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SYSTEM IN ELSASSER VARIABLES

NICHOLAS WILSON} ALEXANDER LABOVSKY! CATALIN TRENCHEA?
Key words. Magnetohydrodynamics, partitioned methods, defect correction, Elsdsser variables.

Abstract. The MHD flows are governed by the Navier-Stokes equations coupled with the
Maxwell equations through coupling terms. We prove the unconditional stability of a partitioned
method for the evolutionary full MHD equations, at high magnetic Reynolds number, in the Elsdsser
variables. The method we propose is a defect correction second order scheme, and entails the implicit
discretization of the subproblem terms and the explicit discretization of coupling terms.

1. Introduction. The equations of magnetohydrodynamics (MHD) describe the
motion of electrically conducting, incompressible flows in the presence of a magnetic
field. When an electrically conducting fluid moves in a magnetic field, the magnetic
field exerts forces which may substantially modify the flow. Conversely, the flow itself
gives rise to a second, induced field and thus modifies the magnetic field. Initiated by
Alfven in 1942 [1], MHD is widely exploited in numerous branches of science including
astrophysics and geophysics [24, 35, 16, 12, 11, 3, 6, 15], as well as engineering, e.g.,
liquid metal cooling of nuclear reactors [2, 22, 38|, process metallurgy [8], sea water
propulsion [31].

The MHD flows entails two distinct physical processes: the motion of fluid is
governed by hydrodynamics equations and the magnetic field is governed by Maxwell
equations. One approach to solve the coupled problem is by monolithic methods, or
implicit (fully coupled) algorithms, that are robust and stable, but quite demanding in
computational time and resources. In these methods, the globally coupled problem is
assembled at each time step and then solved iteratively. Partitioned methods, which
solve the coupled problem by successively solving the sub-physics problems [30], are
another attractive and promising approach for solving MHD system.

Most terrestrial applications, in particular most industrial and laboratory flows,
involve small magnetic Reynolds number. In this cases, while the magnetic field
considerably alters the fluid motion, the induced field is usually found to be negligible
by comparison with the imposed field [28, 36, 8]. Neglecting the induced magnetic
field one can reduce the MHD systems to the significantly simpler Reduced MHD
(RMHD), for which several implicit-explicit (IMEX) schemes were studied in [29].

In this report we aim to improve the accuracy of the first order method introduced
in [41]. The method that we aim to develop for the evolutionary full MHD equations,
at high magnetic Reynolds number in the Elsésser variables, also needs to be stable
and allow for explicit-implicit implementations with different time scales.

To that end, we employ the spectral deferred correction (SDC) method, pro-
posed for stiff ODEs by Dutt et al., [13], and further developed by Minion et al.; see
[33, 34, 7] and the references therein. SDC methods were studied and compared to
intrinsically high-order methods such as additive Runge-Kutta methods and linear
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multistep methods based on BDFs, with the conclusion that the SDC methods are at
least comparable to the latter. In addition, achieving high accuracy for the turbulent
NSE using Runge-Kutta-based methods is very expensive, and the BDF-based meth-
ods typically do not perform well in problems where relevant time scales associated
with different terms in the equation are widely different; see, e.g., [7] for an example
of an advection-diffusion-reaction problem for which the SDC is the best choice for
high-accuracy temporal discretization.

The equations of magnetohydrodynamics describing the motion of an incompress-
ible fluid flow in presence of a magnetic field are the following (see, e.g. [28, 4, 5])

0

6—1;+(u-V)u—(B-V)B—uAu+Vp=f, V-u=0,
B

86—t—|—(u~V)B—(B-V)u—Z/mAB:V><g7 V-B=0,

in Q x (0,T), where € is the fluid domain, u = (u;(x, 1), uz(x, t), ug(x, t)) is the fluid
velocity, p(x, t) is the pressure, B = (By(x,t), Ba(x,t), B3(x,t)) is the magnetic field,
f and V x g are external forces, v is the kinematic viscosity and v, is the magnetic
resistivity. The total magnetic field can be split in two parts B = B, + b (mean and
fluctuations). We prescribe homogeneous Dirichlet boundary conditions for w, and
B = B, on the boundary (see [18] for typical magnetic boundary conditions).

Then the Elsésser fields [14]

zt=u+b, 2z  =u-b, (1.1)

merging the physical properties of the Navier-Stokes and Maxwell equations, suggest
stable time-splitting schemes for the full MHD equations. The momentum equations,
in the Elsésser variables, are

dz*

— F(Bo V)2t 4 (2T V)t - ”*‘2”"‘ Azt ”_2”’“ AzF+Vp=fE  (1.2)
while the continuity equations are V - z* = 0. We note that the nonlinear in-
teractions occur between the Alfvenic fluctuations z*. The mean magnetic field

plays an important role in MHD turbulence, for example it can make the turbu-
lence anisotropic; suppress the turbulence by decreasing energy cascade, etc. In the
presence of a strong mean magnetic field, zT and 2z~ wavepackets travel in opposite
directions with the phase velocity of B,, and interact weakly. For Kolmogorov’s and
Iroshnikov/Kraichnan’s phenomenological theories of MHD isotropic and anisotropic
turbulence, see [25, 27, 9, 32, 42, 37, 17, 20, 43].

In a “classical” understanding, the deferred correction approach to solving ODEs
is based on replacing the original ODE (in our case, the system of ODEs obtained from
the original PDEs by the Method of Lines) with the corresponding Picard integral
equation, discretizing the time interval, solving the integral equation approximately
and then correcting the solution by solving a sequence of error equations on the same
grid with the same scheme; see [13] and [33] for the detailed mathematical presentation
of SDC. In particular, the two-step Deferred Correction method introduced in this
paper, performs as follows. The first approximation to the sought quantities (in this
case, the Elsisser variables zT,z7) is obtained by the stable and computationally
attractive first order accurate IMEX method of [41]. Then the second order accurate
approximation is computed, which improves the accuracy without sacrificing stability.
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Note that the second step utilizes the same IMEX time discretization as in the first
step; only the right-hand side is modified by a known quantity, i.e, a known solution
from the first step. This results in the computational attractiveness of the method:
computing two low-order accurate approximations is much less costly (especially for
very stiff problems) than computing a single higher-order approximation.

2. Notation and Preliminaries. We consider a domain Q C R? (d=2 or 3)
to be a convex polygon or polyhedra. We denote the familiar Lesbegue measure
spaces by LP(£2), and denote the L?(Q) inner product and induced norm by (-, -) and
| - || respectively. Additionally, we denote the L>(£2) norm by || - ||oo, and the norm
associated with the Sobolev spaces W2*(Q) = H*(Q) by || - ||x. All other norms will
be clearly labeled.

Throughout the article, we will make use of the inequalities presented in the
following lemma. In Lemma 2.1 and subsequent analysis we denote constants that
are independent of v and v, by C. The generic constant varies throughout this work.

