
Peierls-Nabarro landscape for martensitic phase transitions

Lev Truskinovsky 1 and Anna Vainchtein 2

Abstract

We propose a simple one-dimensional model which can be used to reconstruct
the Peierls-Nabarro energy landscape and compute the limits of lattice trapping
for martensitic phase transitions. The model represents a nontrivial analog of the
discrete Frenkel-Kontorova model. We find the explicit expression for the critical
driving force which sets phase boundaries in motion and delimits the width of the
rate-independent hysteresis. The theory is applied to β-martensitic phase transition
in Cu-Al-Ni alloy.

Rate-independent hysteresis is commonly observed in materials undergoing martensitic
phase transitions, e.g. Ag-Cd [1], In-Tl [2], Cu-Al-Ni [3, 4] and Ni-Ti [5, 6]. When
subjected to a quasistatic tensile loading, these materials deform elastically until the load
reaches a critical value. At the critical load one or several phase boundaries nucleate and
propagate through the specimen. Upon unloading the reverse transformation takes place
at a lower critical load. Quantitative prediction of the width of the resulting quasistatic
hysteresis and the associated kinetics of the moving interfaces represents an important
challenge for the theory [7, 8].

While it is well understood that the rate-independent hysteresis in martensites reflects
the presence of multiple metastable configurations, the physical origin of the critical load
has been a subject of rather different theories emphasizing: disorder [9], elastic incom-
patibility [10], surface energy [11] and material discreteness [12]. The dissipation in these
materials is typically attributed to an unavoidable development of fast internal instabil-
ities (Barkhausen jumps) associated with the overall ruggedness of the energy landscape
[13, 14, 15]. The martensitic phase boundaries represent highly mobile planar defects of
a crystal lattice, and the physical situation is reminiscent of the one in metal plastic-
ity where the analogous carriers of inelastic deformation are linear defects (dislocations).
The complex interaction of both kinds of defects with a crystal lattice leads to an intense
radiative damping and results in dry-friction type kinetics [16, 17]. Both martensitic
phase transformations and plastic flow take place at nearly constant yield load, and in
both cases nucleation is typically associated with a small load drop [18, 6]. The driving
forces responsible for the release of the transformation-generating defects are known as
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Peach-Koehler force in plasticity [19] and Eshelby force in the theory of martensitic phase
transitions [20].

In this paper we follow the pattern of plasticity theory and relate the rate-independent
hysteresis in martensites to the presence of the ”trapping” domain in the kinetic relations
for phase boundaries. In the case of dislocations it has been long realized that there is
a clear difference between the ultimate strength of the material in shear and the corre-
sponding Peierls force [21, 19] which is sufficient to release a trapped dislocation and set
a plastic deformation in motion. The dislocation is then viewed as a moving point in a
Peierls-Nabarro (PN) periodic potential with the valleys representing potential equilib-
rium locations of the stationary defects. The applied force tilts this landscape until at
Peierls force the barriers between the valleys completely disappear. The most detailed
computation of the Peierls force for dislocations has been obtained in the framework of
the highly idealized discrete Frenkel-Kontorova (FK) model [22].

The goal of the present paper is to develop for martensitic phase boundaries a prototyp-
ical one-dimensional model amenable to a detailed analysis and allowing one to reconstruct
the fine structure of the PN landscape. The simplest physical model of this type can be
represented as a chain of bistable springs [12, 23, 24]; to mimic the three-dimensional
nature of the real problem one can add a linear interaction between the next-to-nearest
neighbors [25, 26, 27]. The model will then preserve the main features of the FK model:
the nonlinearity of the potential for the individual elements and the harmonic coupling.

To be specific, consider an infinite chain of particles linked by bistable nearest-neighbor
(NN) springs and harmonic next-to-nearest-neighbor (NNN) springs. Let uk be the dis-
placement of the kth particle with respect to the unstressed homogeneous reference con-
figuration with spacing ε and wk = (uk − uk−1)/ε be the strain in the kth NN spring.
Then the total energy of the chain can be written in the form

Ψ = ε
∞

∑

k=−∞

[φ(wk) − Fwk +
γ

2
(wk+1 + wk)

2]. (1)

Here the first term represents the energy of the NN interactions, the second term is the
potential of the applied force F , and the third term is the energy of the linear NNN
interactions 3.

