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Abstract

We prove the convergence of a finite element method for the Navier-
Stokes equations in which the no-slip condition, u-7; =0on I fori=1,2
is imposed by a penalty method and the no-penetration condition, u'n =0
on I'; is imposed by Lagrange multipliers. This approach has been studied

for the Stokes problem in [2]. In most flows the Reynolds number is not
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negligable so the u- Vu inertial effects are important. Thus the extension
beyond the Stokes problem to the Navier-Stokes equations is critical. We
show existence and uniqueness of the approximate solution and optimal
order of convergence can be achieved if the computational mesh follows
the real boundary. Our results for the (nonlinear) Navier-Stokes equations

improve known results for this approach for the Stokes problem.
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1 Introduction

The problem of predicting the equilibrium flow of a viscous incompressible fluid
is one of solving approximately the stationary, incompressible Navier-Stokes

equations:

—2Re 'V . (D(u))+u-Vu+Vp = f in Q,
u = 0 on I'=99, (1.1)
V-u = 0 in Q,
in a bounded polyhedral domain Q C R? d=2,3, where D is the deformation

tensor given by

1 /0u; Ou;
Dij)== (= +Z2) for 1<ij<d
i(w) 2 ((’“)xj Bwi) or =4I =

The boundary I' is assumed to be the union of k flat parts I';:

I'=UT;.
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The boundary condition u = 0 is decomposed of two separate conditions:

“no — penetration” : u-n=0 on T,
“no — slip” : u-7;,=0 on I,
where n be the unit normal vector on I' and 7;, i = 1,...,d — 1, a system of

orthonormal tangential vectors.

There are physical and computational reasons why these two boundary con-
ditions should sometimes be separated and imposed using different techniques
see, e.g. the discussions in [2]. For example, the Lagrange multiplier imple-
mentation of the no-penetration condition allows slight, but locally balancing
in and out flow capturing some aspects of surface roughness. For the no-slip
condition, the penalty formulation (as we shall see) is equivalent to the Navier
slip law. Thus, it is natural to use it for problems in which large tangential
stress might occur. The numerical analysis of techniques for imposing essential
boundary conditions weakly was begun in [3], see also [4], [5, 6], [7], [2] and
the references therein. In many flows inertial effects are important and thus the
extension beyond the Stokes problem, of [7,10] to the Navier-Stokes equations
is important. The purpose of this report is to begin this extension. Our anal-
ysis both extends the work of [2] and [7] from the (linear) Stokes problem to
nonlinear Navier-Stokes problem and improves the basic results of [2] even in

the linear case.
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2 The Continuous Problem

For our mathematical formulation we introduce the following spaces:

X =[H' ), X, =[H}Q)],
V={veX| (V-v,q)a=0, VgeLiQ)}
VQZ{V€X0| <V'V,Q>Q:07 quLg(Q)}u

Y =L§(Q) ={qe L*(Q) | (g1)o=0},
k
Z=[[H"*),
j=1

where k is the number of edges in 2d or faces in 3d of the boundary T'. {.,.)q
is the usual L? inner product, H*(Q) the usual W*2(Q) Sobolev space with
norm |.||x.q, and the space H=*(Q) is the dual of H¥(f2), the space of functions
in H%(Q) that vanish on I. The spaces H*~/2(T") consist of the traces of all
functions in H*(£2). Analogously, we denote by H~(*~/2(T") the dual space of
H®=1/2(T") with (.,.)r being the duality pairing.

A norm ||.||r of a function ¢ € H?:l HY2(T;) is defined by

. 1/2
lelle = { D lelijar,
j=1
with the dual norm ||.[[} =: [|.||z. In addition, we set ||.|[r, = [|.||g1/2(r,) and

15, = Il z=1r2ry)-

The most common formulation of the Navier-Stokes equations in (Xy,Y) is
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given by (see e.g. [8], [9]) : Find (u,p) € (Xo,Y) such that:

aO(uaV) + al(u; u, V) + ag(v,p) = <fa V>Qa Vv € X07

a2(u= Q) = Ou Vq S Y7

where
ap(u,v) = 2Re ! QD(u):D(v)d;z:,
a(wvow) = [ (@ v)wis
bwyv,w) = glai(uv, w) —ai(ww,v)),
az(u,p) = —/Qp(V~u)dz.
Lemma 2.1 For u € Vj and v,w € Xy, b(u;v,w) = (u- Vv,w)q. Since
a1(u;v,w) = —a1(u; w, v) then b(u;v,v) = 0.

Proof It follows from integral by parts.

If we impose the boundary conditions weakly we must seek a formulation with
velocities in X rather than X. Using Green’s formula, the definition of defor-
mation and stress tensor we arrive at the following weak formulation of (1.1) in
(X,Y):

Find (u,p) € (X,Y) such that:

k
aO(u7 V) + b(u7 u, V) + CLQ(V,p) - Z<nj ' C\\y(u7p)av>rj = <f7 V>Qv Vv € Xa

j=1
az(u,q) =0, Vg €Y. (2.1)

Here, the tensor (.,.) is defined by

1
Sir(u,p) = —pdix + 2Re "Dy, (u) + §uiuk,for 1<,k <d,
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and forallve X, qgeY.

