1. (10 pts) The position of a body on $0 \leq t \leq 4$ can determined by the function:

$$s(t) = 8t^2 - t + 2$$

(a) (5 pts) Determine the average velocity on the interval $[2, 2 + h]$.

(b) (3 pts) Determine the average velocity on the interval $[2, 2.21]$.

(c) (2 pts) Determine the instantaneous velocity at time $t = 2$.

2. (15 pts) If $f(x) = e^{-x/2} \cos (x)$,

(a) (10 pts) Determine the linearization of the function at $x = 0$

(b) (5 pts) Use the linearization to approximate $f(0.2)$
3. (40 pts) Differentiate the following functions. You do not need to simplify your answer.

(a) \(f(x) = 3(6x + 5)^3(x^2 - 1)^4 \)

(b) \(y = \frac{3xe^{-x}}{5 + 9x^2} \)

(c) \(f(x) = \sin^3(4x) \)

(d) \(y = \ln\left(\sqrt{\frac{x^2 + 7x + 1}{12x - 7}} \right) \)
(e) $f(x) = \tan(4x) + \arctan(4x)$

(f) $y = \left(1 + 3e^{x/6}\right)^{1/x}$

(g) $f(x) = 5x\sqrt{25 - x^2}$

(h) $y = \int_4^{\pi} \cos^4(6u) \sin^4(8u) \, du$
4. (15 pts) Determine the limit (show all work)

(a) \(\lim_{x \to 0} \frac{\ln(e^x + 3 \sin x)}{x + \sin(\pi x)} \)

(b) \(\lim_{x \to \infty} \left(1 - \frac{1}{2x} \right)^x \)

(c) \(\lim_{x \to 1^-} \frac{\arccos(x)}{\sqrt{1 - x^2}} \)
5. (15 pts) A jogger runs along an elliptic track which has the path

\[80x^2 + 100y^2 = 10500\]

measured in meters. As he reaches the point (10, 5), the \(x \)-coordinate of his path is changing at a rate of 3 m/sec.

(a) (5 pts) At what rate is the \(y \) coordinate changing?

(b) (10 pts) A spectator stands at the point (22, 10). At what rate is the distance from runner to the spectator changing at this time?
6. (20 pts) For the function \(f(x) = \frac{x^3}{x - 2} \) answer the following:

(a) (5 pts) List the critical values of \(f(x) \).

(b) (5 pts) For each listed \(x \) above, state whether there is a local maximum, local minimum, inflection point, or vertical asymptote.

(c) (5 pts) \(\lim_{x \to -\infty} f(x) = \) \(\lim_{x \to \infty} f(x) = \)

(d) (5 pts) Graph the function. Show asymptote(s), intercepts and the exact points (\(x \) and \(y \) coordinates) where the function has any or all local maximum, local minimum values.
7. (15 pts) A cylindrical can is to have volume 62.5π cm3. If the cost to make the top and bottom lid is $1.00/\text{cm}^2$ and the cost to make the cylindrical side is $2.00/\text{cm}^2$, what are the dimensions of such a cylinder that would minimize cost?
Note: $v = \pi r^2 h$. Area of each lid is $a_L = \pi r^2$. Area of cylindrical side is $a_S = 2\pi rh$.
8. (10 pts) Use Newton’s Method once starting with $x_0 = 3$ to approximate the solution to $x = \sqrt{25 - x^2}$.

9. (10 pts) At the point (1, 0), determine the equation of the tangent line to the curve

$$(2x + 3y)^3 - 6x - 12y = 2.$$
10. (30 pts) Evaluate the following integrals.

(a) \[\int_{0}^{1} \left(\frac{4}{1 + x^2} + \sqrt{8 + x} \right) \, dx \]

(b) \[\int 3x^4 \ln(x) \, dx \]

(c) \[\int \frac{x + 1}{x^2 + 2x + 7} \, dx \]
(d) \[\int \frac{5}{(4x + 5)^3} \, dx \]

(e) \[\int \sin^2(x) \cos^3(x) \, dx \]

(f) \[\int 7x \sin(3x) \, dx \]
11. (10 pts) Below is the plot of \(f'(x) = \begin{cases} \sqrt{4-x^2} & 0 \leq x \leq 2 \\ -2 + 2|x-3| & 2 \leq x \leq 5 \end{cases} \)

Use geometry to evaluate the integrals below:

\[
\int_0^2 \sqrt{4-x^2} \, dx = \quad \int_2^5 (-2 + 2|x-3|) \, dx =
\]

12. (10 pts) Sketch the position function in the grid below starting with \(f(0) = 0 \). Show proper concavity of the curve. Give the exact values of the function in the spaces to the right.

\[
f(2) = \quad f(3) = \quad f(4) = \quad f(5) =
\]