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Abstract

We study a locally resonant granular material in the form of a precompressed
Hertzian chain with linear internal resonators. Using an asymptotic reduction, we
derive an effective nonlinear Schrödinger (NLS) modulation equation. This, in turn,
leads us to provide analytical evidence, subsequently corroborated numerically, for the
existence of two distinct types of discrete breathers related to acoustic or optical modes:
(a) traveling bright breathers with a strain profile exponentially vanishing at infinity
and (b) stationary and traveling dark breathers, exponentially localized, time-periodic
states mounted on top of a non-vanishing background. The stability and bifurcation
structure of numerically computed exact stationary dark breathers is also examined.
Stationary bright breathers cannot be identified using the NLS equation, which is de-
focusing at the upper edges of the phonon bands and becomes linear at the lower edge
of the optical band.

Keywords: locally resonant granular material; precompression; discrete breather; modula-
tion equation; stability

1 Introduction

Granular crystals are tightly packed arrays of solid particles that deform elastically upon
contact via nonlinear Hertzian interactions [1–3]. The dynamics of these systems ranges
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from weakly nonlinear, when the initial overlap of the neighboring particles due to the static
precompression is much larger than their relative displacement, to the strongly nonlinear
regime characterized by relatively small or zero precompression. This provides an ideal
setting for exploring nonlinear waves, including traveling [1–3] and shock waves [4, 5].

A particularly interesting class of nonlinear excitations exhibited by these materials are
the so-called discrete breathers [6–14], i.e., time-periodic and exponentially localized in space
oscillations that are also encountered in a wide variety of other nonlinear systems (see [15,16]
and references therein). There are two distinct types of breathers. Bright breathers have a
profile (of strain in the case of granular systems) exponentially decaying to zero at infinity and
are known to exist in granular materials with defects [11,13], heterogeneous granular chains
such as dimers or trimers [6, 12, 14] and Hertzian chains with a harmonic onsite potential
modeling Newton’s cradle or granular chains embedded in a matrix [9,10,17]. Dark breathers,
on the other hand, are spatially modulated standing waves with amplitude that is constant
at infinity and vanishes at the center. They have been recently identified and analyzed in a
homogeneous granular chain with precompression [7], and their existence was experimentally
verified in damped, driven granular chains in [8].

In this work we consider both types of discrete breathers in a locally resonant granular
chain characterized by very rich nonlinear dynamics [18,19]. This novel granular metamate-
rial has tunable band gaps and can be potentially used in engineering applications involving
shock absorption and vibration mitigation. The system consists of a regular granular chain
with additional degrees of freedom due to attached linear resonators. Its recent experimental
implementations include mass-in-mass granular chains with internal linear resonators placed
inside the primary beads [20], mass-with-mass chains with external ring resonators attached
to the beads [21] (see also [22]) and woodpile phononic crystals consisting of vertically stacked
slender cylindrical rods in orthogonal contact [23]. Under certain assumptions, each of these
experimental setups can be modeled by a Hertzian chain with a secondary mass attached to
each primary bead by a linearly elastic spring, with the ratio of the secondary and primary
masses being the main control parameter. In a recent work [24], we studied the strongly
nonlinear dynamics of this system in the absence of precompression. Through a combination
of asymptotic analysis and numerical computations, we provided evidence for the existence
of exact dark breathers in the locally resonant granular chain and investigated their stability
and bifurcation structure. In addition, we studied small-amplitude periodic traveling waves
and identified the conditions under which the system has long-lived (but not exact) bright
breathers.

Here we turn our attention to the locally resonant granular chain under nonzero precom-
pression. In the non-resonant limit (regular granular chain, zero mass ratio), such a system
belongs to the general class of Fermi-Pasta-Ulam (FPU) lattice models (e.g. see [25–35]
and references therein), with a dispersion relation for plane wave solutions of the linearized
problem possessing only acoustic spectrum. At finite mass ratio, the dispersion relation has
both acoustic and optical branches. In this respect the problem is somewhat reminiscent of
diatomic FPU chains, although the optical branch is quite different in our case. In the small-
amplitude limit the dynamics of the system is weakly nonlinear. This dynamical regime has
been well studied for the FPU problem, as has its generalized version with an additional
onsite potential [16, 27–29, 31–34, 36, 37]. In particular, the established conditions for bifur-
cation of discrete breathers for this class of problems [16, 32, 33] rule out the existence of
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bright breathers in the homogeneous non-resonant granular chain under precompression, the
limiting case of our problem when the mass ratio is zero and the dispersion relation has only
an acoustic branch. In this case, dark breathers were identified in [7] as the only possible
type of intrinsically localized mode. The defocusing nonlinear Schrödinger equation (NLS),
which has tanh-type solutions, is derived in [7] as the modulation equation for waves with
frequencies near the edge of the linear acoustic spectrum and used to construct initial condi-
tions for numerical computation and analysis of the dark breathers. In another limiting case,
when the mass ratio goes to infinity and the secondary masses have zero initial conditions,
the system approaches the Newton’s cradle model with precompression, a problem with a
purely optical dispersion relation. In this case, traveling bright breathers were investigated
in [10] via the analysis of the corresponding focusing NLS, which admits sech-type solutions.