LEMMA 2.1. If u,v,w € HY(Q), and V -u = 0 then

(- V)v,w) = —((u- V)w,v),

((u-V)v,v) =0,

((u- V)v,w) < C|lu||||VV]|eol|w] (provided Vv € L),
((u- V), w) < Cllull||Volllwl]| (provided u € L*),
(- V)v,w) < Cllull? | Vu|? | Vo|||Vw], and

(u- V)v,w) < Cllull||Vull? |Vo|||lw] | Vw5

These are classical results used in the study of Navier-Stokes equations and magne-
tohydrodynamics (see for example [39, 40, 10]). In addition to the above results we
will also employ the discrete Gronwall’s lemma [23].

3. The implicit-explicit partitioned schemes. The heart of any partitioned
method, aiming at decoupling the two physically interconnected subproblems, is its
treatment of the coupling terms. The method we study herein has the coupling terms
lagged or extrapolated in a careful way that preserves stability.

3.1. First order unconditionally stable IMEX partitioned scheme. The
method proposed and analyzed in [41] has the coupling terms lagged, thus the system
uncouples into two subproblem solves. It approximates the momentum equations
(1.2) and continuity equations in the Elsésser variables by the following first-order
IMEX scheme (backward-Euler forward-Euler)

+ +
0%n41 0 2y

A7 T (Bo - V)oziy + (025 - V)ozny (3.1)
V+VUpy V—VUm
Ty Aoz:_;rl - AozF + Vopiﬂ = fi(tm—l)a

The scheme (3.1)-(3.2) is modular, i.e., the variables oz™ and ¢z~ are decoupled, and
is unconditionally absolute-stable. We note that the pre-subscript occurring on the
variables oz;- is used to denote the first order IMEX approximation to the Elsiisser

variables z(t, )T respectively.



As mentioned before the unconditional stability of the IMEX method is proven
in [41]. Thus, we restrict our attention to showing the method is first order accurate
in time. We note the term 7),, occurs regularly in the analysis below. The value of 7,
is between the timesteps t, and t,,41 the arises from our use of Taylor series. So, it
is unknown and varies in each occurrence.

LEMMA 3.1. Given a final time T > 0 and timestep At > 0 let t,, = n x At for
n=0,1,..,N. Let oz denote the IMEX approzimation of z*(t"), and let e =
2% (t,) —o 2. Then provided the true solution satisfies the regularity assumptions

Vzt e L2((0,T); L=(Q)), 0:zF € L*((0,T); L*(2)),
Ouz™ € L*((0,T); L*()), Voz™ € L*((0,T); L*()),
the following error estimate holds

N

loex|I* + lloen|* + Atm Z(Hvoemz + IVoe, [I?)
m/ =0

V+ Uy

N—-1
< APCTEM o (At S (V2 ()P + wmn?) x

n=0

N
x At S (10wt ()P + 102~ () 2192 ()|
n=0

m

+ (Vm = )2 (IVO2™ (0a)II” + V02 (1) 1)
+ 110z (m)|* + ||3tz+(nn)IIQHVZ_(tn)Hio)~

Proof. We begin by rewriting the first continuous momentum equation as

Ait(z+(tn+1) — 27 () + (27 (tn) - V)2 (tns1) — (Bo - V)21 (tna1) (3.3)
_ v +21/m AZ+(tn+1) _ V— VU AZ_(tn) n vp(tn+1)
= é(er (tp1)—=2F (tn) = 02" (1) + V_;m Az (tpe1)— il Az (t,)

+ (27 (tn) - V)2 (tng1) = (27 (tng1) - V2T (tng) + £ (Enr)-
The first momentum equation for the IMEX method is

1 _
E(OZIH —0z5) + (02, - V)oziy — (Bo-V)oz, g —

V+ Uy

2

Aozt (3.4)

V—VUnm

Aoz, +Vopi = 1 (tny).

The second continuous momentum equation may be expressed as

1

E(Z_(tn+1) — 27 (tn) + (2T (tn) - V)2~ (tpe1) + (Bo - V)2~ (tns1) (3.5)
v +2VmAz’(tn+1) V= Unm Azt (1)
= Ait(zf(tn-u) — 27 (tn)) — Orz (tns1) — Vp(tns1) + (27 (tn) - V)27 (tns1)
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v— z/m V—VUm

— (2F(tas1) - V)27 (tn1) + Az (tns1) — Azt (ty) + F (tasr)-

The second momentum equation for the IMEX method satisfies

1 _ _
— 0z 1 —02,) + (02 - V)oz, 1+ (Bo - V)oz, (3.6)
At

14 1Z vV — U,
+ " Aoz g — TmAOZ:f +Vop, 1 = F (tny1).

Subtracting (3.4) from (3.3) and multiplying by oe,’, ;, subtracting (3.6) from (3.5)
and multiplying by e, , adding the resulting equations and reducing gives

1 1 _
E(||06I+1||2—”06+||2) ZAt(HOen-HHz HOen”2) (3.7)
(v er) 2 2 2 -2
4(TL)(HVO will? = IVoed IIP + [Voe, 112 = [ Voer, %)
UV, 9
+ (el + Vo€ al)

< (027 - Vozpy1s0€m1) = (27 () - V)2F (tnt1)s 06011

+ (2 (tn) - V)27 (tns1)s0€rp1) — (21 (tng1) - V)27 (tnt1)s 0€041)
+ (0= - V)oz,11:0€,41) — (2" (tn) - V)2 (tnt1);0€,41)
((z ( n) - ) (tn+1)706i+1) - ((z_(thrl) : V)z+ (tﬂJrl)’ 06:;,—1)

27 (thy1) — 27 (tn)

+( = — 012" (tng1)s 0€41)
N (z+(tn+1>m— 2 gt ), 0€n11)
L Ym Y (V(z (tng1) — 2~ (tn)), Voe, 1 1)
+ 2 (G (2 (tnn) = 27 (00)), Voera).

The proof continues by bounding the terms occurring on the RHS of (3.7)

(027 - V)ozirs0emi1) = (27 (tn) - V)2 (tnt1) 05 41) (3.8)
= ((0ef)-V)zF (tus1),0e011) <Oy Hoed [IPIVET (tas) 1% + vIIVoest %
((z+(tn) : V)Z_(thrl)’Oe;-i-l) - ((Z+(tn+1) : v)z_(tn+1)70677+1) (3-9)

= (((z"(ta) = 2" (tn+1)) - V)2~ (tns1) 0€11)
< CALY 02T () 121 V2T (tas1) 26 + Y Voer |17,

((0z$ ) V)oz,;_l,oe;_,,_l) - ((z+(tn) : V)Z_(tn+1)7067:+1) (3~10)
= (o€ - V)2 (tns1)0051) < Cv Mo 21V 2 (bnga) |12 + v Voer I,
((z7(tn) - V)2¥ (tns1)s 06 11) = (27 (tng1) - V)2 (tns1), 0658 41) (3.11)

