trajectory finishes one loop and restarts from y,., the next
loop will be independent from the previous one, but with its passage time through

Ng determined by the same distribution.
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Figure 1. Bifurcation diagram for the fast subsystem (FS) of equation (2.1).
This particular example was generated numerically from the Wu-Baer model for

dendritic spine activity, as discussed in [23] (with parameters given in Figure

3.1 of [23]).



ELLIPTIC BURSTERS 33

= -
N NN N N -
! N ! N 7/ ~,
0.8 i J . N N AN i
, b IN N N N N
| P [N P " \( N
\ | \ P N
| | \ ! I\ \
Vo \ o |
| | | \ \
0.6F \ \ \ 4
. \ | (- [ Iy
! \ [ \
| | | b ) | o \
| | by by [ N B |
| | v [ L o | (
0-47 | ) | , 1y ! | ) | | |
\Y ) | ’ [ | // i)/ I |
i ! Iy N h / |
I
! / / { Y / \
! [ ! / ‘
0.2+ | | A | B
: S V4 //\\" / {\ yH 0 /‘ YT !
LN LLIETTEID o by ‘
\t\]),\ww)w(i B R TN IS S R TS M T
J
ok ) \\ | J\\,(\, : i
N I~
Ay
\\ N | \\ (BN (‘
N\ N\
\\ \\ \\ ! \ [
\ ! N | N i
-0.2¢ W > N Ny R

0.023 0.024 0.025 0.026 0.027 0.028 0.029 0.03 0.031 0.032
y

Figure 2a. Deterministic elliptic bursting in the Wu-Baer model with parameters

from [23] but € = .003. Note that the y-nullsurface does not intersect S in this

model.
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Figure 2b. The invariant region Sy .
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Figure 8. Deterministic elliptic bursting in a model for neuronal dynamics from

[39], with parameters given in [40] except u = 0.015, which affects the location

where the y-nullsurface intersects S. In this model, this intersection occurs below

yH, such that y' > 0 occurs during escape from S near y = y;.
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Figure 4a. Short duration noisy delay when o = O(e™). The solid curve shows a
trajectory that jumps up extremely close to yg with noise 6 = & = .0005 in the Wu-
Baer model, while the dotted curve shows a deterministic trajectory for the same
parameter values. The dashed curves are the bifurcation curves for (FS); note that

this figure is zoomed in, in the neighborhood of yg, relative to Figures 1 and 2.
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Figure 4b. Long duration noisy delay when o = O(e¢~%). The solid curve shows
a trajectory that has a long duration noisy delay beyond yg with noise § = 5 x 1073
and € = .0005 in the Wu-Baer model, while the dotted curve shows a deterministic
trajectory for the same parameter values for comparison. The dashed curves are the
bifurcation curves for (FS); The equations were solved with Euler’s method with a
time step of dt = .02; the values of (v,y) were plotted once every 3000 time steps

for this figure.
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Figure 4c. A mixture of long and short delays and burstings. The curve, a
trajectory in v versus t, has a mizture of long and short times in Ng for the Wu-
Baer model with ¢ = .0005, noise 6 = .00075. The equations were solved with
Euler’s method with a time step of dt = .05; the values of (v,y) were plotted once

every § time steps for this figure.
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Figure 5: The distance function A = Xo(yg) — X°(yx). These trajectories were
computed numerically from the Wu-Baer model with 6 = ¢ = .0005. The equations
were solved with Euler’s method with a time step of dt = .02; the values of (v,y)

were plotted once every 3000 time steps for this figure.



