MATH 0290 - Practice Final exam

Name: _____

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- This practice final has 15 problems. The actual final has 10 problems.
- Calculators are neither required nor permitted.
- Good luck!

Solve the following initial value problems:

(a)
$$y' = \frac{te^t}{y}$$
, $y(1) = 1$.

(b)
$$y' = y^2 x$$
, $y(3) = 1$.

Solve the following differential equations. If an explicit solution cannot be found, leave the solution in an implicit form:

(a)

$$e^t y y' = e^{-y} + e^{-2t-y}$$

(b)

$$y' + 3t^2y = t^2$$

(a) Show that the transformation y(x) = 1/z(x) transforms the nonlinear ODE

$$xy' + y = y^2$$

to the linear ODE

$$z' - \frac{z}{x} = -\frac{1}{x}$$

(b) Give the general solution of y(x). Plot the specific solutions for initial conditions y(1) = 1and y(1) = 2 for 0 < x < 2.

Use the method of variation of parameters OR the method of undetermined coefficients to find a particular solution, $y_p(t)$, to the following differential equation:

$$y'' - 2y' + y = e^{-t} \cos t.$$

Solve the following initial value problems:

(a)

$$y'' + y' - 6y = 2\sin(2t);$$
 $y(0) = 0, y'(0) = 0;$

(b) $y'' + y' - 6y = e^{-3t}; \qquad y(0) = 0, y'(0) = 0;$

My apartment has an ant infestation. The growth rate of the ants is r and the population size is currently estimated to be A_0 . I have decided to fumigate my apartment with a fumigation agent that kills F ants per hour. The governing ODE for the ant population A(t) is A' = rA - Fwith $A(0) = A_0$. What is the minimal strength fumigation agent (i.e the smallest F) that I can use to ensure that after T hours of fumigation all of the ants are dead? Write your solution in terms of r, T, and A_0 .

Consider the system $\mathbf{y}' = A\mathbf{y}$ where:

$$A = \left(\begin{array}{rrr} -3 & -4 \\ -3 & 1 \end{array}\right).$$

- (a) Find the fundamental solution set for the above system.
- (b) Plot the phase portrait of the solution near $\mathbf{y} = (0, 0)^T$.

Consider the system $\mathbf{y}' = A\mathbf{y}$ where

$$A = \left(\begin{array}{rrr} -1 & 3\\ -3 & -1 \end{array}\right).$$

Find the solution $\mathbf{y}(t)$ with initial condition $\mathbf{y}(0) = (1,0)^T$. Express your solution as a real vector in \mathbb{R}^2 (i.e no complex numbers).

Consider the following nonlinear system:

$$x' = 2(xy - 1)$$

 $y' = x - y^3.$

- (a) Find all equilibrium points (hint: there is more than one).
- (b) Classify the stability of all equilibrium points.

Consider the following model of competition between two animal species:

$$\begin{aligned} X' &= (1 - X - Y) & (X \ge 0) \\ Y' &= (1 - 2Y - X/2) & (Y \ge 0) \end{aligned}$$

- (a) Find all equilibrium points, and classify the stability of each equilibrium point.
- (b) Draw the qualitative phase portrait of the system.
- (c) Are there initial conditions which result in one of the populations going extinct?

Using the Laplace method solve the following initial value problem:

$$y'' + 2y' - 3y = 16e^{-3t};$$
 $y(0) = 1, y'(0) = -3.$

Solve the following initial value problem:

$$y' + y = g(t);$$
 $y(0) = 0,$

with

$$g(t) = \begin{cases} t^2 & \text{if } 0 \le t < 2\\ 4 & \text{if } t \ge 2. \end{cases}$$

The convolution of two functions g and h is defined as $g * h(t) = \int_0^t g(u)h(t-u)du$. Let $f(t) = e^{-2t}$.

- (a) Evaluate f * f.
- (b) Use your answer from (a) and verify that:

$$\mathcal{L}(f * f) = (\mathcal{L}(f))^2.$$

(c) Solve the following initial value problem:

$$y' + y = f * f,$$
 $y(0) = 0.$

Write f(x) as a Fourier series over $-1 \le x \le 1$ where

$$f(x) = \begin{cases} 1+2x & \text{if } -1 \le x < 0\\ 1-2x & \text{if } 0 \le x \le 1. \end{cases}$$

Write f(x) as a Fourier series over $-2 \le x \le 2$ where

$$f(x) = \begin{cases} -1 & \text{if } -2 \le x < 0\\ 1 & \text{if } 0 \le x \le 2. \end{cases}$$

Table of Laplace Transforms

f(t)	$\mathcal{L}(f(t)) = F(s)$	condition
1	$\frac{1}{s}$	s > 0
t^n	$\frac{n!}{s^{n+1}}$	s > 0
$\sin(at)$	$\frac{a}{s^2+a^2}$	s > 0
$\cos(at)$	$\frac{s}{s^2+a^2}$	s > 0
e^{at}	$\frac{1}{s-a}$	s > a
$e^{at}\sin(bt)$	$rac{b}{(s-a)^2+b^2}$	s > a
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$\delta(t-c)$	e^{-cs}	s > 0
H(t-c)	$\frac{e^{-cs}}{s}$	s > 0

Scrap Page

(please do not remove this page from the test packet)