= (((z7(ta) = 27 (tns1)) - V)2 (tnt1)s 0€0s1)
< Oy r A0z () IIP IV 2T (E) 1% + 71V oed o 117,

(Z_(thrl)At_ Z_(tn) . atz—i- (thrl)? Oe’r:Jrl) (312)

< CALy 0wz (na)II” + 71 Voer 4 1%,
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z" (tnt1) — z" (tn)

( Al — 0zt (tns1)s 0€5041) (3.13)
< CAPY MOuzt () 1P + [ Voe 1%,

I P V(2 (b)) — 2 (t)), Voe, 1) (3.14)
< CAP (v — 1)y V2™ (1)1 + 7 Voerd 112,

HS T (V(E () = 27 (), Vo) (3.15)

< CAE (v — )y VO™ () |” + 7 Voe, 4|17

Specifying v = ﬁ, substituting (3.8)-(3.15) into (3.7), and rearranging gives

1 + 2 2 1 9 2
gz loensall® = lloeit %) + 57 (loensa II* = lloez 11%) (3.16)
(v —vm)? - )
+ W(HVO%HHQ IVoe |1 + [[Voen I — | Voer |I?)
VV”TL + 2 _ 9
+ W(HvoenHH + ||VO€n+1|| )

V4 VUnp

< O A (1002 (1) PV 2 () + 1902 ()P 192 (1) e
10z~ ()P + 100z () |2 + (v = )90z~ (1) 2
+ (v — V)V (1))

v+ _

+C— == (lloexr I” + lloe I?) (1 V2" (b4 )12 + 11927 (tn 1))

The proof is finished by multiplying (3.16) by 2At, summing from n = 0 to N — 1,
dropping nonnegative LHS terms, and applying Gronwall’s inequality. O

3.2. Second order unconditionally stable SISDC partitioned scheme.
Having shown the IMEX method is linear, unconditionally stable, modular and first
order accurate in time we seek to develop a more accurate method that retains the
‘good’ qualities of the IMEX method. To this end we employ the spectral deferred
correction technique (for further details of this technique see [13, 33, 21]).

The second order semi-implicit spectral deferred correction method is as follows:
after computing first order approximations, (0z;5,0p;) and (02, 1,0} ;) (using for
example the IMEX method above) of (1.2) at time ¢,, and t,41 respectively we seek
to compute (12, 1,1 ;) satisfying

1 v+, vV—v,
Kt(lzfﬂ —12,) — T Az - A1z F (Bo-V)izpy,

v+v, V—U.
+ (28 Vizp + Vive = F(Bo-V)oz,, — 5 Aoz — 5 Dozt
1 1 v+, v+,
§(B V)Ozn+1 *(Bo . V)OZ?L: -+ onZf+1 -+ mAQZ

v— Um 1 1
+ 4 A0zn+1 + 7A0Zf - §(OZ7T+1 : V)quf+1 - 5(0Z7f+1 : V)Ozriz
1 1
- Vopfﬂ + §V(0P2E+1 +opit) + if(tnﬂ)i + if(tn)i

V-zir1 = 0.



LEMMA 3.2. Given a final time T > 0 and timestep At > 0, let gz;- denote the
IMEX solution at time t, = n x At for n = 1,2,...,N. Then the solutions to the
SISDC method are unconditionally stable and satisfy

N

+ 12 112 £ At VVm +112 —2
liznll” + hizyl” + gi(VJer)(”VlzkH +[[Vizi [I7)
+A ( Vm)2

m(nvlzw + IVaz]?)

u—l—ym
< CAl z( |Bollos + (v + ) + (v = va) ) (IVoz 1 | + [ Voz] |
k=0

+ IIVoz;Z+1||2 +1Vozi; 1) + (Vo * + Vo2 ) (IVozi 1P + Vo2 II)
HIF ) I+ I1F @I + 1 (eI + Hf’(tk)IIQ)

i G ) (IV2(to) P + [ V2(t0) 1.

t +112 t72 \7"m)
+ () I? + ll2(t0) | + S

Proof. Multiplying the SISDC momentum equations by 1zj; 1 and 12, Te-
spectively, applying continuity equations and polarization identity, and adding the
relations gives

|z lIP= 28 [P+ 2 ==t )12 V+Vm ot

[ el Y 1/+1/m
2At

—((B, 'V)OZZ-H’ 1zi+1)—|—

z/um

(Vz,,Vzi )  (3.17)

V—VUm

2
V—
(Vozn+1’v1zn+l)+ " (Vozy NViz i)

_|_

IV 1+

(Vz:[, VZV_L+1)

V+Up
4

1 1 Vm—I—V
+5((BoV)ozi112,10)+5(BoV)ozy 1 2,.0) =

(Voz,,Viz, i)

V—VUpm _
- 4 (V0Zn+1av1zi+1) + ((02 V)OZ7+1+1)vlzi+1)

1 1
((0zny1-V)oz ) 1nzi)— 5 (02 V)ozn»1ZI+1)+2(f+(tn+1)»1zi+1)
(.f+(tn>71zr+1+l)

B, .V)Oz;+l’1z’r_7,+1)+

+
l\')\r—*w\r—l

V+VUm v— z/m

X

(Vozn 1 Vizo )+ ———(Voz, Viz, )

Vm+V
4

(VOZ;-&-D VIZT_L+1) + ((oz;t : V)oz;+1), 1z7’_L+1)

1 _
5(Bo-V)oz, ,12,41)—

--(B- V)Ozn+171zn+1) B

— Um

4
1, R |

_5((0zn+1'V)Ozn—i-l?lzn—&-l)_i((ozn'V)Ozn71zn+1)+§
1

+ §(f_(tn), 1ZI+1)~

(Voz,,Viz, )

tw\bﬁ

(f ™ (tng1) 2, 11)

Lower bounding dissipation terms on the LHS of (3.17) using the Cauchy-Schwarz
inequality and polarization identity (for further details see [41]) and dropping non-
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negative terms gives

1

1
— 2 2 — 2 — 112
s Uzl = 11212) + 5 (2l = a22]?) (3.18)

VVp,

3+ vm)
+ V122 = V127 12)

_ (v —vm)?
+ V2 2 + 1Viz o 1?) + 7)(||V121+1||2 —[VizE?

