1. (10 pts) The position of a body on $0 \le t \le 4$ can determined by the function:

$$s(t) = 8t^2 - t + 2$$

(a) (5 pts) Determine the average velocity on the interval [2, 2 + h].

- (b) (3 pts) Determine the average velocity on the interval [2, 2.21]
- (c) (2 pts) Determine the instantaneous velocity at time t = 2.
- 2. (15 pts) If $f(x) = e^{-x/2} \cos(x)$,
 - (a) (10 pts) Determine the linearization of the function at x = 0
 - (b) (5 pts) Use the linearization to approximate f(0.2)

3. (40 pts) Differentiate the following functions. You do not need to simplify your answer.

(a)
$$f(x) = 3(6x+5)^3(x^2-1)^4$$

(b)
$$y = \frac{3xe^{-x}}{5+9x^2}$$

(c)
$$f(x) = \sin^3(4x)$$

(d)
$$y = \ln\left(\sqrt{\frac{x^2 + 7x + 1}{12x - 7}}\right)$$

(e)
$$f(x) = \tan(4x) + \arctan(4x)$$

(f)
$$y = \left(1 + 3e^{x/6}\right)^{1/x}$$

(g)
$$f(x) = 5x\sqrt{25 - x^2}$$

(h)
$$y = \int_{4}^{\sqrt{x}} \cos^4(6u) \sin^4(8u) du$$

4. (15 pts) Determine the limit (show all work)

(a)
$$\lim_{x \to 0} \frac{\ln(e^x + 3\sin x)}{x + \sin(\pi x)}$$

(b)
$$\lim_{x \to \infty} \left(1 - \frac{1}{2x}\right)^x$$

(c)
$$\lim_{x \to 1^-} \frac{\arccos(x)}{\sqrt{1 - x^2}}$$

5. (15 pts) A jogger runs along an elliptic track which has the path

$$80x^2 + 100y^2 = 10500$$

measured in meters. As he reaches the point (10, 5), the *x*-coordinate of his path is changing at a rate of 3 m/sec.

(a) (5 pts) At what rate is the y coordinate changing?

(b) (10 pts) A spectator stands at the point (22, 10). At what rate is the distance from runner to the spectator changing at this time?

- 6. (20 pts) For the function $f(x) = \frac{x^3}{x-2}$ answer the following:
 - (a) (5 pts) List the critical values of f(x).

(b) (5 pts) For each listed x above, state whether there is a local maximum, local minimum, inflection point, or vertical asymptote.

(c) (5 pts)
$$\lim_{x \to -\infty} f(x) =$$
 $\lim_{x \to \infty} f(x) =$

(d) (5pts) Graph the function. Show asymptote(s), intercepts and the exact points (x and y coordinates) where the function has any or all local maximum, local minimum values.

7. (15 pts) A cylindrical can is to have volume 62.5π cm³. If the cost to make the top and bottom lid is $1.00/\text{cm}^2$ and the cost to make the cylindrical side is $2.00/\text{cm}^2$, what are the dimensions of such a cylinder that would minimize cost? Note: $v = \pi r^2 h$. Area of each lid is $aL = \pi r^2$. Area of cylindrical side is $aS = 2\pi rh$. 8. (10 pts) Use Newton's Method once starting with $x_0 = 3$ to approximate the solution to $x = \sqrt{25 - x^2}$

9. (10 pts) At the point (1,0), determine the equation of the tangent line to the curve

$$(2x+3y)^3 - 6x - 12y = 2.$$

10. (30 pts)Evaluate the following integrals.

(a)
$$\int_0^1 \left(\frac{4}{1+x^2} + \sqrt{8+x}\right) dx$$

(b)
$$\int 3x^4 \ln(x) dx$$

(c)
$$\int \frac{x+1}{x^2+2x+7} dx$$

(d)
$$\int \frac{5}{(4x+5)^3} dx$$

(e)
$$\int \sin^2(x) \cos^3(x) dx$$

(f)
$$\int 7x\sin(3x)\,dx$$

11. (10 pts) Below is the plot of $f'(x) = \begin{cases} \sqrt{4-x^2} & 0 \le x \le 2\\ -2+2|x-3| & 2 \le x \le 5 \end{cases}$ Use geometry to evaluate the integrals below:

12. (10 pts) Sketch the position function in the grid below starting with f(0) = 0. Show proper concavity of the curve. Give the exact values of the function in the spaces to the right.