Remark: $(.,.) is a modification of the stress tensor where the pressure p
is replaced by the Bernoulli pressure pd;; + %uiuk

Split the fourth term of the left hand side of equation (2.1) to its normal

and tangential parts to obtain Lagrange multipliers:

P|Fj = _n‘j'%(uap)'nja
Mlp, = -0y S(up) -7,
Aolr, = —m;-S(u,p)- 7Y,

Thus, p, A1, A2 are the individual components of the normal stress on I'; and

1 < j <k, where k is the number of boundary pieces of I'. Then we get

/’D dm—i—1/(u-Vu)Vdm—l/(u-VV)udm
2 Jo 2 Jo

k k
—/p(V-V)dw+Z/ p(V~nj)ds+Z/ A (veT)ds
@ j=1 L j=1 Iy
+Z/ Ao (vory dS*/f-de, (2.2)
Q

—/q(V-u)dsz7
Q

Define ¢(.;.,.,.,.) on X XY X Z X Z X Z as:
k 2 k
C(u§p7 P, )\17 )‘2) = <pav . u>Q - Z<puu . nj>l—‘j - ZZ<)\ u- T(J)>F]'

j=1 i=1 j=1

The corresponding weak formulation of (2.1) is

a(u; u, V) _C(V;p> p7>\17/\2) = (fa V>Qa

C(u7 q, 07X17X2) = 07
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forallve X,q€Y,0,x1,Xx2 € Z, where a(u;u,v) = ag(u;v) + b(u;u,v).

Define the space K by

K={ueX| clupp i, )=0 VpeY, Vp A, e Z}.

Lemma 2.2 The multi-linear form c(+;-, -, -, ) is continuous on X x Y x Z x Z.
Proof Define |||.||| as:
1/2
falll == [[IVall® + [fa-ng [+ fla- 77+ a7 F]

which is equal to ||.||; on X, and apply Cauchy-Schwartz inequality

toc(.:.,.,.,.) we obtain:

C(u;pa P, )‘17 A2)

k 2k
< ol -l + > llollzlu-nyle, + 2> Izl -,

=1 i=1 j=1
. 1z 1/2
< lpllIvall+ { D lollZ > aemylfZ,
j=1 j=1
) . 1z 1/2
+> DIl D M- TR,
i=1 \j=1 j=1

2
= plIVull + ol zlu-nglle + > Il zllw - 7ill
=1

= ((l2ll, 1Pl z; Al 2, 1Azl 2), (IVall, [la- nglle, o 7ifle, [la- 72fl0))

IN

IVall? + u-nglIE+ Y a7l
=1

9 1/2
IpI? +lloll% + > ||/\i||QZ]

=1

9 1/2
IpI? +lloll% + > ||/\i||QZ] [Tl

=1

9 1/2
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Lemma 2.3 The space K is a closed subspace of the Hilbert space X.

Proof This follows provided ¢(.; ., .,.) is continuous on X XY x Z x Z x Z which

was proven in Lemma 2.2

Lemma 2.4 For u € K, Korn’s inequality
[Vu|| < Cx ()| D(w)]]
and the Poincaré inequality
] < Cp(Q)[|Vull
hold.

Proof If u € K then ¢(v,q,p, A\1,A2) =0 for all ¢ € Y, p, \1, A2 € Z. If we pick
p=0,q =0, then u satisfies Z?Zl Z?ZlO\i,u -Ti)r, = 0 for Ay, A\ € Z. This
means that u-7; = 0in HY/2(T;) forall j = 1,...,k, and thus u-7; = 0 a.e on
I';. Similarly, u-n = 0 a.e on each I';. These imply for all 1 < j < k so that
u =0 a.e on I'; with meas(T';) is strictly positive. By Korn’s inequalities see

[10], [11], [9] or [12] there exist C'x > 0 such that
[Vull < Ck (2)(y(u) + [D(u)])

for all u € X. In particular, for all u € K, where y(u) is a seminorm on L?()
which is a norm on the constants. Since measure of I'; are strictly positive,
define y(u) = [Jul|r, then, we get y(u) = 0 if u is constant on Q. The result

thus follows. By the same argument, for the same y(u) we get:

Jul < Cp(Q)IV(u)]
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for all u € K.

Corollary 2.1 The bilinear form ag(-,-) is coercive on K:
alullf < ao(u,u)
with a = Re~! min{C*(Q), C*(Q)Cp2 ()}

Proof This follows from the Korn and Poincaré inequalities on X.

Also note that the problem associated with problem (2.3) has the following

form in K. Find u € K such that:
a(u;u,v) =(f,v)g, Vvek. (2.4)

Remark: The problem (2.3) is different than the standard weak formulation
of the Navier Stokes equations. Thus, we need to guarantee that the weak

formulation is correct.

Lemma 2.5 (Existence) There exists a solution to the formulation (2.4) in

K.

Proof By the abstract theory developed in [8], the formulation (2.4) has a
solution in I provided:

1) The form a(u;u, v) is coercive in K but since b(u;u,u) = 0 it is sufficient
to show that ag(u,v) is coercive. This was done in the Corollary 1.1.

