Linear Algebra Preliminary Exam January 15 2023

1. Let A be a 3×2 matrix and B a 2×3 matrix, and suppose that

$$AB = \left(\begin{array}{rrrr} 8 & 2 & -2\\ 2 & 5 & 4\\ -2 & 4 & 5 \end{array}\right).$$

Prove that

$$BA = \left(\begin{array}{cc} 9 & 0\\ 0 & 9 \end{array}\right).$$

(Hint: Show that $(AB)^2 = 9AB$.)

- 2. Let A, B be 3×3 complex matrices such that $A, B \neq 0$ but $A^2 = B^2 = 0$. Show that A, B are similar matrices.
- 3. Let X be a finite dimensional real vector space and $P_1, P_2 \in L(X, X)$ are both projections. Suppose that $P_1 P_2$ is also a projection, show that $R_{P_2} \subset R_{P_1}$. Here R_{P_1}, R_{P_2} are ranges of P_1, P_2 respectively.
- 4. Let A, B be a pair of linear operators on a finite dimensional complex vector space such that $A^2 = B^2 = I$. Prove that AB BA is invertible **if and only if** A, B have no common eigenvector.
- 5. Let A be an $n \times n$ complex invertible matrix such that $||A|| = ||A^{-1}|| = 1$ (where $||\cdot||$ denotes the operator norm). Show that A is unitary.
- 6. Let N be an $n \times n$ complex nilpotent matrix. Show that there exists a **UNIQUE** nilpotent matrix M such that

$$\left(I+M\right)^2 = I+N.$$