To model a two-phase material we assume that the NN potential φ(w) has two wells;
to obtain analytical results we further choose it to be bi-parabolic with a piecewise linear
derivative

φ′(w) = K(w − aθ(w − wc)), (2)

Here θ(x) is a unit step function 4. The NN springs are in phase I if the strain w is below

3This model is different from the FK model because of the plus sign in the last term in (1).
4θ(x) = 1 for x ≥ 0 and θ(x) = 0 for x < 0.
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the critical value wc and in phase II otherwise. The other parameters of the potential φ(w)
are the transformation strain a and the elastic modulus K > 0 which we take for simplicity
to be the same in both phases. The elastic modulus γ of the NNN springs is assumed to
be negative, as suggested, for example, by molecular models with Lennard-Jones potential
[27].

The system of equilibrium equations for the model (1), (2) reads

wk +
η

4
(wk+1 + 2wk + wk−1) =

F

K
+ aθ(w − wc), (3)

where η = 4γ/K. The trivial solution of these equations is a uniform deformation in
one of the phases; for example, the chain is in phase I when F ≤ K(1 + η)wc. In what
follows we assume that the uniform solution is stable, which in our case (K > 0, γ < 0)
translates into the requirement that −1 < η < 0 [27]. To find a non-trivial solution of (3)
with a single phase boundary, we assume that the location of the interface coincides with
particle i:

wk ≥ wc, k ≤ i (phase II), wk ≤ wc, k > i (phase I) (4)

The system of nonlinear equilibrium equations (3) can then be rewritten as a system of
linear equations with a given right hand side:

Aklwl = F/K + aθ(i − k). (5)

Here Akl is the tridiagonal symmetric matrix which can be easily reconstructed from
the left hand side of (3). In addition to the admissibility conditions (4), solutions of
(5) must satisfy the boundary conditions at infinity: w−∞ = (F/K + a)/(1 + η) and
w+∞ = F/(K(1 + η)).

The exact solution of the linear problem (5) can be obtained by the standard methods,
e.g. Z-transform [28]. We obtain

wk(i) =
F + Ka

K(1 + η)
− a

1 + η

{

1 −√
1 + η

2
eλ(k−i) +θ(k− i−1)

(

1− cosh((k − i − 1/2)λ)

cosh(λ/2)

)}

,

(6)
where λ = 2 ln((1 +

√
1 + η)/

√

|η|). Using (6), it is easy to show that the constraints (4)
are satisfied if and only if the applied force lies in the interval FM − FP ≤ F ≤ FM + FP

where FM = K(1+η)wc−Ka/2 is the Maxwell force defined by the equal area construction
from the graph of the uniform response F = K((1 + η)w − aθ(w − wc)) and

FP =
Ka

2

√

1 + η. (7)

is the Peierls force, whose analog was originally introduced in the theory of dislocations
[21, 19]. At F = FM + FP , the strain in the (i + 1)th NN spring reaches the critical value
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wc and the single interface solution ceases to exist. At F = FM − FP , the critical strain
is reached in the ith spring. Inside the interval of existence FM − FP < F < FM + FP ,
which we identify with the region of lattice trapping, the solution (6) is (meta)stable due
to the positive definiteness of the matrix Akl in (5) guaranteed under our assumptions on
elastic moduli.

To reconstruct the PN energy landscape, we need to find the optimal (minimal barrier)
connections between the metastable single-interface equilibria. Suppose for determinacy
that FM < F < FM + FP and consider the two adjacent equilibrium configurations wk(i)
and wk(i+1), where the integer argument i marks the location of the phase boundary. In
the first of these configurations the (i + 1)th spring is still in phase I, while in the second
this spring has already switched to phase II. In order to move from the first to the second
configuration, the system has to follow a non-equilibrium path along which the (i + 1)th
spring changes its phase. Therefore it is natural to choose wi+1 as the order parameter
and minimize the energy with respect to all other strains wi with k ≤ i and k ≥ i+2. The
necessary conditions for this constrained equilibrium coincide with (5) taken at k 6= i+1.
The solution of the corresponding equations at k ≤ i, satisfying the boundary condition
at −∞, can be written in the parametric form

w−

k (ν) =
F + Ka

K(1 + η)
− a(1 −√

1 + η)eλ(k−ν)