2) The space K is separable and u — a(u;u,v) is weakly continuous.The
space IC is separable since it is a closed subset of the Hilbert space X. Next, we

prove that u — a(u;u, v) is weakly continuous in K. Let u be a function in K
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and let u,, be a sequence in K so that u,, — u weakly as m — oco. It is known

by Rellich’s theorem that H'(£2) can be embedded compactly in L?(£2). Then

d

u,, converges strongly to u € L?(Q)% as m — oo. Let v be in a dense subset L

of K, L={w e D(Q) CV :c(v,q,p, A\, ) =0, for all A1, 2, p € Z}.

1
b(um; Um, V) = <um . vum; V>Q - §<um : VV, um>Q-

1
2
Since u,, € K so is in V. Thus, we have

<um . Vum,v>g = —(um . VV, um>Q.

Hence we can actually write b(.; .,.) as:

d
b(Wm; Wy, V) = — (U, - VV U)o = — Z / Ui U Vi jdT.
Q

5,5=1

v;; € L™(R) since v is infinitely many times differentiable. This implies that

lim upmium; = wu; € Ll(Q).

m—00

Thus,
d
lim b(wm;um,v) = — Z /uiuj"idda7
m—o0 ij=1"9
= —b(u;v,u).

Sinceue K cCV,
—b(u;v,u) = (u; Vu, v)q.

The form ag(.,.) is continuous and u,, — u in L?(Q) implies that

lim ag(um,v) = ap(u,v)

m—00
So we get

lim a(wm,;um,v) =a(u;u,v)
m—00
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for all v € L. By density of L in K and continuity of the forms ag(.,.) and
b(.;.,.) the result follows. O
In order to prove uniqueness we follow the approach of [8]. We define the

finite constant as

No= sup VW)
u,v,wek |u|1|v|1|w|1

Lemma 2.6 (Uniqueness) Suppose that the form ag(.,.) is coercive and the

form b(.;.,.) is locally Lipschitz continuous in K. Then, under the condition
! f
SNIf[* <1 where [f* = sup {£.v)e

¢ vek [Vl

problem (2.4) has a unique solution u € K.

Proof Suppose there are two solutions u; and uy to the problem (2.4) then
ap(uy, v) + b(ug;ug,v) = (£,v)g,Vve kK

and

agp(ug, v) + b(ug;ug,v) = (£, v)q, Vvek.

Adding, subtracting the term b(uy;uz,v) and setting v = u; — us we obtain:
ao(u1 —Ug,u; — ug) +b(u1; u; —ug,u; — ug) +b(u1 —Uug;Uu2,Uu1 — ug) =0. (27)

The second term in (2.7) vanishes by the skew-symmetric property of the form

b(.;.,.). Thus
ao(u1 — U2, Uy —ug) S |b(u1 — Ug; U2, Uy —u2)|. (28)
Coercivity of the form ag(.,.) and the definition of N imply that

Oé|111 — 112|§ S N|LI2|1|111 — 112|%.
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Since the form is coercive and continuous in K by Lax-Milgram lemma we have

1,

lug|y < —[f".

a

Substituting (2.8) in (2.7) we obtain:
N
alur — uoff < Ll i

This implies that:
2
(o = — [f[)lw — w7 <0.

Thus, u; = uy if (1 — Z[f|*) > 0. O

We have shown that the problem (2.4) has a unique solution in K.

Theorem 2.1 Assume that the multilinear form c(.;.,.,.) satisfies the inf-sup

condition. There is a constant 3 > 0 such that:

C(V§Q7U7X17X2) ﬁ

z 2 2 2 2\1/2 2 (2.9)
xixageZveX |||v||[ (plls + xallZ + Ix2lZ + lloli%)

Then, for each solution u of problem (2.4), there exist a unique p € Y, p, A1, A2 €

Z such that (u,p, p, A1, A2) is a solution of problem (2.3).
Proof It follows from [13]. For error analysis we need the following lemma.

Lemma 2.7 There is a constant 8” > 0 such that:

A ) )
. Ejzl (<X17V : T§J)>F]‘ + <X2a A\ T§7)>Fj + <07V : nj>Fj) ”

inf  sup 5 2 S 172 > B
oxx2€lvev (vl UixellZ + [IxellZ + MlellZ)

Proof See [2].
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3 Penalty-Lagrange Multiplier Method

It has been observed by [14] that slip with friction boundary conditions match
the experimental behavoir of real fluids at higher Reynolds number better than
no-slip condition. Consequently, we propose to impose u- 7' |p =0fori=1,2
using a penalty technique that is equivalent to such a condition. We choose
small, positive penalty parameters €1, €2 whose selection will be guided by the
following analysis. We consider the following problem:

Findu. € V and pe € Z such that:

k

ap(ue,v) +b(ugue, v) +et Z( U,V - ng)h“j
Jj=1

k k
+€212 U, V- T Z pe;v-nj)r, = (f,v), VveV, (3.1)

k

Z<U, U - l’lj>rj =0, Vo € Z.

Jj=1

Suppose that instead of considering penalty methods to weaken the condition

u-T .= 0, we consider slip with non-linear resistance to slip, i.e.:

l(_]) |FJ
—2Re™ 'V -D(u,) +u, - Vu, + Vp, = f in Q, (3.2)
V-u.=0in Q,

k
Z/ uc-n;ds=0onI =0Q,
j=1"Ts

(4)

1 )
u. -7 +en; - (D(ue) — §|u5|u€) 79— 0on ry,i=1,2,1<j<k.

