Preliminary Exam in Analysis, January 2023

Problem 1.

(1) Let \vec{F} be a smooth vector field in \mathbb{R}^n . Let $B^n(x_0, r)$ denote the ball centered at $x_0 \in \mathbb{R}^n$ with radius r > 0, let $S^{n-1}(x_0, r)$ denote the sphere centered at x_0 of radius r, an let \vec{n} be the outer unit normal in $S^{n-1}(x_0, r)$. Let $|B^n(x_0, r)|$ denote the *n*-dimensional volume of the ball $B^n(x_0, r)$. Use the Divergence Theorem to give a rigorous proof of the formula

$$(\operatorname{div} \vec{F})(x_0) = \lim_{r \to 0} \frac{1}{|B^n(x_0, r)|} \int_{S^{n-1}(x_0, r)} \langle \vec{F}(y), \vec{n}(y) \rangle \, d\sigma(y).$$

(2) Given fixed unit vector $\nu \in \mathbb{R}^3$, let $D(x_0, r)$ be the 2-dimensional disk centered at x_0 with radius r and perpendicular to ν . Let \vec{t} be the unit tangent vector to $\partial D(x_0, r)$. Use Stokes' Theorem in \mathbb{R}^3 to give a rigorous proof of the formula

$$\langle (\operatorname{curl} \vec{F})(x_0), \nu \rangle = \lim_{r \to 0} \frac{1}{\pi r^2} \int_{\partial D(x_0, r)} \langle \vec{F}(y), \vec{t}(y) \rangle \, ds(y).$$

Problem 2. Take for granted that the volume of \mathbb{B} , the unit ball in \mathbb{R}^n , is

$$\omega_n = \frac{\pi^{n/2}}{\Gamma(\frac{n}{2}+1)},$$

where Γ is Euler's gamma function. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping whose matrix with respect to the canoninal basis is $A = (a_{i,j})_{i,j=1}^n$. Compute the volume of the image of \mathbb{B} under the mapping A

```
\operatorname{vol}\left(A(\mathbb{B})\right)
```

and use your formula to find the volume of the ellipsoid E given by

$$\frac{x_1^2}{\lambda_1^2} + \frac{x_2^2}{\lambda_2^2} + \dots + \frac{x_n^2}{\lambda_n^2} = 1.$$

Here $x = (x_1, x_1, \ldots, x_n)$ is a point in \mathbb{R}^n and $\lambda_i \neq 0$ for $i = 1, \ldots, n$. Note that some of the λ_i could be negative.

Problem 3. For a fixed r > 0, find the supremum of the function

$$f(x, y, z) = \log x + 2\log y + 3\log z$$

on $D = \{(x, y, z) : x, y, z > 0 \text{ and } x^2 + y^2 + z^2 \le 6r^2\}$. Then prove that for a, b, c > 0

$$ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6$$

Hint: Lagrange multipliers.

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be Hölder continuous with Hölder exponent $\alpha \in (0, 1]$, that is,

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le C$$

for some constant C > 0. Suppose that $\lim_{x \to \infty} |x|^{\alpha} f(x)$ and $\lim_{x \to -\infty} |x|^{\alpha} f(x)$ both exist, this is to say that f behaves like $1/|x|^{\alpha}$ at infinity. Define the inversion of f to be

$$g(x) = \begin{cases} f(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Prove that

- (1) there exists some constant K > 0 such that $|g(x)| \le K |x|^{\alpha}$;
- (2) $g \in C^{\alpha/3}(\mathbb{R}).$

Problem 5. Denote the set

$$K := \{ f \in C^0([-1,1]) : f(-1) = 0, f(0) = -2f(1) = 1 \}$$

and the function $\mathcal{F}: K \to \mathbb{R} \cup \{+\infty\}$

$$\mathcal{F}(f) := \sup_{x \neq y \in [-1,1]} \frac{|f(x) - f(y)|}{|x - y|^{1/2}} + \sqrt{\sup_{x \in [0,1]} |f(x)|} \in [0,\infty]$$

Show that their exists a function $\overline{f} \in K$ such that

$$\mathcal{F}(\bar{f}) = \inf_{f \in K} \mathcal{F}(f).$$

To show this, proceed as follows (some of the following statements need only a one line argument, others need a longer proof)

(1) Show that

$$\inf_{f \in K} \mathcal{F}(f) < \infty.$$

(2) Show that there is a sequence $(f_k)_{k \in \mathbb{N}} \subset K$ such that

$$\mathcal{F}(f_k) \xrightarrow{k \to \infty} \inf_{f \in K} \mathcal{F}(f).$$

- (3) Show that there is a subsequence $(f_{k_i})_{i=0}^{\infty}$ that converges to some $\bar{f} \in K$ and this convergence is uniform in [-1, 1].
- (4) Show that

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{1/2}} \le \liminf_{i \to \infty} \sup_{x \neq y} \frac{|f_{k_i}(x) - f_{k_i}(y)|}{|x - y|^{1/2}}.$$

(5) Conclude that \overline{f} is the function we are looking for.

Problem 6. Let $A_{ij} : \mathbb{R}^n \to \mathbb{R}$ for $1 \leq i, j \leq N$ be a continuously differentiable $\mathbb{R}^{N \times N}$ matrix. Assume that at $x_0 \in \mathbb{R}^n$ the matrix $A(x_0) = (A_{ij}(x_0))_{i,j=1}^N$ has N distinct real eigenvalues, say

$$\mu_1 < \mu_2 < \ldots < \mu_N$$

That is we assume we have

$$\det(A(x_0) - \mu_i I) = 0, \quad i = 1, \dots, N,$$

where $I \in \mathbb{R}^{N \times N}$ denots the identity matrix.

Show that there exists a small open neighborhood $U \subset \mathbb{R}^n$ of x_0 and continuously differentiable maps $\lambda_i : U \to \mathbb{R}$, i = 1, ..., N, such that $\lambda_i(x_0) = \mu_i$ and for each $x \in U$ and each i = 1, ..., N we have that $\lambda_i(x)$ is an eigenvalue of A(x), that is

$$\det(A(x) - \lambda_i(x)I) = 0, \quad \forall i = 1, \dots, N, \quad x \in U.$$

Hint: Implicit Function Theorem.