To explore the weakly nonlinear dynamics at finite mass ratio, we use a multiscale asymp-
totic method (see [31, 36, 37] and references therein) and derive the classical NLS equation,
yielding closed-form solutions of sech-type and tanh-type in the focusing and defocusing
cases, respectively. In particular, we show that parameters (mass ratio and precompression)
can modify the number of focusing regions in the acoustic and optical bands, a phenomenon
which does not occur in classical homogeneous and diatomic granular chains [7, 14]. This
property is particularly interesting for applications because precompression is easy to tune
experimentally. Another special feature of the resonant granular chain is that the cubic NLS
coefficient vanishes at the zero wavenumber corresponding to the lower edge of the optical
band. Since the NLS equation is defocusing at the upper edges of the optical and acoustic
bands, the NLS equation cannot be used to approximate stationary bright breathers in the
present context.

Having identified focusing and defocusing parameter regimes, we first investigate how
well the focusing NLS equation approximates moving bright breather solutions of the original
system. Provided that certain resonances are avoided, we find that the focusing NLS equation
successfully approximates small-amplitude optical bright breathers at various mass ratios
and wave numbers. This very good correspondence is established by integrating the lattice
differential equation starting from the NLS approximation, which leads to robust motion
of the bright breather over long times. We also demonstrate that bright breathers can be
generated in the resonant granular chain initially at rest, and driven from a boundary at
a frequency within the focusing region of the optical band (see [6, 17] for related works).
In addition, we analyze discrepancies between numerical solutions and NLS approximations
which can be observed at some other wave numbers for the optical branch and in the acoustic
case. In particular, in some cases we observe formation and robust propagation of nanoptera,
bright breathers that emit small-amplitude oscillations behind them.

Following the approach in [7], we also consider the defocusing NLS at the edges of both
optical and acoustic branches that correspond to wave number equal to π, and use the static
solutions of the modulation equation to construct the approximate standing dark breather
solutions. A continuation procedure based on a Newton-type method with initial conditions
built from the approximation ansatz is employed to compute numerically exact stationary
dark breathers for a wide range of frequencies and at different mass ratios. Interestingly, the
resulting branches of solutions also include large-amplitude dark breathers, whose dynamics
is strongly nonlinear.

We examine numerically the stability of the exact dark breathers of both weakly and
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strongly nonlinear types, using both a Floquet analysis and direct numerical simulations.
Our results suggest that small-amplitude weakly nonlinear dark breather solutions with fre-
quencies close to the linear frequencies of the system are stable, in analogy to what was
found for the homogeneous granular chain in [7]. As the amplitude of the dark breather
solution becomes relatively large compared to the amount of precompression, the solution
starts to exhibit a very strong modulational instability of the background, eventually leading
to its complete destruction and the emergence of chaotic dynamics. However, when a real
instability of the solution is dominant in the Floquet spectrum, it may give rise to steady
propagation of a dark breather at large enough time. Interestingly, we observe that such
types of propagating dark breathers can also form spontaneously, as a result of the instability
of certain acoustic periodic traveling waves. We also show that the mass ratio plays a sub-
stantial role in oscillatory instabilities of the background of the dark breathers. In contrast,
the value of the mass ratio has a less significant effect on real instability modes for both the
strongly and weakly nonlinear solutions.

The paper is organized as follows. Sec. 2 introduces the model and the dispersion relation
for plane waves is derived. In Sec. 3, we derive the modulation equation of NLS type (with
more technical details included in the Appendix), recall basic features of the focusing and
defocusing regimes of NLS, and localize these different regimes in the parameter space of
the original lattice. In Sec. 4 we investigate the existence of moving bright breathers for the
original system at different mass ratios, and test the validity of the NLS approximation. In
Sec. 5 we analyze the existence and stability of stationary dark breathers and discuss the
excitation of traveling dark breathers by different means. Concluding remarks can be found
in Sec. 6.