K2

Lemma 3.1 The variational formulation of equation (3.2) is the same as equa-

tion (3.1).
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Proof We multiply equation in (3.2) by v € X,{ € Y, p € Z, respectively, and

integrate by parts yield:
2Re  (D(u.) : D(v))a + 1/2(u, - Vu,, v)g — 1/2(u. - Vv,u o+

2k
+(D(ue) -nj,v)r;, — (pe, V- v)q ZZe;1<uE-TEJ),V-TEJ)>pj+
i=1 j=1

k
+Z<p€,v n;)r; = (f,v)q, Vv e X.

J=
k
Z o, U - =0, Yo € Z.
Jj=1
((,V-u)q=0,VCeY.
]
The lemma implies that the penalty method captures the idea of slip with non-
linear resistance to slip.To simplify the notation we define:
Al e = e tu, - ng),
—1 ().

€ R
XS lrr =€ ue- T35,

where A, A5 € Z. Then equation (3.1) takes the following form:

k
ao(uevv)+b(ue§uevv)+z< Lv: T§J)> st
j=1
k k
—I—Z 5,V - 1'2 Zpé,v n;)r, = (f,v), VveV,
j=1 i=1
k
> (o,uc-my)r, =0, VoeZ, (3.3)
j=1
k k
Z:<uE ng),xﬁ —61Z<)\§,X1>FJ~7 Vxi € Z,

Jj=1 Jj=1
k k
> (u- 5 xa)r, = e > (8 x2)r,, Yxe € Z.

Jj=1 Jj=1
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Proposition 3.1 Let (u, A1, A2, p) be the solution of the Navier-Stokes equa-

tions (2.1) and let (ue, A§, AS, pe) be the solution to (3.2) Then:

e, A2, 0) + [lu—uclie < ClegAf + Sl A 2], (3.4)

where

ec(A, Az, p) = [[Ar = ATIZ + A2 = AslIZ + llp = pell 2]

and C depends on Re,a, ", and |f]*.
Proof Subtracting equation (3.3) from equation (2.3) yields:

ao(u uEa )+b(u uéauév )+b( u€7V)+

2k k
ZZ()\i—)\f,v ‘r pJ+Zp pe;V-mj)r, =0, VveV, (3.5)

i=1 j=1 j=1
k
Z(U,(u—u) nj)r, =0, VoeZ
j=1
k ) k
S —u) TP i, = —a > (ALxir,. Y€ Z
Jj=1 Jj=1

for i = 1,2. From Lemma 2.7 given A1, Ao, p € Z we have:

ﬁlleé()‘la )\27 p)

< swp ap(u —u,v) +b(u—ueu,v)+b(u;u—u,v)

0£AvVEV vl
< 2Re_1|u — u€|1|v|1 + M|u — u5|1|u5|1|v|1 + M|u — u€|1|v|1|u|1
B vl

< |lu—uli(2Re™ +2Ma 1 |f])

<2(Re™ + a)llu - u.|, (3.6)
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where
My wvewl
o#uv,wev [ul1[v]i|wly

In equation (3.5) we take v = u — u.. Then,

ap(u—u,,u—u.)+bu—ugu,u—u)

k

k
—ea Yy (AL Zp pe, (0 — 1) - nj)p, = 0. (3.7)

j=1

Thus,

Mw

2
ap(u—ue,u—u) =blu—u;u—u,u, +Zel
i=1

— A9,

<.
Il
—

Add and subtract the terms Ele € ZI?_ {(Ais Ai = Af)r,, and dropping the pos-

j=1

itive term 37, € Zf 1A = A5, i = AS)r; we get:

Mpr

ap(u —ue,u—u,) <b(u—u;u—u,u, +Zel
i=1

i» Ai — Af)r;-

<.
Il
—

Applying Cauchy-Schwarz inequality and definition of M we get:

2 k
a(u—u,u—u) < b(u—ug;ue,u—ue)—FZEiZO‘ A
=1 j=1

IN

Mo E[*lu = uclf + e A = X[ 2] Al
By the arithmetic geometric mean inequality for n = 2, we have

ap(u — ue,u —u,)

9 /2 , 4 1/2
< Ma Y[ lu—ulf + (ZIM—&II%) (Zﬁl&ll%) -
i=1

i=1
Using the coercivity of ag(.,.) and inequality (3.6) we get

1/2
< 2(Re”! + o) =, A2
o=l < | G —sraaiey | (2 NIE)

i=1
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Thus

2(Re™! + )

ee()\lu/\27p)+||u_ue||l S 6”

[u—uc1 + [lu—ucl.

Combining the latter inequalities we obtain:

9 1/2
ec(A, A2, 0) +lu—ucfy <C <Z€?IIMII%> : (3.8)

=1

4 Finite Element Spaces

The polyhedral domain €2 is subdivided into d-simplices with sides of length less
than h with 7" being the family of partitions. We will assume that 7" satisfies

the usual regularity assumptions, see e.g. [15] that:

1. Each vertex of Q is a vertex of a T € T",
2. Each T € T" has at least one vertex in the interior of €,

3. Any two d-simplices 7,7’ € T" may meet in a vertex, a whole edge, or a

whole face,
The constants ¢y, ¢; denote different constants which are independent of h.

1. Each T € T" contains a ball with radius coh and is contained in a ball

with radius ¢ h.

