
THE WILLIAMS STEP INCREASES THE STABILITY AND

ACCURACY OF THE HORA TIME FILTER

AHMET GUZEL∗ AND CATALIN TRENCHEA†

Abstract. The explicit weakly-stable second-order accurate leapfrog scheme is widely used in the

numerical models of weather and climate, in conjunction with the Robert-Asselin (RA) and Robert-

Asselin-Williams (RAW) time filters. The RA and RAW filters successfully suppress the spurious

computational mode associated with the leapfrog method, but also weakly damp the physical mode

and degrade the numerical accuracy to first-order. The recent higher-order Robert-Asselin (hoRA)

time filter reduces the undesired numerical damping of the RA and RAW filters and increases the

accuracy to second up-to third-order. We prove that the combination of leapfrog-hoRA and Williams’

step increases the stability by 25%, improves the accuracy of the amplitude of the physical mode

up-to two significant digits, effectively suppresses the computational modes, and further diminishes

the numerical damping of the hoRA filter.

1. Introduction.

The leapfrog (LF) scheme applied to the initial value problem

u′(t) = f(u(t)), u(0) = u0 (1.1)

is given by

un+1 = un−1 + 2∆t f(un), (1.2)

where ∆t denotes the fixed timestep, and un is the numerical solution approximating

the exact solution u(tn) at time tn = n∆t. Also known as the midpoint rule or the

explicit Nyström method, the leapfrog scheme is an explicit, three level, second-order

accurate, weakly-stable, neutral time-stepping method. It is best suited for the time

integration of linear oscillatory systems and is widely used in weather and climate

computational models. The major weakness of the leapfrog scheme is the spurious

growth of the computational mode when applied to nonlinear equations [4, 15, 17],

the so-called “time splitting” instability [3, 14, 16]. There are various ways to damp
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computational mode of leapfrog scheme, see e.g. [4]. In the atmospheric sciences

is common to control the computational mode by non-intrusively post-process the

leapfrog scheme based legacy codes through a second-order time filter. This filter is

closely related to the centered second-derivative time filter

ũn = un + γ(un+1 − 2un − un−1),

where un denotes the solution at time n∆t prior to time filtering, ũn is the solution

after filtering and γ is a positive real constant which determines the strength of the

filter. The Robert-Asselin (RA) time filter, designed by Robert [12] and analyzed by

Asselin [2], filters once the middle value un obtained by (1.2) into un = un+ ν
2 (un+1−

2un + un−1). The combination LF-RA successfully suppresses the leapfrog scheme’s

computational mode, but also weakly damps the physical mode, reducing the second-

order accuracy of the unfiltered leapfrog scheme to first order. It is currently used

in the majority of the operational numerical weather prediction models, atmospheric

general circulation models for for climate simulation, ocean general circulation models,

models of the fluids in rotating annulus laboratory experiments (see e.g., [16] and

references therein).

Williams [1, 11, 16, 17] made a significant improvement to the RA filter, altering

both values un and un+1, obtained by (1.2) into un = un + να
2 (un+1 − 2un + un−1),

and un+1 = un+1 − ν(1−α)
2 (un+1 − 2un + un−1) respectively. Filtering one more

time compared to RA, the RAW-filtered leapfrog scheme almost conserves the three-

time-level mean of the predicted field, increases the accuracy of amplitude errors by

two orders, yielding third-order accuracy, and greatly reduces the magnitude of the

first-order truncation error.

Using a filter closely related to the third time-derivative, Li and Trenchea [14]

introduced a higher-order Robert-Asselin (hoRA) type time filter. hoRA filters once

the middle value un obtained by (1.2) into un = un+ β
2 (un+1−2un+un−1)− β

2 (un−

2un−1 + un−2). It is a linear post-process to the leapfrog scheme, which controls

the undamped computational modes, and increases the numerical accuracy of the

RA time filter to third-order when β = 0.4, yielding fourth order accuracy for the

amplitude and phase speed of the physical mode [13, 14, 15].

Herein we propose an extension of the hoRA time filter, by altering both values

un, un+1 obtained by (LF) with a hoRA step and a Williams-type step. This combi-

nation further increases the stability, reduces the magnitude of the truncation error,
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improves the accuracy of amplitude compared to the hoRA filtered leapfrog method,

and also conserves the three-time-level mean.