2 The model

We consider a granular chain of identical beads of mass m1 precompressed by the static load
F0. To obtain a locally resonant granular chain, we attach a secondary mass m2 attached
to each primary bead via a linear spring of stiffness K > 0. The primary and secondary
masses are constrained to move in the horizontal direction with displacements ũn(t̃) and
ṽn(t̃), respectively. In what follows, we assume that the deformation of the neighboring
primary masses is confined to a sufficiently small region near the contact point and varies
slowly enough on the time scale of interest. We also assume that the effects of plasticity
and dissipation can be neglected. Under these assumptions, the interaction of the nth and
(n+1)th primary beads is governed by the static Hertzian contact law [1–3] corresponding to
the force F = A(δ̃0 + ũn − ũn+1)

α
+, where (x)+ = max{x, 0}, A > 0 is the Hertzian constant

determined by material properties of the beads and the radius of the contact curvature, α is
the Hertzian nonlinear exponent which is equal to 3/2 for spherical beads, δ̃0 = (F0/A)1/α

is the equilibrium overlap of the adjacent primary masses due to the precompression. The
equations of motion are then given by

m1
d2ũn

dt̃2
= A(δ̃0 + ũn−1 − ũn)α+ −A(δ̃0 + ũn − ũn+1)

α
+ −K(ũn − ṽn),

m2
d2ṽn

dt̃2
= K(ũn − ṽn).

(1)
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Let R be a given characteristic length scale. We introduce dimensionless variables

un =
ũn
R
, vn =

ṽn
R
, t = t̃

√
Rα−1A
m1

,

as well as three dimensionless parameters

ρ =
m2

m1

, κ =
K

ARα−1 , δ0 =
δ̃0
R
,

where ρ is the ratio of two masses and δ0 the dimensionless overlap due to precompression.
When R corresponds to the radius of spherical primary beads, the parameter κ measures
the relative strength of the linearly elastic spring and Hertzian interactions for compressions
at the scale of R. Another relevant rescaling consists in fixing R = (K/A)1/(α−1), so that
κ = 1.

Rewriting the system (1) in terms of the dimensionless variables and parameters, we
obtain

ün = V
′
(δ+un)− V ′

(δ−un)− κ(un − vn)

ρv̈n = κ(un − vn),
(2)

where ün and v̈n are the accelerations of the primary and secondary masses, respectively,
δ+un = un+1−un and δ−un = un−un−1 denote the shift operators, and V (r) is the interaction
potential in the form

V (r) =
1

α + 1
(δ0 − r)α+1

+ + δα0 r −
1

α + 1
δα+1
0 (3)

that satisfies V (0) = V ′(0) = 0. In the weakly nonlinear regime when r � δ0, it is relevant
to consider the Taylor expansion

V (r) = K2
r2

2
+K3

r3

3
+K4

r4

4
+O(|r|5), (4)

where K2 = αδα−10 , K3 = −1
2
α(α− 1)δα−20 and K4 = 1

6
α(α− 1)(α− 2)δα−30 . Linearizing the

system (2) about the equilibrium state, we obtain

ün = K2(un+1 − 2un + un−1)− κ(un − vn), ρv̈n = −κ(vn − un). (5)

The linear system has nontrivial plane wave solutions in the form

un(t) = Aei(nθ−ωt), vn(t) = Bei(nθ−ωt)

with wave number θ ∈ (−π, π], frequency ω and amplitudes A and B, provided that the
matrix

M =

(
ω2 −D − κ κ

κ/ρ ω2 − κ/ρ

)
(6)
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Figure 1: The optical (solid) and acoustic (dashed) branches of the dispersion relation (7). Due to the
even symmetry about θ = 0, only [0, π] interval is shown. Here δ0 = 4/9, κ = 1 and ρ = 1/3.

with D = D(θ) = 4K2 sin2(θ/2) has a vanishing determinant. This yields the dispersion
relation

ω2 = ω2
±(θ) =

D + κ+ κ/ρ±
√

(D + κ+ κ/ρ)2 − 4Dκ/ρ

2
. (7)

The relation has two branches: optical, ω+(θ), and acoustic, ω−(θ), as shown in Fig. 1. One
can show that ω+(θ) and ω−(θ) are increasing functions of θ in [0, π] and that ω−(π) < ω+(0),
implying the existence of a gap between the two branches.

