Preliminary Exam in Analysis, August 2022

Problem 1. Let (X,d) be a complete metric space, and $f : X \to X$ be a function. For any $m \in \mathbb{N}$, let f^n denote the n-times iterated composition of the function f with itself. (It is defined recursively by $f^1 := f$, $f^n := f \circ f^{n-1}$ for $n \ge 2$.) Let

$$\lambda := \liminf_{n \to \infty} \sup_{x, y \in X, x \neq y} \frac{d(f^n(x), f^n(y))}{d(x, y)}$$

Prove that if $\lambda < 1$, then f admits a unique fixed point.

Problem 2. Let $f, g: X \mapsto \mathbb{R}$ be bounded uniformly continuous real functions defined on the metric space (X, d). Prove that the product $x \mapsto f(x)g(x)$ is also uniformly continuous. Show also that the conclusion is false when the boundedness hypothesis is omitted.

Problem 3. Let $\{f_n\}_{n \in \mathbb{N}} : \mathbb{R} \to \mathbb{R}$ be a sequence of continuous functions with

$$\sup_{n\in\mathbb{N}}\int_{\mathbb{R}}|f_n|<\infty$$

Let

$$g_n(x) := \int_{\mathbb{R}} \eta(x-z) f_n(z) \, dz$$

for some $\eta \in C^{\infty}(\mathbb{R})$ and $\eta \equiv 0$ in $\mathbb{R} \setminus [-1, 1]$.

- (1) Show that the sequence $\{g_n\}_{n\in\mathbb{N}}: \mathbb{R} \to \mathbb{R}$ is uniformly bounded.
- (2) Show that the sequence $\{g_n\}_{n\in\mathbb{N}}: \mathbb{R} \to \mathbb{R}$ is equicontinuous.
- (3) Show that the sequence $\{g_n\}_{n\in\mathbb{N}}$ has a subsequence $\{g_{n_i}\}_{i\in\mathbb{N}}$ which is uniformly convergent in any finite interval (a, b)

Problem 4. Let $\mathbb{R}^{2\times 2}$ be the four-dimensional vector space of all 2×2 real matrices and define $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ by $f(A) = A^2$.

(i) Show that f has a local inverse near the point

$$A_1 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right].$$

(ii) Show that f does not have a local inverse near the point

$$A_2 = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right].$$

Problem 5. Let $X = \mathbb{R}^{n \times n}$ be the set of $n \times n$ square matrices $M = [M_{ij}]_{i,j=1}^n$. We define the following metric on X:

$$\forall M = [M_{ij}], N = [N_{ij}] \in X \quad d(M, N) := \sum_{i=1}^{n} \sum_{j=1}^{n} |M_{ij} - N_{ij}|$$

Let

$$O(n) := \{ R \in X; \quad R^T R = \mathrm{Id} \}$$

be the set of orthogonal matrices, where R^T denotes the transpose of R. Let also $f: X \to \mathbb{R}$ be defined by

$$\forall M \in X \quad f(M) = \sum_{i=1}^{n} \sum_{j=1}^{n} (M_{ij})^3.$$

Prove that

- (a) f is a continuous function on (X, d).
- (b) There exists $R_{max} \in O(n)$ such that

$$\forall R \in O(n) \quad f(R) \le f(R_{max}).$$

Problem 6.

(1) Let $\Omega \subset \mathbb{R}^2$ be an open set and $f: \Omega \mapsto \mathbb{R}$ be a continuous function. Suppose that for $x_0 \in \Omega$ there exists a sequence of cubes $Q_{\delta_n}(x_0)$ centered at x_0 with side length δ_n such that $\delta_n \to 0$ as $n \to \infty$ and

$$\int_{Q_{\delta_n}(x_0)} f = 0$$
 for all n. Give a very detailed proof $(\epsilon - \delta \text{ style})$ that $f(x_0) = 0$.

(2) Use Fubini's therem and (a) above to prove that for $f \in C^2(\mathbb{R}^2)$, we always have symmetric second order partial derivatives

$$\frac{\partial^2 f}{\partial x \, \partial y} = \frac{\partial^2 f}{\partial y \, \partial x}.$$