Denote by (9;7 the partition of I'; which is induced by 7".

Let X" c X, YrCY, Z" Cc Z. Also let

Xp={u"ex"| u"=0 on T}.
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The spaces X" and Y are assumed to satisfy the following properties:

I. There is a constant B > 0 independent of h for which:

hdivu” dx
inf sup fQ P

=0l " >4 4.1
ozpheyh gugnexpy [PMloellulLe = “1)

II1.

phig)f/h lp — p"llo.o < chlplia, VYpe HY(Q),

III. There exists a continuous linear operator II" : HY(Q)¢ — X" for
which:
" (Hg ()Y) € X{,
[u—T"ullsq < ch'™*|lullio, Yue H(Q) withs=01andt=1,2,

Ju— "o < Chl/?”“”l,sz,

where ||.|lor = (Z?Zl [[-lo,r,)*/?. Assumption I balances the influence of the
constraint diva = 0 and also implies that the space:
Vi={v"eXl| (I V-v')=0 V¢ eY"},
Vi={vteXx"| (S V-v')=0, V¢ eY"} D>V,

is also not empty. As usual V" is not a subset of V and in particular, the

functions of V" are not divergence free. Hence we introduce anti-symmetric

form b(.; ., .,.),
b h.<,h h
Nz osup  AWVLW) (1.2)
0#uh ,vh wheXxh |u |1|V |1|W |1
and
f7Vh (9]
€5 = sup V2
whevn VR[S
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With the above notation, the discrete analogue of problem (2.3) is:
Find u" € X" ph e Yh ph M NE € Z7 such that:
a(uh;uhuvh) - C(Vh; phuphv)‘}llv)‘g) = (f, Vh>9 (4.3)
c(u”; ¢", 0", X x5) =0
for all v € X" ¢ € YR ol xh xh € ZN.
By assumption I this is equivalent to the following problem in V":
Find u" € X", ph e YP, ph Mo NB € Z7 such that:

a(uh,uh,vh) = {f, Vh>Q (4.4)

By the abstract theory developed in [8] the discrete problem will have unique
solution provided:

aENMfE < 1 (4.5)
and, there is a constant B > 0, independent of h such that

h. h h \h \h
inf C(V D, p 7)\15A2)
pl A Abezh

sup
F h 2
shovn TS R [IIA’fHQZ +IMNZ + 12M1Z + 1P" 0.0

—z > (. (4.6)

Now we need to find right spaces X", Y, Z" so that they hold (4.6). An example
of spaces X" Y", Z" satisfying (4.6) and the classical inf-sup condition are given

in [7].

Lemma 4.1 There exists a constant 3 > 0 independent of A, such that:

S (0 e, + v ), + (v ) )

inf sup — — i/ > 3.
h h
N Ay IVl TIAE + A5 + o 2]

(4.7)
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Lemma 4.2 There is a constant B > 0 , independent of h such that:

(V" ", ", AY, AB)

o nf o sup = 2 5 > B. (4.8)
A NBEZR oty xh 2
e P vkl [”)‘}fHQZ + A% + 12M1Z + 1P" 0.0

Proof The last two lemmas are proven in [2].

5 The Discrete Penalty-Lagrange Multiplier Method

We can now write the discrete analogue of the equation (3.1) as

Find ul € X" satisfying:

2 k
ap(ul, v") + b(ul;ul, vh) + Zefl Z(ug . 7'1(-]), Vi Tl(-J)>Fj-‘r
i=1 j=1
k
3l e, = (T Ve = (£,v), (5.1)
j=1
< V u >Q =0,
k
> (" ulny)r, =0,

j=1
for all vl € X" ¢h € Y o" € Z". This is equivalent to finding u € V" such

that:

[

k
ao(ul, v") +b(ulsul v+ ! Vet (52)

i=1 j:l

E

for all vh € VI o € Z".
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Since )\E’h for i = 1,2 are not necessarily in Z" equation (5.2) is not equiva-

lent to (5.3). In fact

Aot e Zh = xh 20 Ir,, i=12,1<j<k.

2 k
ag(ul, v") + b(ulsul V") + 3TN Vs
i=1 j=1

k
+ Z(p?,vh ‘nj)r, = (£,vh), Vvt eV
j=1
k
> (o" ulnj)r, =0, Voez" (5.3)
j=1
k k
STl r e =6 S Ay, Yl e 27
j=1 j=1

for © = 1,2. The latter problem will be equivalent if we make the following
assumption: There exists B>0

eh j e,h j
SOV T+ A VT, + (oh v ),

inf sup J 72 > 5
heZh gtvhexh h h
N g omvhex ||vh||1[||Ai 12+ IA™1% + o™ 13

(5.4)

We shall now study the error u — u in 1 — norm where (u, A1, A2, p, p) is the
solution of (2.3) and (u?, A\;“™, X\o®", p", p./') is the solution of the finite element
problem (5.3). We estimate the error in two cases. In the first case the computa-
tional boundary I'"* does not follow the fluid boundary T'. For example, suppose
the domain ) has smooth boundary and we use quadratic elements for our ap-
proximation. Then by approximating the fluid velocity u by penalized velocity

u, and u. by discrete penalized velocity u”. We will conclude that the error in
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1 — norm has order h convergence. This requires that the penalty parameter e
should be scaled by h. In the second case, I'* follows I' exactly. Our domain
is polygonal (in 2d) with the choice of quadratic elements we approximate u by
discrete velocity u” and u” by u”. This leads order h? convergence in the error
1 —norm. This implies scaling € by k2. Thus, it has improved the basic results
of [2] even in the linear case.