(v + vy,

V+VUm, V—VUpm

S_((BO'V)OZL-lalzL-l)"i‘ (vOsz-lvleL-l)"‘ (VOZLVIZ:-H)

3 (BorVofuan i) +5(Bo ozt i)~ 2 (Vozs Vist)

— T (Vo Vizho) + (02 - Vozia)zi)

50z Dozt zin) — 5 (07 Vs azta) + 5 (FF 1) nziin)

50 )zi)

+((BO~V)Oz;+1,1z;+1)+H%(Voz;rl,vlzgﬂwr V74Vm (Voz,f, 'Viz, 1)
5 (Be Yoz i)~ 5 (B oz nzm) 2 (Vo Vi)
g _4Vm (Voz, 11, Viz, ) + ((oz) - V)oz,41):12541)

502 Dozmaazi) — 5 (058 Vo azm ) 45 (F tnsn)aztn)
S0t 120

Majorizing the RHS terms of (3.18) with standard inequalities gives

1 _ 1 _ _
oz zall? = 1z 17) + 557 (hzaa P =z 1)

_ WWm + o2 - 2 M( + o2 +12
+2(1/+Vm)(||vlz"ﬂ” +Viz, 4|l )+4(y+um) IVizy [P =[Vizy |
+ V1 zl? = V12, 12)

<CM B 2 — Y (IVaz T 112 4+ [[Vazt |2
SO (I1Bolloc + (¥ + vm)” + (v — vm)")([Voz i ll” + [[Vozy |l

V0251 [P+ Yoz, 1)+ (Vo2 12+ 1902 1) (V025 [P+ Vo2, |2)
FUF bl + IEE I + 1 12 + £ 12)-

Multiplying by 2At and summing over timesteps yields the desired result. O

The purpose of adding the correction step is to develop a more accurate numerical
method and so we seek to show that the SISDC solutions are in fact second order
accurate. To this end we state and prove the following lemma, which is necessary for
the proof of the accuracy of the SISDC method.

LEMMA 3.3. Given a final time T > 0 and timestep At > 0 let gz be the IMEX
approzimation to z(nAt)* forn =1,2,..,N. Let el = z(t,)* — oz Provided the

8



true solution satisfies the additional regularity assumptions
OupzTe L2((0,T);L*(Q)), 8, zFe L((0, T); L)), VazTe L2 ((0,T); L=(Q))

the discrete time derivative of the IMEX is first order accurate in time and satisfies

||M”2+HMH2
At At

D e B e )

v+, = t

N-1
V+Uny _
<O exp (A Y (VT ()% + V2 (bnsn)l12)) %

n=0

N-1

XAty (At2|5tttz+(nn)||2 + A8 Oz () |2 + AL (VO™ (na) I3

n=0
+ AL [VOz () PIV0:zt ()2 + AL Vruz™ () 2V (1)1
+ APV )Pz (6P + 182~ () |12 Voe a1
+ V02 )P Voer 12 + 102" ()% [ Vo |12
199z~ (1) P 90ef 12 + [Voes |2 + | Voes |).

Proof. For ease of notation we begin by defining s,,41+ = Ai(oef_Irl —oel)
Next consider (3.3) and (3.4) at timesteps n + 1 and n. Subtracting (3.4) from (3.3)
at timestep n + 1 gives an equation involving ge;’, ;, and subtracting (3.4) from (3.3)
at timestep n gives an equation involving ge;”. We then subtract the new equations
involving the IMEX errors to get an equation that involves s: 1 1- We similarly derive
an equation involving s, ;. Multiplying the respective equations by =;s; ; and
ﬁs; 11, adding the equations, and reducing gives

saz (sl =18 1%) + sz (lsna P = llsm 1) + 5= (Vs 1P+ 1 Vsi i 1%)

+ ) (Vs = Vs 24+ | Vsr = Vs |2) (3.19)

(Alt((oz “V)oz,) 1,80 1) — é((z_(tn) V)2t (tns), st 0)
(2 (tn) - V)2 (1), 850) — 5 ((07s - Vo 584)

(5027 Dhoziinssmi) = 15 (1) V) () 54)
(@ ) V)2 (t)sin) = 35 (051 Doz si)

(57 (1) D)2 () 880) = 3 (5 () - V)2 (i) 854
g () V)2 (1), 8510) = 3 (2 () - V)2 (1), 5500))
(g () V)2 () s700) = 35 (5 tsa) - V)5 (b))
g (5 ) V)2 (1), 5710) = 3 () V)27 (1), 5700))
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— 2t(t
( n+1 z ( n) _ atz+(tn+1)73:;+1

zt fz+
_ 1 ( (tn) < (tn— )7atz+(tn),8:+1)

( n+1 z7(tn) Oz (tasr),s S;+1)

At(z (tn)—Azt (b 1)—815 (¢ )a37:+1)~

After bounding the nonlinear terms of (3.19) (see A.1) applying Taylor series to the
remaining linear terms of (3.19) yields

é‘(ﬁ—(tnﬂgt z7 (tn) — 9zt (n+1),s:+1> (3.20)

(E ) )

< Oy AP0z (0a)I* + Vs

é‘ (zf(tn+1)Atf 2" (tn) 0:2™ (tn+1)s S;H) (3.21)
() )

< Oy A0z () |IP + Vs |17

Having bounded all RHS terms of (3.19) we continue by choosing v = m, sub-
stituting (A.7), (A.8), (A.9), (A.10), (3.20), and (3.21) into (3.19), and rearranging.
Multiplying the resulting equation by 2At gives

(s P =18 1%) + (lsnpa P =87 11%) + At (Vs il +1Vs 41 11%)

(+)

m(HVSZHIF — Vsl + Vs l? = IV %) (3.22)

V+Vpy _ _
< Ot (s 2 + 1y 12) (192 ()2 + 1927 ()l )
V—|— Um

UV,

+ At

+ CAt

(Hatz ()31 Voer 1 1” + lloen 1 V02 (nn) 12

+ 192 (Tin)HooHVoenH||2 +lloen_1I21Vaz™ (1) 1%
+AVOz™ (1) 12Vez™ (1) |2 + A VOuz™ (1) 121V 27 (20) ]
+ A2V z" () 21V 0z~ ()12 + AL Vrez™ (0,) |21V 2 ()17
+ A0zt () 1* + At2||3tttz_(77n)||2>

V+ Uy

14
+C At|Vs!|?Voe, ||t + C
VVpm

+ v _
AL Vs, (12 Voe 1"
VUV,

To finish deriving the error bound requires an application of Gronwall’s inequality.
However, there are two subtleties that prevent us from doing this immediately. The
first complication is the last two terms of (3.22) involve Vs, and so they require

further treatment. Recall that ge; denotes the error in the IMEX solution, and so
we have the following

(At Voes 4 ]*)?

+ 4 _
A Voet ||t = =

< CAL. (3.23)
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Using (3.23) we derive bounds for the last two terms of (3.22) as follows
At Vs [2[Voe It < CAP|Vsy||? < CAH|Vey||* + CAH Ve[ (3.24)

The other subtlety that requires our attention is it is only possible to sum from (3.22)
n = 1 to N — 1, because sgt = Ait(oeojE — ge_1%) is not defined, and this leaves
nonpositive terms on the LHS that must be dealt with. After we sum (3.22) from
n=1to N —1 we are left with the terms —||s] |2, —||Vs{||?, —|s7 ||?, and —||Vs] ||
on the LHS. To apply Gronwall’s inequality requires moving these terms to the RHS,
and to yield the desired result we need these bounded by a multiple of At?. Recall
that the IMEX method is a first order accurate method, which implies the local error
(Oeli) in the method is second order accurate. Thus, we have the following bound

1 1
IsT1” = 15 (o€l —0ed)I” = [ 57067 I < CAL. (3.25)
Bounds for ||Vs]||?, |Is7||?, and ||Vs] ||? can be derived similarly.