The proposed hoRAW filtered leapfrog scheme applied to (1.1) is:

wn+1 = un−1 + 2∆tf(vn)

un = vn +
αβ

2
(wn+1 − 2vn + un−1)− αβ

2
(vn − 2un−1 + un−2)

vn+1 = wn+1 +
β(α− 1)

2
(wn+1 − 2vn + un−1)− β(α− 1)

2
(vn − 2un−1 + un−2)

where the dimensionless parameters β ∈ [0, 1] and α ∈ [0, 1]. Here w, v, u denote the

unfiltered, once- and twice-filtered values respectively. The last two terms in each

step can be combined as wn+1 − 3vn + 3un−1 − un−2, which is a finite difference

approximation to the third time-derivative. The LF-hoRAW is generally second-

order accurate, and third-order when α = 2+2β
7β , yielding fourth-order accuracy for

the amplitude and phase speed of the physical mode (see e.g., [3]). Using a backward

error analysis approach, the modified equations, we shall prove that when α = 2−β
8−5β ,

the LF-hoRAW method achieves sixth order accuracy in amplitude. When α =
4−12β+5β2−2

√
4+12β−15β2+4β3

25β2−36β , the hoRAW time filter has a 20% increase in stability

compared hoRA, and the LF-hoRAW is 25% more stable than the AB3 method:

un+1 = un+ ∆t
12

(
23f(un)−16f(un−1)+5f(un−2)

)
. The storage factor for the leapfrog

scheme combined with hoRAW filter is 5. Compared with the intrusive AB3 method

(three function evaluations per time iteration), the hoRAW-filtered leapfrog scheme

is almost as accurate, stable and efficient, yet non-intrusive and easily implementable

in existing legacy codes.

We briefly illustrate the improvement that may be achieved by the proposed

hoRAW filter, when used in conjunction with the leapfrog scheme, by numerically

integrating the simple harmonic motion d
dt (x(t), y(t) = ω(−y(t), x(t)), with the initial

condition (1, 0) (see Figure 1.1). We compare the exact solution with the numerical

solutions of LF-RA (ν = 0.2), LF-RAW (ν = 0.2, α = 0.53), LF-hoRA (β = 0.1)

and LF-hoRAW (β = 0.1, α = 0.27).1 The amplitude errors are significantly smaller

with the hoRAW filter than with the RA, RAW and hoRA filters.2 The energy of

1The chosen values yield, in the limit of good time resolution, the same damping rates of compu-

tational modes. (The damping rate of the computational mode for both LF-RA and LF-RAW is 1−ν.

The damping rates of the most unstable computational mode of LF-hoRA is 1 − 2β. The damping

rate of the most unstable computational mode of LF-hoRAW is
2−3β−αβ+

√
4+4β(α−5)+(αβ+3β)2

4
.)

2We note that for these parameter values, LF-RA has second-order amplitude accuracy, LF-
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the oscillation x2 +y2, which is conserved by the continuous equations, decreases to 0

using the RA filter, decreases to 57% using the RAW filter, to 70% using hoRA, but

is 99% conserved using the hoRAW filter, on the time interval [0, 500].
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Fig. 1.1. The exact solution x(t) with ω = 1 rad s−1, and four numerical solutions using

∆t = 0.2 s, on the time interval [0, 100] (top), and [400, 500] (bottom).
(
Exact —, LF-RA — ,

LF-hoRA · · · , LF-RAW - - -, and LF-hoRAW − -−
)

The paper is organized as follows. The properties of hoRAW is characterized

and analyzed in Section 2. The error analysis of phase and amplitude is given in

Section 2.6 and comparison of hoRAW, hoRA and AB3 exhibited in Section 3. Some

numerical tests are presented in Section 4, which support the analysis. Section 5

concludes with a summary of results.

2. Linear Analysis. The amplitude and phase-speed errors of time-stepping

schemes for non-dissipative dynamical systems is typically evaluated by analyzing the

solutions of the oscillation equation (see [4, 7]),

u′(t) = iω u(t) (2.1)

RAW is almost fourth-order, LF-hoRA is fourth-order, while LF-hoRAW is sixth-order accurate in

amplitude.
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where ω is real constant. In this section we derive the consistency and stability

properties of the hoRAW filter. First, we briefly recall the properties of the Robert-

Asselin, Robert-Asselin-Williams and hoRA time filters.

2.1. Previous work. The RAW-filtered leapfrog scheme applied to (2.1) writes

wn+1 = un−1 + 2iω∆tvn, (Leapfrog)

un = vn +
αν

2
(wn+1 − 2vn + un−1). (Robert-Asselin)

vn+1 = wn+1 +
(α− 1)ν

2
(wn+1 − 2vn + un−1), (Williams)

where w, v, u are the unfiltered, once-filtered and twice-filtered values, respectively.

The dimensionless parameters ν ∈ [0, 1] and α ∈ [0.5, 1]. When α = 1 the (Williams)

step drops out and the LF-RAW becomes the LF-RA scheme, and when ν = 0 the

leapfrog scheme is recovered. Both RA and RAW filters successfully dampen the

computational mode, and LF-RA and LF-RAW are generally first-order accurate.

However, the RAW filter provides a higher accuracy for the amplitude of the phys-

ical mode, compared to the RA filtered leapfrog (see Table 3.1). When α = 0.5,

the LF-RAW three-time-level mean is preserved, it is second-order accurate, yielding

third-order accuracy for the amplitude of the physical mode; however LF-RAW is

unconditionally unstable in this case. Nevertheless, with α slightly larger than 0.5,

e.g., α = 0.53, LF-RAW yields almost third-order accuracy for the amplitude of the

physical mode (see [15, 16]).