Note that in the limit ρ→ 0, the model reduces to the one for a regular (non-resonant)
homogeneous granular chain with precompression, which is governed by [3]

ün = (δ0 + un−1 − un)α+ − (δ0 + un − un+1)
α
+. (8)

In this case the dispersion relation for the linearized problem only has the acoustic branch

ω2(θ) = 4K2 sin2(θ/2). (9)

In the opposite limit of ρ→∞ and for zero initial conditions for vn(t), the system approaches
a precompressed granular chain with quadratic onsite potential, i.e., a Newton’s cradle model
with precompression [10], described by

ün + κun = (δ0 + un−1 − un)α+ − (δ0 + un − un+1)
α
+. (10)

In this limit, the dispersion relation is purely optical and given by

ω2(θ) = 4K2 sin2(θ/2) + κ. (11)

3 Nonlinear Schrödinger limit

3.1 Derivation of the nonlinear Schrödinger equation

To study the weakly nonlinear dynamics of the locally resonant chain, we begin by deriving
the modulation equations for the plane-wave mode E(t, n) := ei(nθ−ωt), with θ ∈ (−π, π] and
ω = ω+ or ω− defined in (7). Using a small parameter ε > 0, we introduce the slow time
τ = ε2t and the macroscopic traveling wave coordinate ξ = ε(n− ct), where c = c± := ω

′
±(θ)
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is the group velocity. We seek solutions of (2) in the form of fast oscillating, small-amplitude
patterns modulated by envelopes that vary slowly in space and time:

un(t) = uAn (t) +O(ε2) = ε{A1,0(τ, ξ) + A1,1(τ, ξ)E(t, n) + c.c.}+O(ε2)

vn(t) = vBn (t) +O(ε2) = ε{B1,0(τ, ξ) +B1,1(τ, ξ)E(t, n) + c.c.}+O(ε2),
(12)

where c.c. denotes complex conjugate. More precisely, following [36, 37] (see also [31]), we
substitute the multiple-scale ansatz

un(t) =
∑
k∈N1

εk
k∑

j=−k

Ak,j(τ, ξ)E
j(t, n), vn(t) =

∑
k∈N1

εk
k∑

j=−k

Bk,j(τ, ξ)E
j(t, n), (13)

where N1 is the set of natural numbers k ∈ N, k ≥ 1, Ak,j, Bk,j ∈ C, Ak,−j = Āk,j and
Bk,−j = B̄k,j, into (2). As shown in Appendix A, this leads to the coupled modulation
equations

i∂τA1,1 + β∂ξA1,0A1,1 +
1

2
ω′′∂2ξA1,1 − h|A1,1|2A1,1 = 0, (14)

[c2(1 + ρ)−K2]∂
2
ξA1,0 = 8K3 sin2 (θ/2)Ā1,1∂ξA1,1 + c.c. (15)

and the identities
B1,0 = A1,0, B1,1 =

κ

κ− ρω2
A1,1 (16)

(one can check that κ − ρω2
± 6= 0). In equations (14)-(15), we assume two non-resonance

conditions,

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2 6= 0 (17)

and
c2(1 + ρ)−K2 6= 0, (18)

and set

β = −4K3 sin2 (θ/2)γ, ω′′ =

{
K2 cos θ − c2

[
1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3

]}
γ (19)

and

h =

{
16K2

3 sin2 θ(1− cos θ)2(κ− 4ω2ρ)

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2
+ 6K4(1− cos θ)2

}
γ, (20)

where

γ =
(ρω2 − κ)2

ω[ρκ2 + (ρω2 − κ)2]
. (21)

Note that h is non-singular when (17) holds. Observe also that (15) can be rewritten as

∂2ξA1,0 = λ∂ξ|A1,1|2, (22)
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where

λ =
8K3 sin2 (θ/2)

c2(1 + ρ)−K2

(23)

is well-defined under (18). Integrating both sides of (22) with respect to ξ yields

∂ξA1,0 = λ|A1,1|2 + f(τ), (24)

where f is an arbitrary real-valued function. Substituting ∂ξA1,0 into (14) then gives

i∂τA1,1 + βf(τ)A1,1 +
1

2
ω′′∂2ξA1,1 + (λβ − h)|A1,1|2A1,1 = 0. (25)

Let
A(ξ, τ) = A1,1(ξ, τ)e−iβF (τ), (26)

where F (τ) is the antiderivative of f(τ). From (25) it then follows that A(ξ, τ) satisfies the
classical time-dependent nonlinear Schrödinger (NLS) equation

i∂τA+
1

2
ω′′∂2ξA− h̃|A|2A = 0, (27)

where we set
h̃ = h− λβ. (28)

Solutions of (27) provide approximate solutions to the original lattice system (2) through
identities (12), (26), (24) and (16).