Substituting (3.24) in to (3.22), summing from n = 1 to N — 1, rearranging and
applying the discrete Gronwall lemma finishes the proof. O

We now state and prove the main result, that solutions found with the SISDC
method are second order accurate.

THEOREM 3.4. Given final time T > 0 and timestep At > 0 let oz and 1z%
respectively denote the IMEX and SISDC approzimations to z* at time t, = nAt for
n=1,2,...N, and let 1eF := 25 (t,) — 2. Additionally, we let si_l = ﬁ(oeﬁ_1 -
oer) forn =1,2,.... N—1. Provided the true solution satisfies the additional reqularity

Vz* e L2((0,T); L?), 8, (2T - V)z* € L2((0,T); L?),
GttVzi € Lz((O,T), L2>, and 8ttf+,8ttf7 c L2<(0,T), LQ)7

then the SISDC approximation is second order accurate in time and satisfies

el + ey |? + At

N
14%%) 2 —2
Tt o SV 4 91 )
n=

m

N—-1
v+ v

< m + 2 - 2
<CT e (Atnzzonw (Il + V2~ (ta) 12 ) X

N—-1
x(A Y CEI AR VBV + AR VB Vs
n=0 m
+ ALV () |2 Vs, [P+ A2 Voer |2 Vs, [P+ A2 Vozy |2 Vs, |
+AL Vs, P Voes o [24+A8 Va2~ (1)1 Voe, . |
+AL Vs, 3 PV (tasd) P+ Voer 2 [VO2* (1)1
FAL Vs PIV2F () P+ APV (1) [V |2
+AL[[Voer |2V, P+ AL Vozt 2 Vs, [2+AL Vsl 7] Voer, |2
+ AL (VO (1) 2l Voer o |I? + ALVs [P VE (b))
+ AL [[Voe, PV ()| + AL (Vs PV (t)]
+At2(V+VM)2||V3:+1||2+At2(V_Vm)2HVST_L-H||2+At2(V+VM)2”V3;+1”2
A= v 2V |24+ AL [0 F (0)|P+ AL |00 F (1) 2}).
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Proof. We begin the proof by defining F™ and F~ as follows

Ft.= (BO.V)z+_(z—-V)z++”+ m —Vp, (3.26)
F*;:—(BO-V)z+—(z*-V)z++V+2”mAz++” "MAZT T —Vp. (3.27)

We may express the first continuous momentum equation as

Lo+ + LI
E(z (tn+1)—z (tn)):E } Frdr.

Applying the trapezoid rule to the integral gives

1 V+vn V—VUp
Kt(z+(tn+l) — 2% (t)) - ) AzF(tpi1) —

= %(BO V)2 (tn) + %(Bo V)2 (tn) — %(’zi(tn+1) V)2 (tny1)

Az (t,) (3.28)

- %(z*(tn) V)2t () = L A (fn) + L A (1)
V—Vp _ V—1Vp _ 1 1
1 Az (tny1) — 1 Az (tn) + §f+(tn+1) + §f+(tn)

1 1
- gvP(thrl) - §VP(tn) + CAtgattF+(77n)'

The first momentum equation for the SISDC method is

Ait(l'z:+1 s DAz - LA 2 (3.29)
_ (Bo Vhzt, — (Bo Vet — +2”m Bozfyy - L0 Aoz
(B Vozi + 5 (B -V)oz,! + - +4Vm Dozl + Y + VmA zh
+ T Aoz + T Aoz — (127 Vg + (0% - Vozi
— 502 ozt — 305 Vst + 35 (tst) + 357 (0.

We may similarly express the second momentum equation as

1, _ _ 1 [ty
() — 2 (tn)):E/t Fdr.

Applying the trapezoid rule to the integral gives

1 v+ Um, V—"Vn

a7 (1) = 27 (t) — —5— A2 (fara) - Az*(tn) (3-30)
5 (Bo D)2 (1) — 5(Bo- V)2 (1) — 5(2* (tns1) - V)2 (tar1)
- %(f(tn) V)2 (ty) — 2 + A () + L A (1)
F UM A () — L ”’" Azt (ty) + %f—(tw)

12



1. 1 1 _
+ §.f (tn) - iv])(thrl) - §VP(tn) + CAtQattF (nn)

The second momentum equation for the SISDC method is

1 V+vn, V—Vp

A (1t~ 120) — Az, g — Az,
V+ Uy v — um _
~(Bo - V)izg1 + (Bo - V)ozg g — —5 Doz — Aoz,
1 1 v —|— Vm v —|— Vm
— i(Bo . V)()Zi_,'_l — §(Bo . V)OZ:'L_ Aozn_H + AOZ

V — UVUm _ v
Aoszrl +

V. _ _ —
= Noz, — (14 “V)iz, o+ (ozif V)oz, 41

1

S (055 - Doz + 3 (tuin) + 35 ().

1 _
- i(oziﬂ : V)Ozn+1 D)

(3.31)

Subtracting (3.29) from (3.28) and multiplying the result by je; 41 gives an equation
in terms of 1€}, ;. Similarly, subtracting (3.31) from (3.30) and multiplying the result
by 1€, ,, gives an equation in terms of ;e ;. Adding these relations, reducing, and
lower bounding dissipation terms gives

2

1 1 _
el = e 1) + o (el = e ?)
VU,
+ (Vi + Ve al)
(V_Vm)2 + 2 +112 - 2 -2
+m(IIV16n+1H —IVieg[I” + IVie, 1 [I° = [[Vie, [I7)

< ’(1((30 V)2 (tn1), 1€840) + %((Bo V)2 (tn), 167+L+1)

1

(-

~((
+ (= 5(BeD)2(tnia) 1) — 5(Be - ¥)z (1), 167n)
+ ((Bo - v)1Z7:+17 1€;+1) - %((Bo ) V)Oz7:+17 167:+1)
(= 5 ) V)2 rs)ref) = 5 (2 (1) - D)2 ¥ (tn), 16f0)
+((1z,, 'V)lz:;—&-l? 1e:+1) — ((02,, 'V)OZIH) 162-4-1)
+ 5 (0% Vosaanefi) + 5 (0% - Dozt 1ef41))

(= 50 ) V)= ns)renan) = 5 (2 (00) - D)2~ (1), 1601)

+ 2
+((12F - Vizn e, ) — (02 - V)oz,11e,0)
+

_ _ 1 -
(0Z41 - Vozmprs1e50) + 5 (02 - Yoz 1€5)

1
2
<V+l/m
vV —

VA4 Unp
+ 2 (th41), V, 1e:+1) - —(VzF(tn), V, 13:L_+1)
U, _ V—Up _
+ 4 (VZ (tn)’ V’ 1e7er+1) - (VZ (tn+1)7 V’ 162—{-1)
V+Vpy V—Vnp _
T (VOZZ+1’ Vv, 1e:+1) - T(Vozn 'V, 1e;+1)