The hoRA filtered leapfrog (LF-hoRA) applied to (2.1) is given by

vn+1 = un−1 + 2iω∆tvn (Leapfrog)

un = vn +
β

2
(vn+1 − 2vn + un−1)− β

2
(vn − 2un−1 + un−2) (high-order RA)

where v, u are the unfiltered and once-filtered values, respectively, and β ∈ (0, 1). In

the limit of good time resolution, i.e., ω∆t � 1, the LF-hoRA scheme is generally

second-order accurate, and third-order accurate when β = 0.4 (see [14]).
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2.2. The LF-hoRAW as a linear multistep method. The hoRAW filtered

leapfrog(LF-hoRAW) scheme applied (2.1) writes as the following

wn+1 = un−1 + 2iω∆tvn (LF)

un = vn +
αβ

2
(wn+1 − 2vn + un−1)− αβ

2
(vn − 2un−1 + un−2) (hoRA)

vn+1 = wn+1 +
β(α− 1)

2
(wn+1 − 2vn + un−1)

− β(α− 1)

2
(vn − 2un−1 + un−2) (W)

where w, v, u are unfiltered, once filtered and twice filtered values, respectively and

dimensionless parameter β ∈ [0, 1] and α ∈ [0, 1] 3. First we solve the linear system

(LF)-(hoRA)-(W) for wn+1, vn, vn+1 in terms of un, un−1, un−2. Then identifying the

expression for vn+1 with the one obtained from vn after shifting indeces n → n + 1,

we infer that the hoRAW filtered leapfrog system is equivalent to the following linear

multistep method

un+1 =
(αβ + 3β

2

)
un + (1− 2β)un−1 −

(αβ − β
2

)
un−2

+ iω∆t
(
(2− β + αβ)un − 3αβun−1 + αβun−2

)
. (2.2)

Therefore the numerical amplification factor A = un+1

un
of the LF-hoRAW method

satisfies the characteristic equation

A3 −
(αβ + 3β

2
+ (2 + αβ − β)iω∆t

)
A2

− (1− 2β − 3iω∆tαβ)A+
αβ − β

2
− iω∆tαβ = 0, (2.3)

with one of the three roots, the physical mode, denoted A+, and two computational

modes.4 The exact solution u(t) = eiωtu(0) of oscillation equation (2.1) has the

exact amplification factor Aexact = eiω∆t. The behaviour of the exact and numerical

amplification factors of LF-hoRAW scheme in the complex plane is shown in Figure

2.1 for various α and β. The exact amplification factor remains on the unit circle

when ω∆t increases from 0 to 1. One of the computational modes of LF-hoRAW is

amplified when ω∆t ≥ Σαβ(see (2.5) in Section 2.4) while the physical mode A+ of

LF-hoRAW stays inside the unit circle, similarly to the physical modes of AB3 [3, 4]

3The LF-hoRAW scheme reduces to LF-hoRA when α = 1
4The roots of (2.3) are obtained using Matlab’s Symbolic Math Toolbox
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and LF-hoRA [14]. The magnitudes of the physical and computational modes of LF-

hoRAW are shown in Figure 2.2, for various values of α and β. This indicates that

the LF-hoRAW scheme successfully controls the growth of its computational modes,

within the stability interval.

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1 -0.5 0 0.5 1

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1.5 -1 -0.5 0 0.5 1 1.5

ℜ(A)

-1

-0.5

0

0.5

1

ℑ
(A

)

-1.5 -1 -0.5 0 0.5 1 1.5

ℜ(A)

-1

-0.5

0

0.5

1

1.5

ℑ
(A

)

Fig. 2.1. The amplification factors of the physical mode (solid line) and two computational

modes (dotted line). From left to right: α = 0.3, 0.5, 0.7, 0.9, with β = 0.2 (top) and β = 0.4

(bottom).
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Fig. 2.2. The magnitudes of the physical mode (solid line) and computational modes (dotted

line) of LF-hoRAW. From left to right: α = 0.3, 0.5, 0.7, 0.9, with β = 0.2 (top) and β = 0.4

(bottom).
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2.3. The consistency order of LF-hoRAW. Using the Taylor expansions of

u(tn+1), u(tn−1) and u(tn−2), the local truncation error of LF-hoRAW (2.2) writes

τn+1(∆t) =
1

∆t

(
u(tn+1)− αβ + 3β

2
u(tn)− (1− 2β)u(tn−1) +

αβ − β
2

u(tn−2)
)

− (2 + αβ − β)iωu(tn) + 3αβiωu(tn−1)− αβiωu(tn−2)

=
2 + 2β − 7αβ

6
(iω∆t)2u′(tn) +

28αβ − 6β

24
(iω∆t)3u′(tn) +O((iω∆t)4).