CASE I: In this case, the approximation u” satisfies (5.3). We need similar
equations for the continous u. in the velocity space. For the reason we multiply

by v € V to obtain (3.1), instead we multiply by v € V. It gives:

ao(ue,vh) +b(u —ug; uE,vh) + (pe — ", V- Vh>gr‘r

(VR

I
-

(u - ng),vh -Tl(-j)>r‘j +
=1 =1 J

(pe,vh -nj)r;, = (f, vh>, (5.5)

+
Pﬂm
-
-

Il
-

(0" ue - my)r, =0,
J

for all v € V" and o" € Z", since Z" C Z. Subtracting (5.2) from (5.5) yields:

ap(ue — u” vh) + b(u?;u€ - u?,vh) +b(u. — u?;ué,vh) — (pe — " V- Vh>Q+

€
—1
P

i=1 j

((ue—ul) -7 v e e 43 (o — pt v g, =0, (5.6)

k k
-1 j=1

for all v € V. We write:



WEAK IMPOSITION OF B.C. IN NAVIER-STOKES 23

Then equation (5.6) becomes:
ao(n =", v") + b(n = ¢"5ue, v*) + b(ugn = 6" V") = (pe = 4",V - v")a

2
+3 e D - 7Y +Z — otV ny)r, =0, (5.8)

i=1 j=1

for all vi € V', Equation (5.8) can be rewritten as:

2 k
ao(6", V") + b(h; e, vh) + b(ul; ¢t vh) + Zei_l th vl ,7-1(_])>Fj
i=1 j=1
= ao(1,v") + b(1; ue, v*) + b(ug; V") = (pe — 4", V - v*)q (5.9)

+

-

2 k
(pe = pl v ), 3> P v ey
i=1 j=1

Set v = ¢". Then:

Jj=1

2Re ™| D(@") |12 + b(¢"; ul, ¢) +Z St il =
=1
= ao(n, ¢") + b(ul;n, ¢") + b(n; ue, ") — (e — 4",V - ¢")q

k

2 k
+> e St T > (o= ol " ), (5.10)

i=1 j=1 j=1
But for each j, ¢" - an_Zh since Z" C Z. Thus we can replace p" in (5.10) with

any test function, say o € Z". Then we have

2
Re M D@1+ e Hll¢" - milla
=1
2 E_1
< 2Re” Ml [¢" [ + N w1 [¢" [1nh + N[l [¢" [1nl + ) B

i=1

6,0

+Z ||¢h Tillg.r + llpe — " [1210" |1 + llpe — " [[[¢" |1 (5.11)
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2 1
_ €;
Re™ D)2 + > S-ll¢" - 7l -
1=1
< Re”Hnft + N"¢"[1[nl1 (ja"|s + [al1) + [Ipe — ¢"[I* +
2 -1 h|2
€ |¢ |1
+; 5 T

By Korn’s inequality we have:

Ll
4

5.0+ llpe = o"11% + (5.12)

—1

Cill¢"[1} < Re™HID(¢")]” +Z o™ - T:ll3 r

=1
|03
4

|<z5h|2

1
)+ = ik

< Rl + (N0 + ) (Il + o -

2 6_1
+Z}2

where C7 depends on Re, a, and €

'|\3,r+ ||Pe—0h|\z+0 (5.13)

Since N|f|*a~2 < 1, we can choose h sufficiently small so that:

N fI*, a7t < a.
Using this we obtain:

"3
4

Cullg™ |1 < Re™*|nlt + (o + Jue]y)

2 671
+Z}2

—¢"|I?

|¢ ¢,

‘||(2>,r+ |\pe—0h|\o+0 (5.14)

Thus we get:

1
Col|¢"[IF < Cslmlf + o, lpe = ¢"[I* + llpe = o™ |I%) + Z r (5.15)

where Cs and Cs are depend on Re, €, a and u, but not on h.
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Adding and subtracting 7 in every norm of the left hand side of equation

(5.15) yields:

2
ln — 6"} < Culnl} +C5 > & M In - 7ill3 r + Collpe — o™ 1I% + llpe — a"1%).
=1

Applying the triangle inequality and taking infima we have:

lue —ug|ff <

2
<C inf  |u.—v"?+C 1 inf u. — v -2
< 40;£vh€Vh| e I1+ 5;@ o;évhe\/hH( . )-Tillor+
+ C inf — o2+ inf — ¢,
o, int ) loe=a"3 + inf o= ")

where, for €1, e small. Now we have to derive a bound for the error in the

Lagrange multiplier. From Lemma 4.1 we take A\ = \} =0 :

k
Zj:1 <ph7 Vh : nj>rj

inf sup =
otptez oeynexn VR[22
inf sup Z?Zlo\}f,vh 'ng)ﬁ“j 4 <)\g7vh . T;j)h“j + <ph,vh . nj)l“j .3
1/2 = P
Nt Iv* 1y [IAEI + IS + o713
1072
(5.16)

Equation (5.16) implies that:

BHPh—UhH < sup Z§:1<pg—0h,vh-nj>pj
€ 7 —

vhexh ||Vh||1

(5.17)
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From (5.6) we have:

k
Z(,)Q —oh v -nj)r, = —ag(ue — u? v") —bu, — ul;u., v -
j=1
- b( ?a Ue — u?vvh) + <p€ - qh7 V- Vh>Q+

—|—Ze;1

i=1 j

k k
((ue —uM) -TZ(-J),Vh ‘ TEJ)>FJ- + Z<Pe — ol V" ‘)T,
= Jj=1

1

<2Re”! |u€ - u?|1 ‘Vh‘l +2O“Vh‘1 |uE - u?|1 + pr _qhHo |Vh|1 +

2
+> 6 e —ul) - illorv" 1+ llpe — o™ 21V
=1

2
< (Clue —ufli + pe = ¢" | + Y e Hl(ue —ul) - 7
=1

or + e = a"[[2)lv"

(5.18)
where C' := 2(a + Re™1).
Thus dividing (5.18) by [v"|, , combining it with (5.17), applying the triangle

inequality and taking infima yields:

C 1
loe = pEll; < 5 e =]y + 5 inf lpe =" +

sy

b3 L e — o) milp + L it - ot
5 e =ty millop+ == nf lloe ="l
=1

(5.19)
Squaring both sides of (5.19) and bounding the mixed terms yields:
5C2 2 5 2
lpe = pl% < = [ue—ul|| + = inf |jpe—¢"|| +
5 g aevt
2 5e2 2 10 2
i By o 10 _ _h
+ ; = (ue =) - il -+ = A1t (loe = a"ll2)"

(5.20)
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Combining (5.20) with (??) yields the following theorem for the total error.

Theorem 5.1 Assume that the discrete spaces satisfy condition (4.7). Then

the error in the discrete solution of the penalty-Lagrange multiplier method is

as follows:
2 2 2
e bl <Gt o=l 2 o e =) il
1 h2 . hi12
+Cs (wgizh pe — o"[|Z + O;é;}}éYh [pe —q Ho) : (5.21)

Incorporating (3.6) into (5.21) yields the following corollary for the total error

for the penalty-Lagrange multiplier method:

Corollary 5.1 Assume that the discrete spaces satisfy condition (4.7). Then
the error in the discrete solution of the penalty-Lagrange multiplier method is

as follows:

& inf H(u_vh)'n”é,r

2
2 : 2
I -wll =€t ool + 30 ik,

vhevh

. . 2
+Cy (C,Jgfzh lp=o"Iz+ it [lp= qhH0>

2
C.
2 2 2
+Ch |u_ue|1,sz+Z? [(w—ue) Tillor+ (5.22)
i=1 "
2
2 2
Csllp = pellZ + Ip — pellg + Ca Y _ € INillf-
i1

Proof Squaring both sides of (3.4) yields the following:

2 2
2 € 2
=g+ SN =M E - o3 <Y INE. (5.23)
=1

=1

In (5.21) we replace the |.[[, p norm on the left hand side by .||, , add
(—u+u), (—=p+p), (—p+ p) in the appropriate terms of the right hand side

and add it to (5.22) to get the stated result.
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Remark: The error bound that includes the difference in the value of the
stress vector between the true and the discrete penalty-Lagrange multiplier so-

lutions is as follows:

2
Ju—u |2+ S In = A% + o= ol 1% <
=1

1
< — inf |u—vh|1+ g inf
min; €; thV €; vhth

ol b

. . 2
(Comines +Ga) (jnt, ="+ jnt - qhHo) +

2 . 2
Cilu—uf} + (Comine; +Co) (llo = pelly + Ip = pell§) +

2

C:
Z =l —ud) - 7illgp+Ca e Nl

i—1 i=1

To obtain a bound on [|p — p||, we use (1.12) with x; = X\j = X§, 0 = p— pe:

79
9 1/2
2
p (HP —pellz +llp=pellg + Y I1Xi = >\E|2Z>

i=1

(P =PV Vg — Y0 S v =26 v -7, = S5 o= pe,vom)r,

< sup
vex vl
_ b(u — u.:
< suwp ag(u —u,,v) +b(u —ue ue,v) <Clu-ul,,
vex vl
where C depends on Re and «. Thus:
C
2 2
[P — pelly < @ |u_ue|1,Q- (5.24)

To get a bound on |[(u — u.) 'Tng r weset x; = (u—u) ~T§j) in (2.8):

[(a=ue)-7illgp < € [[Aillor- (5.25)
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Add and subtract A; in the norm in the right hand side of (5.25) to yield:

I =0 Tillor < & (IAillo.r + 1A = Ao r)

< ei (IPille + 1 = Xl ) -

or
2

> - n||op<Zcz(||A||p+||A Xlor).  (5.26)

= € i=1

Now we must bound || \; — A;Hgyr. Take v=u—u, in (3.7):

2 k
ao(u—ue,u—ue)—b(u—ué;ué,u—ué)—Zelz = A5 AT,

i=1 =1

Add E?:l €; Zk (Ai = A5, Ai)r; to both sides:

j=1

2 2
Yoellh = Allgr < D alllly I3 = XSl +ao(u—ue, u—u)+b(u—us ue, u—u,).