13

(3.32)

BO'V)lzi+1a16:+1)+§((B0'V)0Z:+171e:;+1) ((B Vo nvlei+1))
2



V—UVUm V+Vm

+

(Voz, 41, Virer ) + —=(Voz,, V, 16&1))

4
v+, _ _ V+V7
+ (T (). Vi) =

V—Up _ V—"Um _
4 (vz+(tn+1)ﬂv7len+1) + (VZ+(tn),v,1en+1)

v+, _ _
4 = (vozn+l’ v’ 1en+1) -

V4 Uy V—VUp

4 7(v0z;+17v7167:+1))

+ (OAt2(8ttF+,1€n+1) +0At (8ttF 716n+1))‘

(V2= (tn), V, 187:-4-1)

V—UVm _
T(VOZI’ V, 1en+1)

(Voz, . V,1e,.q) +

The RHS terms of (3.32) are separated into seven groups. To derive the bound for
the first group we add and subtract 3((Bo - V)2 (t,41),1€;0,1) to see

1 1

|5((Bo - V)2t (tng1), 160, ) + 7 ((Bo V)z"(t,), 16:+1) (3.33)
1

—((BO~V)1ZI+1,1e:+1)+§((BO~V)0zZ+1,16,";+1) ((B Vo n»le:+1)|

((B V)(Oen+1 - oe+), 1e:+1)
< CTINQHVBoH Vst ? +AlViel )

The second group of terms in bounded as follows

| 3 (Be- V)= () rempn) — 3 (Bo - V)=~ (1), rey) (334

— — 1 - - 1 n n
+((Bo"V)12,4151€,11) — 5((BO-V)Oan, 1€,11) + 5((Bo'V)oZn i)l
< Oy AP VB, 2|V 12 + A Vier

The remaining grouped terms are bounded similarly and details are provided below
(see A.2). Specifying v = 6oty Substituting the bounds (3.33), (3.34), (A.17),
(A.18), (A.19), (A.20), (A.21), and (A.22) in to (3.32) and rearranging gives

1

TAt(llleLlllZ*Hl el |I”) + (||16n+1|| — e, 1?) (3.35)
UV, 9
JFW(”VN%HH +\|Vlen+1ll )
(v — vm)? 2 2 - 2 112
+m(||V16n+1H —IVied I + [IVie i I? + IVieq %)
<c”+”’” AZ|VB.|2[Vst.,|I? + AL2|VB.|?[Vso.,|?
IVBo|*IVs,iill” + At [[VBo |7V, 44

HAZ V2 (1) PV st P+ AL [ Voer 21V s [P+ A [ Vozy, 7] Vs |12

+ A Vs, P Voes 7 + AL (Vo2 () |I*[IVoer I

+ A2 Vs, [PV (tn)[” + AL ([ Voe, PV (02)]?

+ ALV, PV ()7 + APV (t0) 2 Vs |12

+AL|Voer [PV, [+ A8 [ Voz Vs, [P+ A8 Vs 12 Voe, . )1
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+ AL(IVO2T (00) |2 Voe, 1 I° + AL Vs [PV2 (tor) I
+ At Voey o [21VOz™ (na)I* + AV |21V 27 (£
AP ()| Vs [P A (=) ([ Vs [P+ A8 (040 Vs i |12

+ AP (1 = v)? [V [ + A0 F (na)]|* + At4||<9ttF_(77n)Il2>

14 V.
+C+m
1 4%

m

(lhen I* + lex ) NV2T (tns1) 12 + V27 (Ers1) 12)-

Multiplying (3.35) by 2A¢, summing from n = 0 to N — 1, and applying Gronwall’s
inequality finishes the proof.
O

4. Computational results. Consider a well-known test problem for the 2-D
NSE: two-dimensional wave propagation (considered on a square [0.5,1.5] x [0.5, 1.5]).
This example is chosen because the solutions are varying smoothly in space so that it
is easier to track the error due to the temporal discretization; for more details on the
traveling wave test problem see, e.g., [34, 26, 19] and the references therein. Let the
flow be electrically conducting, and introduce the time-varying magnetic field so that
the true solution (in Elsisser variables 2+, 27) is

[ 0-75+0.25 cos(2m(z—1)) sin(2m(y—t))e 87 1R 1 0.1 (y+1)3etRen’
—0.25 sin(2m(z—t)) cos(2m(y—t))e 87 1R 4 0. 1(z+1)3etBen’ )

- [0-75 4 0.25 cos(2m(z—1)) sin(2m(y—t))e 87 tRe™ _ 0.1 (y+1)3etRen’
—0.25sin(2m(z—t)) cos(2m(y—t))e 8T tRe T _ 0.1 (x+1)3etRen’ )

p= —6—14((?08(47T(x —t)) + cos(4dm(y — t)))e_m”ztRefl.

We test the case of a laminar flow, and we also want Re # Re,, to avoid unnec-
essary cancelation of terms, therefore we choose Re = 1, Re,, = 10. Galerkin finite
element method is employed, using the Taylor-Hood elements (piecewise quadratic
polynomials for 2T and z~ and piecewise linear polynomials for p). The results
presented were obtained by using the software package FreeFEM + +.

We compare the true solution to a solution obtained by our two-step deferred
correction method. It follows from the theoretical results that an error of the order
O(k+h?) is to be expected when approximating the true solution (27, z7) by the first-
step variables (w, z) (this is the IMEX method). Then, the correction-step variables
(cw, cz) should approximate the true solution (z*, z7) with O(k? + h?).

We set the time step equal to the mesh size, k = h, to verify the claimed second-
order accuracy of the method. The tables below demonstrate the first-order accuracy
of the IMEX approximation (w,z) and the second-order accuracy of the correction
step approximation (cw, cz). The error is measured in the spatial norm L?([0.5,1.5]%)
at the final time level T =1, N = % = %

The convergence rates in Tables 4.1, 4.2 were computed using the step sizes h =
1/4,1/16,1/64, and the correction step approximation is clearly of the second order; if
the IMEX approximations for z+(T) and 2~ (T') are computed with h = 1/64 and h =
1/128, then the corresponding IMEX convergence rates are 1.07 and 1.09, respectively.
Hence, the computational results are consistent with the claimed accuracy of the
method.
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Table 4.1: First-order approximation, IMEX, Re =1, Re,, =10, T' = 1.

h |z7(T) — wN”LQ(Q) rate | ||z7(T) — ZN”LQ(Q) rate
1/4 0.0260319 0.0240726
1/16 0.0026907 1.64 0.00276714 1.56
1/64 0.000416796 1.35 0.000423207 1.35

Table 4.2: Correction step approximation (second order), Re = 1, Re.,, = 10, T = 1.

h [ z7(T) — cw™ |12 | rate | 2= (T) — czV|12(q) | rate
1/4 0.0444342 0.0466917
1/16 0.00234416 2.12 0.00221543 2.2
1/64 0.000123658 2.12 0.00012288 2.09