(2.4)

Therefore the LF-hoRAW scheme is third-order accurate when α = 2+2β
7β , otherwise

second-order.

2.4. The stability domain of LF-hoRAW. We determine the maximum in-

terval of ω∆t for which all numerical amplification factors of LF-hoRAW scheme are

non-amplified using the root locus curve method [8]. The characteristic equation of

LF-hoRAW (2.2) is

ζ3 −
(αβ + 3β

2

)
ζ2 − (1− 2β)ζ +

(αβ − β
2

)
− z
(
(2 + αβ − β)ζ2 − 3αβζ + αβ

)
= 0

where ζ = eiθ, θ ∈ [0, 2π] represent the points on the unit circle, and z ∈ C is the root

locus curve (see Figure 2.3). The stability interval of LF-hoRAW is determined by

the intersection of the imaginary axis with the root locus curve z. Setting the real of

ζ to zero gives

cos(θ) = 1 or cos(θ) =
5αβ − 4α− β + 2

4α
,

and

z = 0 or z = ±i (2 + αβ − β)
√
β + 8α− 5αβ − 2

2α(2− β)
√

2 + 5αβ − β
,

which are the intersections of the root locus curve with the imaginary axis. Therefore

LF-hoRAW is stable provided

ω∆t ≤ Σαβ ,

where

Σαβ =
(2 + αβ − β)

√
β + 8α− 5αβ − 2

2α(2− β)
√

2 + 5αβ − β
, (2.5)
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with β ∈ (0, 1) and α ∈ (0, 1]. For any given β ∈ (0, 1), the optimal value of α which

maximizes Σαβ in (2.5) is

αs =
4− 12β + 5β2 − 2

√
4 + 12β − 15β2 + 4β3

25β2 − 36β
, (2.6)

therefore LF-hoRAW is stable when

ω∆t ≤ Σα
sβ =

√
2
(√

1 + 4β + 1
) 1

2
(
17− 10β +

√
1 + 4β

) 3
2(

2− β
)(

13 + 5
√

1 + 4β
) 3

2

, (2.7)

(see also Figure 3.3: right). From (2.5) we also note that the method becomes unstable
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Fig. 2.3. Root locus curve of hoRAW with various α and β.

when

α = 1− 2

β
or α =

2− β
8− 5β

.

Since for β ∈ (0, 1) we have 1 − 2
β < 0 < 2−β

8−5β < 1, henceforth we will only consider

α ∈ (αa, 1], where

αa =
2− β
8− 5β

. (2.8)

We shall see in Section 2.6 that even if the scheme is unconditionally unstable when

α = αa, for slightly larger values α ' αa, the LF-hoRAW is conditionally stable and

the solution achieves sixth-order in amplitude accuracy. This phenomenon is similar

to LF-RAW [16]. The amplitudes of the physical mode of LF-hoRAW are plotted in

Figure 2.4 for several α ' αa, and any given β.

2.5. Curvature evolution. This subsection gives a geometric interpretation of

the hoRAW filter in terms of the curvature evolution [11, 13]. We define the discrete
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Fig. 2.4. The magnitude of physical mode amplitudes: α ' 2−β
8−5β

, β = 0.2 (left) and β = 0.4(right).

curvature of ϕn by κ(ϕn) = ϕn+1−2ϕn+ϕn−1. Two discrete curvatures are computed

at every time integration of the system (1.2), one before and one after the time filter:

κnold = wn+1 − 2vn + un−1, κnnew = vn+1 − 2un + un−1.

Figure 2.5 illustrates how the hoRAW time filter reduces the discrete curvature of

the solution. After solving for wn+1 in the LF step (LF) the first solution curve is

the continuous line. The curvature obtained is κnold. Next, performing the (hoRA)

and (W) steps leads to the new solution curve (the dashed line of Figure 2.5), with

curvature κnnew.

The next result shows that the hoRAW filter preserves the three-level-mean of the

solution curve, and decreases the discrete curvature of the solution.

Proposition 2.1. For n ≥ 1 we have

κnnew =
β(α+ 1)

2
κn−1

new +
(

1− β(α+ 1)

2

)
κnold,

min{κn−1
new , κ

n
old} ≤ κnnew ≤ max{κn−1

new , κ
n
old}

for all α ∈ [αa, 1], β ∈ [0, 1]. When α = 1
2 , the hoRAW filter preserves the three-level-

mean of the solution curves

vn+1 + un + un−1

3
=
wn+1 + vn + un−1

3
.

Proof. The first step (hoRA) of the hoRAW filter is un = vn+βα
2 κ

n
old−

βα
2 κ

n−1
new and

the second step (W) of the hoRAW filter is vn+1 = wn+1 + β(α−1)
2 κnold −

β(α−1)
2 κn−1

new .
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Fig. 2.5. The hoRAW filter moves the inner and right outer points through displacements

αβ(κnold − κ
n−1
new )/2 and (1 − α)β(κnold − κ

n−1
new )/2 , respectively, where α ∈ (αa, 1], β ∈ [0, 1]. The

standard hoRA filter moves only the inner point through a displacement β(κnold − κ
n−1
new )/2.