2(1 + η)
. (8)

Here the parameter ν is defined by the condition w−

i+1(ν) = wi+1, with i = [ν] (the integer
part of ν). In the interval (i, i + 1) the function w−

i+1(ν) monotonically increases with ν
from w−

i+1(i) = wi+1(i) to w−

i+1(i+1) = wi+1(i+1). Since wi+1 oscillates as the function of
i while ν varies monotonically, it is convenient to choose ν as a new order parameter. To
complete the construction of the constrained equilibria we need to find w+

k (ν) satisfying
equilibrium equations for k ≥ i + 2, the boundary condition at +∞ and the continuity
condition w+

i+1(ν) = w−

i+1(ν). We obtain

w+
k (ν) =

F

K(1 + η)
+

a

1 + η
eλ([ν]+1−k)

(

1 − 1 −√
1 + η

2
eλ([ν]+1−ν)

)

. (9)

The combination of w−

k (ν) taken at k ≤ [ν] + 1 and w+
k (ν) at k ≥ [ν] + 1 constitutes the

desired non-equilibrium solution wk(ν). Notice that by construction, the integer values of
ν correspond to the metastable configurations wk(i).

The desired PN potential is now given by the energy along the non-equilibrium path
(8), (9). Since the energy (1) is infinite, one can consider the difference between the energy
Ψ(ν) associated with the non-equilibrium path and the energy of one of the metastable
equilibria. We define W (ν) = Ψ(ν)−Ψ(0) and by substituting (8) and (9) into (1), obtain

W (ν) =
Kaε

1 + η

(

a(1 − e−λ(ν−[ν]))2(1 +
√

1 + η)2

8
√

1 + η
− (F − FM)[ν]

K
− ∆(ν)θ(∆(ν))

)

, (10)
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Figure 1: Energy landscape W (ν)/(Kε) at F/K = 0.15, η = −1/2, wc = a = 1.

where ∆(ν) = a(1 − (1 +
√

1 + η)e−λ(ν−[ν]))/2 + (F − FM)/K. A typical energy W (ν)
is shown in Figure 1. As expected, the PN landscape exhibits local minima at integer
values of ν corresponding to successive metastable locations of the phase boundary. In
order to switch from one metastable configuration (say, at ν = i) to the neighboring one
(at ν = i + 1), the system needs to climb an energy barrier. In the present piecewise
linear setting the maxima of the PN potential (saddle points of the original energy) are
represented by the sharp peaks 5. For each i, the peak is located at νi ∈ (i, i + 1), which
is defined by the condition w±

i+1(νi) = wc. The energy barrier associated with a peak does
not depend on i and is given by the following explicit formula

∆W = W (νi) − W (i) =
ε(FM + FP − F )2

2K(1 + η)3/2
, (11)

The barrier is maximal at Maxwell force F = FM and vanishes at the upper boundary
of the trapping region F = FM + FP . One can show that if the energy φ(w) contains a
non-degenerate spinodal region, the sharp peaks are replaced by smooth maxima [24].

Another parameter, which plays an important role in the formulation of the kinetic rela-
tions for phase boundaries [29], is the driving force f represented in the three-dimensional
continuum setting by the jump of the normal component of the Eshelby tensor [30]. In
our framework f = (W (i)−W (i+1))/ε = a(F −FM )/(1+η), which is again independent
of i. One can see that parameter f measures the degree of tilting of the PN landscape by
the external force F . In particular, the driving force equals zero at F = FM (horizontal
PN landscape) and reaches its maximum at F = FM + FP , when the barriers disappear.