5. Conclusions. When solving full evolutionary MHD systems, it is usually
more computationally cheap to employ partitioned (rather than monolithic) methods.
These methods aim at decoupling the MHD system by successively solving the two
sub-physics problems. Not only this approach is computationally attractive (for large
N it is much cheaper to solve the N x N subsystem twice, than the full (2V) x (2N)
one time), but it also allows for parallelization and the use of legacy codes for the
physical subproblems. An unconditionally stable (although only first-order accurate)
IMEX method was proposed in [41], which decouples the full MHD system using
the explicit discretization of the coupling terms. In this paper, we have introduced
and thoroughly studied the higher-order accurate method, which utilizes the deferred
correction approach, built on the fore-mentioned IMEX scheme. The choice of the
deferred correction (as opposed to other high order methods like Adaptive Runge-
Kutta or the BDFs) is based on the fact that different terms in the MHD systems
can evolve on different time scales - and the deferred correction is known to be well
tailored for such problems. We proved the unconditional stability of our method and
(for the case of the two-step method) its second order accuracy. The claimed accuracy
was then numerically verified on a test problem of the wave traveling in the presence of
the magnetic field. This test problem was chosen because the error is affected mainly
by its temporal component, and not the spatial component (the study of possibly
different spatial discretizations is outside of the scope of this paper). As a result, we
obtained a method for solving full evolutionary MHD systems in Elsésser variables,
which is fast, unconditionally stable and second order accurate, and allows for the
usage of different sizes of time steps for different terms of the MHD system.
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Appendix A. Appendix.

A.1. Details of proof of Lemma 3.3. The nonlinear terms of (3.19) have
been separated into four groups. Treatment of the first group of nonlinear begins by
applying the identity
ab — c¢d = a(b— d) + (a — ¢)d twice which yields

1 _ 1 _
E((Ozn : V)OZ:Z-i-lv 3:;4-1) - E((Z (tn) ) V)z+(tn+1), 5:+1) (A-l)
1 _ 1 _
A (= () V)2t () shn) — 2 (07 oz 8740)
1 1

= _E((Oz; : V)oeLDSLQ - E((Oe; : V)z+(tn+1)a3j{+1)

(2 (tnr) - V)oel 5E,)

+ At ((0ey_1 - V)ozt, 5:+1)-

TAr

Adding two zero terms to(A.1) regrouping and applying the same identity gives

(0% Vot 8ti) — 152 (1) )2 (), 510) (A2)
g (7 ta1) D)2 ) s) = 5 (07 V)ostss5)

= (= () Voot 58i0) — 27 (020) - Vo, 1)
£ ((3(t) V)oet 1, 550)
+ 7 (oeny V)ozts80) = 37 (0y - V)2 (tara),s3)
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1 _
+ E((Oen—l : V)z+(tn), 334—1)

= é(((z_(tn—l) =2z (tn)) - V)oe, 1,8 1) + ((0s7) - V)oer 1,85 ,1)
+ é((oeg_l V) (2T (t,) — Z+(tn+1)),8:+1) —((s; - V)2 (tnst), S’V-"L_—‘y-l)'

We now bound the terms in (A.2) with standard inequalities as follows

Sty = = (0) - Vel s (43)
< Oz () || Voer 1 1Vl
< Oy Y10z () |2 Voe a2 + Vs, 1%,

((057) * V)oer 1.8 4| < Cllosy 12 Vosy 12 Vo€ 1Vl (A4)
< Oy ' Cllosy 1 Vosy 11 Voest 12 + AVt |12

< Cy Hlosn 17 + CyHIVosy [P Voeq o I* + 71 Vs %,

ey D)= () = 2 (b)), s8] (4.5)

< Clloe,_1[1IV0:2" () lloo | V5,14

< Cy Moen_1 2 1V0ez™ () 1% + AV s34,
((sy - V)2 (tns1), 87040 (A.6)
< sy V2" (bt ) lloo Vs | < Cv7Hsn IPIV2T (tra) 12 + Vsl

Combining (A.3)-(A.6) gives the following bound for the first group of nonlinear terms

0z Voztanssitin) = 55 (5 (00) V)= (i), 5700) (A7)
1 _ 1
+ Kt((z (ta—1) - V)zF(tn), 5541) — At

<Oy (Hf’tz‘(nn)llioIIVoeﬁﬂ||2 +llosy 12+ 11Vs 1 Voes I

((0zn_1-V)oz! . s011)

lloern_1 71V 02 () 13, + IIS;HQIIVﬁ(th)Hio) +4y]| Vs |2

Similar treatment of the second group of nonlinear terms yields the following bound

|5 (05 Vhozmns sman) = 2 (57 (1) - V)= i), 5740) (A8)
g () V)27 () 5740) = 2 (03 Vom0

<Oyt <|8tz+(77n)||§oIVoenHII2 +llosi I + Vst 12 Voer I

+ loen 1 [P0z~ (na)lI3 + IISIIQIIVz(th)IIio) +49[[ Vs 1%

We now derive bounds for the third group of nonlinear terms. Grouping the terms
linearly, applying the identity ab-cd = a(b-d)+(a-c)d, and standard bounds on the
nonlinearity gives

() V) ) stn) = 5 (2 (i) V)2 (t)osie)  (A9)
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(2 (0) - D)2 (00), 5540) = (2 (1) - V)57 () 840)

< Oy ALV Oz () 1PV 02 (1) 12
+ Oy ALV z™ () 21 V2F (1) 17 + 2911 Vs 1%

Similar treatment of the fourth group of nonlinear terms gives

S (0) )2 (tar)s i) = 25 (B (i) D)% (ara)ssies) (A1)

+ é(( +(tn) : v)z_(tn),'s;-',—l) - é((z+(tn—l) : V)z_(tn),s;ﬂ)

< Oy ARV (00) 12 V02 (1) 12
+ Oy AL VOuaT () 12 1V2 (ta) 17 + 2911 Vs 1.