Then

κnnew = vn+1 − 2un + un−1

= (vn+1 − wn+1) + 2(vn − un) + (wn+1 − 2vn + un−1)

=
β(α− 1)

2
(κnold − κn−1

new ) + βα(κn−1
new − κnold) + κnold

=
β(α+ 1)

2
κn−1

new +
(

1− β(α+ 1)

2

)
κnold.

Adding the (hoRA) and (W) steps of the hoRAW filter, for α = 1
2 , yields

vn+1 + un + un−1

3
=
wn+1 + vn + β(2α−1)

2 κnold −
β(2α−1)

2 κn−1
new + un−1

3

=
wn+1 + vn + un−1

3
,

hence the three-time-level means are preserved.
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2.6. Error analysis. We will derive the phase and amplitude errors of the LF-

hoRAW scheme (2.2) using the notion of modified equations, an idea related to back-

ward error analysis [6, 9, 5, 4]. The concept is to view the numerical solution of

LF-hoRAW not as an approximate solution to oscillation equation (2.1), but as an

exact solution to a nearby equation, called modified equation.

We define the following real constants Cαβ1 , Cαβ2 and Cαβ3 , depending on α ∈

[αa, 1], β ∈ [0, 1] as:

Cαβ1 =
2 + 2β − 7αβ

6(2− β − αβ)
,

Cαβ2 =
5αβ2 − 8αβ + 2β − β2

4(2− β − αβ)2
, (2.9)

Cαβ3 =
β3(113α3 + 54α2 − 101α+ 18)− 2β2(169α2 − 112α+ 9) + 4β(19α− 6)− 24

40(αβ + β − 2)3
,

and the three-term modified equation of LF-hoRAW corresponding to (2.1):

x′(t) =
(

1− Cαβ1 (iω∆t)2 + Cαβ2 (iω∆t)3 + Cαβ3 (iω∆t)4
)
iω x(t). (2.10)

Proposition 2.2. The LF-hoRAW (2.2) is a fifth-order approximation to the

modified equation (2.10)

τ̂(∆t) = G(x)∆t5,

while only second-order approximation to the oscillation equation (2.1).

Proof. Consider a general three-term modified equation corresponding to the

oscillation equation

y′(t) = iω y(t) + ∆t2g1

(
y(t)

)
+ ∆t3g2(y(t)) + ∆t4g3(y(t)). (2.11)

Then the local truncation error of LF-hoRAW (based on the modified equation, not

on the oscillation equation) is

τ̂n+1(∆t) =
1

∆t

[
y(tn+1)−

(αβ + 3β

2

)
y(tn)− (1− 2β)y(tn−1) +

(αβ − β
2

)
y(tn−2)

]
− (2 + αβ − β)iωy(tn) + 3αβiωy(tn−1)− αβiωy(tn−2).

Using the Taylor expansions of y(tn+1), y(tn−1), y(tn−2) at time tn, and substitute

12



in y(i)(tn), i = 1, . . . , 5, the local truncation error writes

τ̂n+1(∆t) =

(
(2− β − αβ)g1(y(tn)) +

αβ

2
iω3y(tn)− 2− 4αβ + 2β

6
iω3y(tn)

)
∆t2

+

(
(2− β − αβ)g2(y(tn)) + αβiωg′1(y(tn))y(tn) +

28αβ − 6β

24
ω4y(tn)

)
∆t3

+

(
(2− β − αβ)g3(y(tn)) + αβiωg′2(y(tn))y(tn) +

αβ

2
ω2g1(y(tn))

+
αβ

2
ω2g′1(y(tn))y(tn)− 2− 4αβ + 2β

6
ω2g1(y(tn))

− 4− 8αβ + 4β

6
ω2g′1(y(tn))y(tn) +

2− 81αβ + 14β)

120
iω5y(tn)

)
∆t4 +O(∆t5).

Setting the coefficients of ∆t2, ∆t3 and ∆t4 to zero, we obtain that g1(y) = Cαβ1 iω3y,

g2(y) = Cαβ2 ω4y and g3(y) = Cαβ3 iω5y, concluding the proof.

Recall that the global error based on the modified equation (2.10) x(tn) − un

coincides with the truncation error ∆t τ̂n(∆t), under the localizing assumption that

un−i = x(tn−i), i = 1, 2, 3. Then from Proposition 2.2 we have that

x(tn)− un = O(∆t6),

and therefore the global error of LF-hoRAW

u(tn)− un = u(tn)− x(tn) + x(tn)− un = u(tn)− x(tn) +O(∆t6) (2.12)

can be characterized by the difference between the curves u(t) and x(t).

