Preliminary Exam in Analysis, May 2022

Problem 1. Let $[0,1] \subset \mathbb{R}$ be the unit closed interval. For a continuous function $f : [0,1] \mapsto \mathbb{R}$ and $0 < \alpha < 1$ we define

$$[f]_{\alpha} := \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}},$$

and

$$||f||_{\alpha} := \sup_{x \in [0,1]} |f(x)| + [f]_{\alpha}.$$

We now define

- $X_{\alpha} := \{ f \in C^{0}([0,1]); \ \|f\|_{\alpha} < +\infty \}; \quad \forall f, g \in X_{\alpha} \quad d_{\alpha}(f,g) := \|f g\|_{\alpha}.$
- (a) Prove that the metric space (X_{α}, d_{α}) is complete. You do not need to prove that d_{α} is a metric.
- (b) Let f_k be a bounded sequence in (X_{α}, d_{α}) . Prove that there exists a subsequence of f_k which is uniformly converging. Prove moreover that the limit belongs to X_{α} .
- (c) Let $f_0(x) = \sqrt{x}$. Prove that $f_0 \in X_\alpha$ if and only if $0 < \alpha \le 1/2$.

Problem 2. Let (X, d) be a metric space and let $K \subset X$ be a compact set. Let for all $x \in X$:

$$d(x,K) := \inf_{z \in K} d(x,z)$$

Prove that

$$\forall x, y \in X \quad |d(x, K) - d(y, K)| \le d(x, y).$$

Problem 3. Let S be the unit sphere in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a C^3 function which vanishes on S. Assume that for a constant c > 0

$$f(x) \ge c \operatorname{dist}^2(x, S)$$

where

$$\operatorname{dist}(x,S) := \inf_{y \in S} |x - y|.$$

Prove that for all $x_0 \in S$, $v \in \mathbb{R}^3$, we have

$$v \cdot D^2 f(x_0) v \ge 2c |v \cdot x_0|^2,$$

where $D^2 f = \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]$ is the Hessian matrix of the 2nd derivatives.

Problem 4. (1) Let \vec{F} be a smooth vector field in \mathbb{R}^n . Let $B^n(x_0, r)$ denote the ball centered at $x_0 \in \mathbb{R}^n$ with radius r > 0, let $S^{n-1}(x_0, r)$ denote the sphere centered at x_0 of radius r, an let \vec{n} be the outer unit normal in $S^{n-1}(x_0, r)$. Let $|B^n(x_0, r)|$ denote the n-dimensional volume of the ball $B^n(x_0, r)$. Prove that we have

$$(\operatorname{div} \vec{F})(x_0) = \lim_{r \to 0} \frac{1}{|B^n(x_0, r)|} \int_{S^{n-1}(x_0, r)} \langle \vec{F}(y), \vec{n}(y) \rangle \, d\sigma(y).$$

(2) Given fixed unit vector $\nu \in \mathbb{R}^3$, let $D(x_0, r)$ be the 2-dimensional disk centered at x_0 with radius r and perpendicular to ν . Let \vec{t} be the unit tangent vector to $\partial D(x_0, r)$. Prove that we have

$$\langle (\operatorname{curl} \vec{F})(x_0), \nu \rangle = \lim_{r \to 0} \frac{1}{\pi r^2} \int_{\partial D(x_0, r)} \langle \vec{F}(y), \vec{t}(y) \rangle \, ds(y).$$

Problem 5. Let $f: [a, b] \mapsto \mathbb{R}$ be a Riemann integrable function. Define the coefficients

$$a_n(f) = \int_a^b f(x)\sin(nx)\,dx.$$

Show that

$$\lim_{n \to \infty} a_n(f) = 0$$

HINT: First prove it for the characteristic function of an interval $[\alpha, \beta] \subset [a, b]$. Then prove it for a (finite) linear combination of characteristic functions of intervals (these are called simple functions). Since f is Riemmann integrable, given $\epsilon > 0$ use a lower sum to show that f can be approximated by a simple function

$$g = \sum_{finite} c_i \chi_{I_i} \le f$$

for certain numbers c_i and intervals I_i in the following sense

$$0 \le \int_a^b (f-g) \, dx < \epsilon.$$

Deduce the statements for f from the statements for g.

Problem 6. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function such that f(0) = 0. Let $G: \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 mapping such that G(0) = 0 and DG(0) is invertible. Prove that there exists an open neighborhood U of the origin in \mathbb{R}^n and a continuous mapping $H: U \to \mathbb{R}^n$ such that

$$f(x) = \langle G(x), H(x) \rangle = \sum_{i=1}^{n} G^{i}(x) H^{i}(x)$$

for every $x \in U$.

HINT: Use the inverse function theorem to reduce the problem to showing that any function h which is C^1 and satisfies h(0) = 0 can be written in the form

$$h(y) = \langle y, K(y) \rangle,$$

for a continuous mapping K defined in a neighborhood of zero.