A.2. Details of Proof for Theorem 3.4. To bound the third group of terms
n (3.32) we add and subtract the term

(27 (tn) - V)2 (tns1), 16, 11) to get

(G2 - Vizgiien) — (2 ( ) V)2 (tnt1) 1€041) (A11)
—l—((z*(tn)~V)z+(tn+1),1e:f+1) ((0z V)Ozzﬂvlen-ﬂ)

(02 - Voztirietiy) — (2 (bagr) - V)2  (tng1)s1€511)
(27 (tn) - V)er(tn)v 16:L_+1)'

1
2 2
1, Lo
+§((0zn : v)ozn7len+1) 5

Using the identity ab — ¢d = a(b — d) + (a — ¢)d on the terms of (A.11) gives

V)z" (tns1), 1€ ,1) (A.12)

! V)Ozn+1, 1en+1)

((re, -
((oe;,
1

0—
+((Z_(tn) V)oen+1, len+1) +
—5((0z;+1 : v)0‘9n4-1a 1en+1)

1 _
5((Oen+1 : V)z+(tn+1)v le;t-&-l)

((oe,, - V)z*t (tn), 1e:+1)-

—_

1 _
—5((0211 : V)oe::, lejz_+1) -

DO |

We continue to derive the bound for the third group of nonlinear terms by focussing
on the third through eighth terms in (A.12). Combining the third, fifth, and seventh
terms in (A.12) and adding and subtracting 3((02z;, - V)oe; , 1€, ) gives

(27 (tn) - V)oeqi1,1e041) = (02, - V)oer, 1e,41) (A.13)
+ 505 Voel1e) — 50z - Voot 1e54)
= (=~ () V)loefa — 0ef)16) + (o - VhoeT1€5)
+ 5 (0% Vo6l — ook 1ehi) + 5 (0% — 07ma) - Vo 164

The last term in (A.13) requires further attention

1 B _ 1 _ _
5(((0% *oznﬂ)'v)oeialeffﬂ)i5((('2 (tn) =2 (tnt1)) Vi€l 1,168, )
1 _ _
= 5(((0%“ —0e,) - Voe, 1,16 ) (A.14)
20



1 _ _
+§<((z (tn) -z (tn+1)) 'V)aoe:ﬁ-l’lerti-l)'
Next, combining the fourth, sixth, and eighth terms in (A.12) and adding and sub-

tracting (o€, - V)oz™ (fas1)s1€4,) gives

((oey, - V)Oz;t-uv 16:5-4-1) - ((067_L+1 ~V)z+(tn+1), le:zr+1) (A.15)
1 _ 1 _
+ 5((06n+1 V)oz" (tns1), 1€, 11) — 5((0% V)oz" (tn), 16,5 41)

= —((oe, - V)oeS 1,1e51) + (((0ey, —oeny1) - V)2T (tny1), 160 14)

+’(((Jeq;rl ’V)(z+(tn+1)*z+(tn))a 1e:+1)

—_ N =

+5(((0€n1—0€,) V)2 (tn), 167 11)-

N}

Substituting, (A.13)-(A.15) gives the following equality

(27 (tns1) - V)2" (tnr) 100 40) — %((Z’(tn) V)2t (ta)1e0y1)  (A16)

1
2
+ ((12, - V)lz:+1, 1er+L+1) = ((oz,, - V)Ozi+1a 1er+L+1)
_|_

_ 1 _
((0Zng1 - V)oz 11,160 1) + 5((0% V)oz! 1€t 1)

= ((1ey - V)2 ¥ (tns1), 1€ 10) + (27 () - V) (o€ 1 — 0€rr) s 1€,041)

_ 1 _
+ ((oe, - V)(oei - Oe::+1)7 16:;-1) + §<(Ozn : V)(o@Z - 06I+1)7 le:zr+1)

_ _ 1 _ _
((0en11—0€s)-V)oert 1, 16?f+1)+§(((06n+1—0€n)'V)Z+(tn)v e )
(o€, — OeT_LJ,—l) : V)z+(tn+1), 16:{4—1)

((0€rs1 - V(" (tng1) — 27 (tn)), 16504 1)

(2™ (tn) = 27 (tnt1)) - V), 08,0415 1€41)-

+ o+ o+
ol NI

Applying standard inequalities gives the following upperbound for the third group of
nonlinear terms in (3.32)

(27 (tns1) - V)2 (tns)s1€010) — %((Z‘(tn) V)2t (tn)1en)  (AIT)

(12, - V)lZIH, 16:{+1) = (o2, - v)ozjz_+17 16:’;—‘,—1)

_ 1 _
((0Zny1 - V)oz, 1,160 14) + 5((0% V)oz! 1€t ,1)

< Oy Hhen IPIVZT (taga) 12 + Oy AL <||Vz(tn)IIQIIVSIHII2

+IVoer IPIVstall® + IVozy [P Vs I? + Vs 12 Voer 12

+ Vo2 () IPIVoeq 1 lI” + 1V, [PV 2 (tnga) |
+IVoer [PV 2™ (n,)|1* + ||V8;+1|2||Vz+(tn)ll2> +97/1Vies .
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The bound for the fourth group of terms in (3.32) is derived in a similar way. The
bound is

((z+(tn+1) V)2 (tnt1), 161;-1-1) - %((z—i_(tn) V)2~ (tn), 167:-1-1) (A.18)

+ ((lzv—t : v)1z7_L+1’ 1e;+1) - ((Oz:: 'V)Oz;—i-l? 167:-4-1)

1 _ _ 1 _ _
+ 5((04“ “V)oz,11:1€,01) + 5((0%r V)oz,,1€,41)

<Oy hed IPIIVET (b )% + C’V‘lﬁtg(IIVZ+(7fn)||2||VS;+1||2
+IVoer IPIVsnall® + IVoz 21 Vs, I? + Vs 121 Voer . 12
+ Vo2 () IIPIVoe, 1 I* + 1V [PV 27 (tnsa) 1
+ I Voer 12 1Voz™ (na)lI* + HVSIHHQIIVZ_(%)IIQ) +97Vieq i l1*.

| =

Combing the terms in the fifth group of terms in (3.32) and applying standard in-
equalities gives

V+Vpy

(Vzt(tnt1),V, lej{+1) ] (Voz:-&-l’v’ 16I+1) (A.19)

V—Unm V—VUnm

4 (VZ_(tn)7v7lei+l) - 4
V4 VUn V4 VUnm
4

V+ Uy

+ (Vozﬁa V? 1€i+1)

(szr(tn)a v, 1ej;+1)

V— UV V—Up

T (Vozpi1, Ve ) — 1 (V2" (tnt1), V€0 ,1)
SCAtQ’Y_l(V"‘Vm)?”VSL-l||2+0At2’7_1(1/_”m)2||vs;+1||2+2'Y||1e:+1||2-

(VOZ;, V, 1e:+1) -

The sixth group of terms in (3.32) are bounded similarly

V+Vpy _ _
7(v0zn+17v7len+1) (A?O)

V+ Uy

V4 VUn

(sz(tm-l), va 1e;+1) -

V+ Uy
4
V—Vnp
4

V—VUp

(vz_(tn)a V7 le;—&-l)

V—Um

+ (vOz;)v’ler_H-l) -

(V2 (tns1), V, 1€,41)

V—VUpn

(szr(t")ava 16;-4-1) - 4
< CALPY (v +vy) 2 Vs, | P+ CACYy (v —v) 2| Vs, |2 +27 ] e |12

+

(VOZ:+17 v, 1e;+1) -

+ (ngi,v,legﬂ)

The remaining two terms in (3.32) are bounded as follows

ALP|(0nF " 16 )] < CALY 00 F " (ma)|” + 9 Vien o |?, (A21)
AL|(0uF~ 1€51)| < CAE Y THI00F ™ (o) * + 71V |7 (A22)
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