Theorem 2.3. The phase and amplitude errors of the LF-hoRAW scheme applied

to oscillation equation are

R+ − 1 =
2 + 2β − 7αβ

6(2− β − αβ)
(ω∆t)2 +

[
β3(113α3 + 54α2 − 101α+ 18)

40(αβ + β − 2)3

− 2β2(169α2 − 112α+ 9)− 4β(19α− 6) + 24

40(αβ + β − 2)3

]
(ω∆t)4 +O(ω∆t6),

|A+| − 1 =
5αβ2 − 8αβ + 2β − β2

4(2− β − αβ)2
(ω∆t)4 +O(ω∆t6). (2.13)

Proof. With the initial conditions u(0) = x(0) = 1, the exact solution of oscillation

equation (2.1) is u(t) = eiωt and the exact solution to the modified equation (2.10)

x(t) = eiωt+C
αβ
1 iω3(∆t)2t+Cαβ2 ω4(∆t)3t+Cαβ3 iω5(∆t)4t

= eC
αβ
2 ω4(∆t)3t

(
cos
(
ωt+ Cαβ1 ω3(∆t)2t+ Cαβ3 ω5(∆t)4t

)
+ i sin

(
ωt+ Cαβ1 ω3(∆t)2t+ Cαβ3 ω5(∆t)4t

))
13



where Cαβ1 , Cαβ2 and Cαβ3 are defined in (2.10). Thus from (2.12), the phase and

amplitude errors of the LF-hoRAW method in one time step are

R+ − 1 =
arg
(
x(∆t)

)
arg
(
u(∆t)

) − 1 = Cαβ1 (ω∆t)2 + Cαβ3 (ω∆t)4 +O((ω∆t)6),

|A+| − 1 = |x(∆t)| − |u(∆t)| = |eC
αβ
2 (ω∆t)4 | − 1 = Cαβ2 (ω∆t)4 +O((ω∆t)6),

in the limit of good time resolution ω∆t� 1.

Remark 2.4. The phase and amplitude errors of the LF-hoRA [14] are recovered

when α = 1, and also the phase and amplitude errors of the Leapfrog method are

recovered when α = 1, β = 0 [4].

Remark 2.5. The LF-hoRAW method attains fourth-order accuracy in phase

when α = 2+2β
7β and sixth-order accuracy in amplitude when α = αa.

The amplitude and the relative phase change of the physical mode of LF-hoRAW

are plotted, with various of α and β, in Figure 2.6.
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Fig. 2.6. Amplitude (top) and relative phase change (bottom) of the physical mode of hoRAW

for α = 0.3, 0.5, 0.7, 0.9 with β = 0.2(left) and β = 0.4(right).
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Table 2.1

Changes in amplitude, phase speed errors and stability of LF-hoRAW, for fixed, arbitrary β.

The notation ↗,↘ indicates the increase and decrease, as α grows.

α ∈ (αa, αs) α ∈ (αs, 1) Order of accuracy

Amplitude error ↗ ↗ 4

Phase-speed error ↘ ↘ 2, 4 if α = 2+2β
7β

Stability ↗ ↘

Here is a summary of the properties of the LF-hoRAW (the case α = 1 corresponds

to the hoRA filter) of stability, accuracy and conservation of the three-time-level mean:

Conserves three Order of accuracy

α time-level mean
Stability Amplitude Phase 5

= αa(2.8) No Unconditionally Unstable 6 2 (resp. 4)

' αa(2.8) No Conditionally Stable 4 2 (resp. 4)

1/2 Yes Conditionally Stable 4 2 (resp. 4)

1 No Conditionally Stable 4 2 (resp. 4)

3. Comparison of LF-hoRA, LF-hoRAW and AB3 methods. First we

summarize the properties of the third-order methods LF-hoRA (β = 0.4) [14], LF-

hoRAW (α = 2+2β
7β , β ∈ [0, 1]) and AB3 [4, 13, 14].

• The truncation errors are:

τn(∆t) =
11

30
(iω∆t)3u′(tn) +O((iω∆t)4) (hoRA, β = 0.4)

τn(∆t) =
β + 4

12
(iω∆t)3u′(tn) +O((iω∆t)4) (hoRAW, α = 2+2β

7β )

τn(∆t) =
3

8
(iω∆t)3u′(tn) +O((iω∆t)4) (AB3)

When β ∈ [0, 0.4], we have that β+4
12 ∈ [ 1

3 ,
11
30 ], therefore LF-hoRAW method

has a smaller truncation error compared to LF-hoRA and AB3.

• The methods are stable for:

ω∆t ≤ 0.69 (hoRA, β = 0.4)

ω∆t ≤ (16−5β)
√
β
√

16−8β−3β2

4
√

3(2−β)(1+β)
√
β+8

(hoRAW, α = 2+2β
7β )

ω∆t ≤ 0.72 (AB3)

5The phase is 4th order when α = 2+2β
7β
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The third-order methods are compared on the Lorenz system in Section 4.2.

In long-time integrations, probably the most important quantities are the stability

interval and the amplitude accuracy.