5Observe that as a result of non-smoothness of our model, the ith and (i + 1)th particles are not in
equilibrium at the saddle points; instead, they are subjected to forces of equal magnitude R = Ka/2 −
(F − FM )/(η + 1) and opposite directions. For an analogous result for the FK model, see R. Hobart, J.
Appl. Phys. 36 (1965)
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The critical driving force is given by

fP =
aFP

1 + η
. (12)

In the limiting case when the NNN interactions are absent the PN landscape was
computed in [24], where it was shown that at η = 0 the minimal barrier path is also
associated with a single spring changing phase, while all other springs remain fixed in
their equilibrium positions. However, in the NN chain the location of the spring which
changes phase is arbitrary. When NNN interactions are taken into account, the degeneracy
is removed and the transforming spring is located in front of the phase boundary; in this
case not only the strain in the (i + 1)th spring has to increase and cross the critical value
but the surrounding springs must also deform while remaining in their respective phases.
The existence of the boundary layer in the NNN chain makes the propagation of the
existing phase boundary easier than the nucleation of a new one. As a result, the Peierls
force FP in the NNN model is smaller than the spinodal force FS = Ka/2, while in the
NN case FP = FS [24].

To verify the theory we estimate the strength of NNN interactions from experimental
data on kinetics of martensitic phase boundaries and then compare it with an independent
estimate based on a simple molecular model of the same solid phase. The formula (7) for
the Peierls force implies that

η =

(

1 +
2(FP − FS)

E∆

)2

− 1, (13)

where E = K(1 + η) and ∆ = a/(η + 1) are the macroscopic elastic modulus and trans-
formation strain, respectively; observe that Ka = E∆. Recall that the spinodal force
FS measures the half-width of maximal hysteresis. In the bilinear model it is given by
FS = E∆/2, and if parameters FP , E and ∆ are known from experiment, one can de-
termine parameter η from (13). Note, however, that the assumption about the bilinear
character of the force-strain curve for a single spring largely overestimates the maximal
hysteresis width [3]. While a more appropriate estimate could in principle be obtained
from the model with the cubic force-strain relation, the corresponding discrete model
does not lend itself to a simple analytical study. To obtain an improved estimate of η we
assume that in the realistic case when FP is close to FS the linearized version of (13),

η ≈ 4(FP − FS)

E∆
, (14)

remains true for the cubic model with the same E∆. For the cubic interpolation of (2)
the spinodal force reduces to FS = E∆/(6

√
3). The Peierls force FP can then be found
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from the formula (12) relating it to the critical driving force fP , which, in turn, can be
obtained from the data on kinetics of martensitic phase boundaries.

To estimate η we use the critical driving force fP = 25.26 MPa reported in [17] for
a moving interface between cubic and monoclinic β ′

1-phases in a single-crystal Cu-Al-Ni
alloy. The other relevant parameters, also provided in [17], are ∆ = 0.16868 and E = 10
GPa. Substituting these values into (12), (14), we obtain η = −0.0299, which corresponds
to γ = −77.13 MPa, and K = 10.3 GPa.

To check this result, we can alternatively estimate η by assuming that both NN and
NNN interactions are governed by the Lennard-Jones potential

U(r) =
Kε

72

[(

ε

r

)12

− 2

(

ε

r

)6]

, (15)

where parameters are selected so that elastic modulus in the potential well located at
r = ε equals K. By linearizing (15) around the unstretched homogeneous state with the
spacings r = ε and r = 2ε, we obtain [27] η = 4U ′′(2ε)/U ′′(ε). This yields η = −0.0177,
which, despite a rather rigid form of the potential (15), is of the same order as the above
estimate. With macroscopic elastic modulus E = 10 GPa, we obtain γ = −45.1 MPa,
K = 10.18 GPa.

We conclude that in spite of its simplicity, the proposed model provides realistic formu-
lae relating macroscopic hysteresis to the microscopic parameters describing interatomic
interactions. The natural dynamic extension of this work requires the analysis of the
full-scale inertial problem

mεẅk = φ′(wk+1) − 2φ′(wk) + φ′(wk−1) + γ(wk+2 − 2wk + wk−2). (16)

The ruggedness of the PN landscape is then expected to give rise to the stick-slip motion at
small averaged velocities and nonzero radiative drag at subsonic and near sonic velocities.
The corresponding dynamic studies are currently under way.

This research was supported by NSF grants DMS-0102841 (L.T.) and DMS-0137634
(A.V.).
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