i=1 i=1

Definition of N and the Cauchy-Schwarz inequality:

2 2
€ Ei €
Sl =Xl < 205 (Il o + 12 = X513
=1 =1
Thus overall:
2 C 2
2 2 2 €
> Pl mlgs < Y G (INE 1IN =A1%) . (5:27)
i=1 " i=1

Under the approximation assumption:

1/2
Jat vt (Lt o= a2t o= 12) <

< Ch* max {|If]|_, , [[ull,}, (5.28)

where k is the degree of the polynomial space we are using. If we let e = €1 = €5

then corollary 5.1 indicates that proper choice of € in (5.22) is € = h*/2.
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Theorem 5.2 Assume that the discrete spaces satisfy condition (4.7) and let
€ = h¥/2. Then the error in the solution of the penalty-Lagrange multiplier
method and the discrete solution of the penalty-Lagrange multiplier method is
as follows:

[lu— u?||1 < Ce.

CASE II: Let (u, A1, A2, p, p) be the solution of (2.3) and (u”, \o', A&, p", p")
be the finite element approximation of (2.3), that is (4.3) then substracting (4.3)

from (2.3) we get:

ao(u — ", V") + b(usu — u,v") £ b(u — u'su” V) — (p - " Vv

2 k k

3 N (=) w3 (o ot v ), =0, (5.29)

i=1 j=1 j=1

for all v € V", We write:

Since I =T error terms which come from approximating boundary vanish,

then equation (5.29) becomes:

a0(77 - ¢hvvh) + b(uﬂ? - ¢h, Vh) + b(n - ¢ha uhvvh) - <p - pha V- Vh>Q - 07
(5.31)

for all vl € V.
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Equation (5.31) can be rewritten as:
ao(¢",v") +b(u; ", v") + b(¢";u", v") = ag(n, v")
+b(w, v") + by u", V) + (p—p", V- v)g (5.32)

Setting v = ¢" in (5.32), applying Cauchy-Schwartz inequality and definition

of N". We obtain:
2Re™|D(¢")||* < 2Re™H [ DID(")I| + 2N"| 5,07 6" 1 |n]1+
N flha o [ + llp = p"[ll¢" 1 (5.33)
By Korn’s inequality we have:
2R~ [D(¢")]| < 2Re™[D()| + 20| D) + Al D" | + lIp — P
Thus we get:
CLD(¢") < Co| D)l + [lp = p"- (5.34)

where C; and Cs are depend on Re, a,and |f]*. Adding and substracting n from

the left hand side of (5.34) we get:
ID(u —u")[| < (1+C1/Co)l|D(u = v")|| +1/Chllp = p"-
Taking infima we get:

Du—-u)| <(1+0C,/C inf  ||D(u—v")||+1/C; inf —p".
[D(u—u")| <( 1/ z)o;évlgewl\ (u—=v")| /10¢;§€Yh||p Pl

(5.35)

Under the approximation assumption (5.30) we get ||u—u”(|; ~ h*. In order to

bound ||u — u”||; besides (5.35) we also need a bound on [[u® — u(|;. For the



WEAK IMPOSITION OF B.C. IN NAVIER-STOKES 32

reason we substract equation (5.3) from (4.3) then we set v = u” —u” and we
obtain:
k
ap(u” —u” u" —u") + p(u" — u;ul u — +Zelz )\f-’h>p].
=1 j=1
k
F3 00— ol —u) mye, =0 (5.36)
j=1
From Lemma 3.1 we have:
. . 2(Re™!
e MO AGh gy < 2 _F ) [u” — |, (5.37)

where
1/2
eh €,h eh
e OGNS P = I = XTI + X8 = A8 + 11" = ol 2]

Since I'" = T adding and substracting

2 k k
2612<A17)\1 —)\:’h>pj,and Z<pa (uh _ug) 'Ilj>1‘*].
‘ =

ag(u" —ug,u" —uf) +b(u" —ufsul, u" —uf) (5.38)
2k k
+>Ey A=A + Y (o=l (0" —ul) -my)r, = 0.
=1 =1 =1

By the same argument as in the proof of Proposition 2.1 we obtain:
h 1/2
[ —uglly < C1 [F MR+ elalE] (5.39)

where C; depends on Re, «, 3, and |fI*. Then combining (5.37) and (5.39).
We get:

[u" =l ~ e
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Thus from (5.35) and (5.38)
[u—ul|s ~nF +e (5.40)

where C depends on C; and || \||r for i = 1,2. Thus (5.40) indicates that the

proper choice of € in (5.40) is € = h*.

Theorem 5.3 Assume that the discrete spaces satisfy condition (4.7) and let
€ = h*. Then the error in the solution of the penalty-Lagrange multiplier method

and the discrete solution of the penalty-Lagrange multiplier method is as follows:
[u—ul||; < Ce.

Conclusion. Weak imposition of essential boundary conditions by penalty-
Lagrange multipliers method lessens the ill-effects of domains with non-smooth
boundaries. In this paper we have shown that the optimal order of convergence
can be achieved if the computational boundary follows the real flow bound-
ary exactly. We did not include numerical results because of the difficulty in
implementation of the Lagrange multipliers method. Traditionally, Lagrange
multipliers method is used as a model problem. However, we have done similar
analysis by using the penalty- penalty method and verified our results numeri-
cally in [20].
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