We compare the accuracy of amplitude and the stability intervals of the second-

order LF-hoRAW with the second and third-order LF-hoRA, and the AB3 methods

in Table 3.1, with some featured values of α and β.

The phase and amplitude of the physical mode of LF-hoRAW, LF-hoRA and AB3

are plotted in Figure 3.1. The stability regions (root locus curves) for LF-hoRAW,

LF-hoRA and AB3 schemes are plotted in Figure 3.2.
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Fig. 3.1. Amplitude (top) and relative phase (bottom) of physical mode.

From the Table 3.1 and Figure 3.3 we infer that the LF-hoRAW (β = 0.2, α =

αs(β) ≡ 0.4887) method exhibits about a 20% increase in stability compared to LF-

hoRA method, and 25% compared to the three-level intrusive AB3 method. Moreover,

the LF-hoRAW increases the amplitude accuracy by one significant digit. Also, when

β = 0.2, α = 0.27 & αa(0.2) = 0.2571 and β = 0.4, α = 0.28 & αa(0.2) = 0.2667 the
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Fig. 3.2. Root locus curves of LF-hoRA, LF-hoRAW the AB3 schemes. The stability interval

is given by the intersection of the root locus curve with the imaginary axis.

Method β α Order Amplitude Max. ω∆t

LF - - 2 1 1

LF-hoRA 0.2 - 2 1 − .1016(ω∆t)4 0.7571

LF-hoRAW 0.2 0.27 2 1 − .0015(ω∆t)4 0.3977

LF-hoRAW 0.2 0.3 2 1 − .0050(ω∆t)4 0.6509

LF-hoRAW 0.2 0.4887 2 1 − .0280(ω∆t)4 0.9078

LF-hoRAW 0.2 0.5 2 1 − .0294(ω∆t)4 0.9075

LF-hoRA 0.4 - 3 1 − .3056(ω∆t)4 0.6910

LF-hoRAW 0.4 0.28 2 1 − .0036(ω∆t)4 0.3677

LF-hoRAW 0.4 0.3 2 1 − .0091(ω∆t)4 0.5402

LF-hoRAW 0.4 0.4961 2 1 − .0701(ω∆t)4 0.8256

LF-hoRAW 0.4 0.5 2 1 − .0714(ω∆t)4 0.8255

AB3 - - 3 1 − .3750(ω∆t)4 0.7236

19.9%

25%19.4%

14%

Table 3.1

The comparison of LF-hoRAW, LF-hoRA and AB3 methods, with some featured values of β

and α considered in Section 2.

increase in amplitude accuracy is by two significant digits.

4. Numerical Tests. We present three numerical tests on the LF-hoRAW, LF-

hoRA and the AB3 methods. Section 4.1 shows that the hoRAW filter preserves the

amplitude and phase with high accuracy.

17



0 0.5

β

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

C
o
e
ff
ic

ie
n
t 
o
f 
a
m

p
lit

u
d
e
 e

rr
o
r

hoRA

hoRAW

AB3

0 0.1 0.2 0.3 0.4 0.5

β

0.6

0.7

0.8

0.9

1

M
a
x
im

u
m

 
ω

 ∆
 t

hoRA

hoRAW

AB3

Fig. 3.3. Left: comparison of the coefficients C1β
2 , Cα

aβ
2 (2.9) and CAB3 = 3

8
corresponding

the LF-hoRA, LF-hoRAW and AB3 amplitude errors (2.13). Right: comparison of the maximum

stability for LF-hoRA (Σ1β), LF-hoRAW (see(2.7)) and AB3 (0.7236).

4.1. Simple pendulum. Consider a simple pendulum problem, given by the

following two coupled nonlinear equations (see [14, 18])

dθ

dt
=
v

L
,

dv

dt
= −g sin θ,

(4.1)

where θ, v, L and g denote, respectively, the angular displacement, velocity along the

arc, length of the pendulum, and the acceleration due to gravity.

Set the initial condition (θ(0), v(0)) = (0.9π, 0) close to the unstable equilibrium point,

g = 9.8, L = 49, and numerically integrate the third-order LF-hoRA (α = 1, β = 0.4),

the third-order AB3, and the second-order LF-hoRAW (α = 0.3, β = 0.4) over the

time interval [0, 400], with the time step ∆t = 0.5. The Runge-Kutta 4 method is

used to initialize the second and third steps for hoRA, hoRAW and AB3. We then

compare the results with the reference solution, which computed using the adaptive

RK4(5) method with the relative error tolerance 10−10 and absolute error tolerance

10−15. The comparison is shown in Figure 4.1. The plots show that the LF-hoRA

and AB3 damp the amplitude, and the phase errors are relatively large. The hoRAW

filter preserves the amplitude and phase, with high accuracy, for a long-time period.
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Fig. 4.1. Numerical solution to the simple pendulum problem, computed by LF-hoRA (α =

1, β = 0.4), AB3 and LF-hoRAW (α = 0.3, β = 0.4) methods, are compared with the reference solu-

tion of the adaptive RK4(5) method with relative error tolerance 10−10 and absolute error tolerance

10−15. The initial condition is (θ(0), v(0)) = (0.9π, 0), and the time step is ∆t = 0.5.

