1. Evaluate the given integral

(a)
$$\int 3xe^{-2x} dx$$

(b)
$$\int \frac{x+3}{x^2+3x+2} dx$$

(c)
$$\int \frac{3x}{\sqrt{1+x^2}} dx$$

- 2. Determine the area bounded by the curves f(x) = x + 1 and $g(x) = (x 1)^2$.
- 3. Determine the volume of the solid formed by rotating the region bounded by f(x) = x + 1 and $g(x) = (x 1)^2$ about the x-axis.
- 4. Determine the volume of the solid formed by rotating the region bounded by f(x) = x + 1 and $g(x) = (x 1)^2$ about the y-axis.
- 5. A parabolic tank with upper radius 2 ft and height 4 ft is full of water. Determine the work required to pump the water out of the tank. (Use the fact that water weighs approximately 62.5 lb/ft³.)
- 6. Determine the arclength of the curve $y = 4x^{3/2}$ on $0 \le x \le 2$
- 7. Evaluate the integral if it converges. Show divergence otherwise.

(a)
$$\int_1^3 \frac{8}{(x-1)^3} dx$$

(b)
$$\int_{0}^{\infty} 3xe^{-2x} dx$$

8. Solve the initial value differential equation explicitly for y(t):

$$\frac{dy}{dt} = 2t(y-1)^2 \qquad y(0) = 2.$$

9. Solve the initial value first order linear differential equation:

$$y' = y + x \qquad \qquad y(0) = 2.$$

10. Use Euler's Method to approximate y(1) if $\frac{dy}{dx} = 2y - x$ with y(0) = 1 and $\Delta x = \frac{1}{2}$.

11. Solve the initial value second order nonhomogeneous differential equation using the method of undetermined coefficients.

$$y'' + 3y' + 2y = \cos x \qquad y(0) = 0 \qquad y'(0) = 1.$$

12. Tell whether the series converges or diverges and justify your answer by showing reason by a valid test.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2 + 1}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^{3n}}{5^n n^2}$$

13. Determine the given sum:

(a)
$$\sum_{n=1}^{\infty} \frac{5 \cdot 2^n}{7 \cdot 3^n}$$

(b)
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

14. Determine the Taylor Series about x = 0 for:

(a)
$$f(x) = \frac{1}{1+3x}$$

(b)
$$g(x) = \frac{1}{(1+3x)^2}$$

(c)
$$k(x) = \sqrt{1+3x}$$

- 15. Write out the first four terms to the Taylor series for $f(x) = \sqrt{x}$ about x = 4
- 16. Determine the interval and radius of convergence of the given series:

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2 3^n}$$

17. Determine the volume of the parallelopiped formed by the vectors:

$$\vec{a} = \langle -1, 2, 2 \rangle$$
 $\vec{b} = \langle 2, 0, 4 \rangle$ $\vec{c} = \langle 3, 1, -1 \rangle$

- 18. Given points P(-1, 4, 6) and Q(-3, 6, 7) and R(-6, 8, 3),
 - (a) determine the angle θ between \vec{PQ} and \vec{PR} .
 - (b) determine Π , the equation of the plane which contains the points $P,\,Q,$ and R.

19. Change coordinates:

(a) from rectangular coordinates to cylindrical coordinates.

i.
$$P(-3, 3, 6)$$

ii.
$$z = \sqrt{3x^2 + 3y^2}$$

- (b) i. from spherical coordinates to rectangular coordinates. $P(4,\pi/3,\pi/4)$
 - ii. from rectangular to spherical coordinates. $x^2 + y^2 + z^2 = 9$