4.2. Lorenz System. Consider the Lorenz system:

dX

dt
= σ(Y −X),

dY

dt
= −XZ + rX − Y,

dY

dt
= XY − bZ,

(4.2)

with σ = 12, r = 12, b = 6, and the initial condition (X0, Y0, Z0) = (−10,−10, 25),

as in [3, 14]. The system is numerically integrated over the time interval [0, 5] using

the third-order LF-hoRAW (α = 34
49 , β = 0.7), the third-order LF-hoRA (β = 0.4)

and the third-order AB3 methods (see [3, 14]). The reference solution is computed

with the adaptive RK4(5) method, using the same error tolerance as in Section

4.1. The numerical solutions of X are plotted in Figure 4.2 with various time steps

∆t = 0.025, 0.029, 0.035 and 0.045.
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As predicted by the linear analysis in Section 3, the third-order LF-hoRAW is

as accurate the third- order LF-hoRA and AB3 methods. The augmented stability

property of LF-hoRAW is exhibited as the time step is increased, pushing the LF-

hoRA and AB3 to become unstable.
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Fig. 4.2. Computed numerical solutions to the Lorenz system with LF-hoRAW(α = 37/49,

β = 0.7), LF-hoRA(β = 0.4) and AB3 with constant time step ∆t = 0.025(top left), ∆t = 0.029(top

right) and ∆t = 0.035(bottom left), ∆t = 0.045(bottom right).

4.3. Ozone photochemistry. Finally we consider a classic example from chem-

ical reaction (see e.g., [10, 4, 14]) between atomic oxygen(O), nitrogen oxides (NO and

NO2), and ozone (O3):

NO2 + hν
k1→ NO +O,

O +O2
k2→ O3,

NO +O3
k3→ O2 +NO2,
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where hν denotes a photon of solar radiation. Assuming that the background concen-

tration of O2 is constant, the concentration c = (c1, c2, c3, c4), in molecules per cubic

centimeter, of O, NO, NO2 and O3, modeling the chemical reactions above, satisfies

the system:

dc1
dt

= k1c3 − k2c1,

dc2
dt

= k1c3 − k3c2c4,

dc3
dt

= k3c2c4 − k1c3,

dc4
dt

= k2c1 − k3c2c4.

We choose

k1 = 10−2 max{0, sin(2πt/td}s−1,

k2 = 10−2s−1, k3 = 10−16cm3molecule−1s−1,

as in [14], where td is the length of 1 day in seconds, and the initial condition c0 =

(0, 0, 5× 1011, 8× 1011) molecules cm−3 at t = 0. The reference solution is computed

using the adaptive RK4(5) method, with the same error tolerances as before. We

compare two numerical solutions, LF-hoRA(β = 0.4) and LF-hoRAW(α = 0.3, β =

0.4), computed with the time step ∆t = 45 second. The chemical concentrations over

the next 48 hours are shown in Figure 4.3. The LF-hoRAW method is able to capture

the behaviour of concentrations with reasonable accuracy.

5. Summary and discussion. We have constructed and analyzed a higher-

order Robert-Asselin-Williams time filter. The LF solution is once-filtered in the

(hoRA) step and twice-filtered in the (W) step. The LF-hoRAW has an increased

stability and accuracy of amplitude when compared to LF-RA, LF-RAW, LF-hoRA

and AB3 (see Figure 1.1, and Table 3.1, Figure 3.3). The effect of the twice-filtering

with the Williams’ step (W) is an increase compared to the stability of LF-hoRA by

almost 20%. 6

The LF-hoRAW can achieve almost sixth order accuracy in amplitude (α & αa(β),

see (2.13) in Theorem 2.3 and (2.8)). For the specific values β = 0.2, α = 0.27 &

6When α = αs, β = 0, LF-hoRAW recovers the full-stability of LF ω∆t ≤ 1 (unlike the hoRA

filtered LF method), see e.g. Figure 3.3.
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Fig. 4.3. Numerical solutions for chemical concentrations, computed using LF-hoRAW (β =

0.4, α = 0.3) and LF-hoRA(β = 0.4), are compared with the reference solutions obtained from

adaptive RK4(5) method with relative error tolerance 10−10 and absolute tolerance 10−15. The

initial condition is c0 = (0, 0, 5 × 1011, 8 × 1011) molecules cm−3 at t = 0 with time step ∆t = 45

second.

αa(0.2) = 0.2571 and β = 0.4, α = 0.28 & αa(0.2) = 0.2667, the increase in amplitude

accuracy is by two significant digits.

The hoRAW is an efficient and accurate post-process which successfully controls

the growth of the computational modes and may be suitable for long-time simulations

of weather and climate models.
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