3.2 Bright and dark breathers solutions

Equation (27) has solutions in the form

A(ξ, τ) = Ã(ξ)eiµτ , (29)

where µ ∈ R and Ã(ξ) is a real-valued function satisfying the stationary NLS equation

−µÃ+
1

2
ω′′∂2ξ Ã− h̃Ã3 = 0. (30)

The focusing case of the NLS equation (27) occurs for ω′′h̃ < 0. In this case (30) admits
sech-type solution

Ã(ξ) =

√
−2µ

h̃
sech

(√
2µ

ω′′
ξ

)
(31)

for µ such that µω′′ > 0 and µh̃ < 0. The solutions of (27) given by (31)-(29) are denoted
as bright breather solutions. Using (26) and (29), we then obtain

A1,1(ξ, τ) =

√
−2µ

h̃
sech

(√
2µ

ω′′
ξ

)
ei[µτ+βF (τ)], (32)
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and integrating (24) yields

A1,0(ξ, τ) =
λ
√

2ω′′µ

|h̃|
tanh

(√
2µ

ω′′
ξ

)
+ f(τ)ξ + C(τ). (33)

In the focusing case, the spatially homogeneous solutions Aθ,r(τ) = r e−i h̃ r
2τ of (27) are

unstable, with typical perturbations giving rise to localized waves close to bright breathers
[38].

On the other hand, when ω′′h̃ > 0, equation (27) becomes defocusing, and (30) has a
tanh-type solution

Ã(ξ) =

√
−µ
h̃

tanh

(√
−µ
ω′′

ξ

)
(34)

for µ satisfying µω′′ < 0 and µh̃ < 0. Expressions (34)-(29) define dark breather solutions of
(27). We then have

A1,1(ξ, τ) =

√
−µ
h̃

tanh

(√
−µ
ω′′

ξ

)
ei[µτ+βF (τ)]. (35)

Integrating (24), we obtain

A1,0(ξ, τ) = −λ
√
−ω′′µ
|h̃|

tanh

(√
−µ
ω′′

ξ

)
+

(
f(τ)− λµ

h̃

)
ξ + C(τ). (36)

3.3 Focusing and defocusing parameter regimes

Representative plots of sign(ω′′h̃) as a function of θ and ρ for optical and acoustic branches
are shown in Fig. 2, where we vary ρ but fix the other parameters at the same values as in
Fig. 1 (κ = 1, δ0 = 4/9 and α = 3/2). Interestingly, it turns out that the number of focusing
wavenumber intervals can change when varying ρ, both for optical and acoustic modes. In
particular, the topology of focusing regions is more complex for optical modes, as shown in
the left panel of Fig. 2.

Let us now study the origin of this phenomenon. From (19), (20), (23) and (28), one can

see that ω′′h̃ can change sign when ω′′ = 0, h̃ = 0 or when h̃ has a singularity which occurs
when either of the two non-resonance conditions, (17) and (18), is violated for θ ∈ (0, π).

For the optical branch of the dispersion relation, (17) always holds for the parameters we
consider in Fig. 2, but the other non-resonance condition, (18), breaks down at some wave
numbers for sufficiently large ρ (solid curve in the left plot of Fig. 2). In this case the sign of

ω′′+h̃+ also changes for any ρ > 0 at the inflection point of the dispersion relation (ω′′+ = 0,

dashed curve) and, for large enough ρ, when the numerator of h̃ in (28) vanishes. Thus, for
sufficiently small ρ, 0 < ρ < 2.356, we have the focusing regime (shaded in Fig. 2) for θ < θc,
where ω′′+(θc) = 0, and the defocusing NLS otherwise. For larger ρ, focusing and defocusing

regimes alternate, due to breakdown of (18), the inflection point, and, for ρ & 15.335, h̃ = 0.
Interestingly, the focusing and defocusing regions “flip” at ρ ≈ 2.356 and ρ ≈ 22.298, where
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Figure 2: Plots of sign(ω′′h̃) for optical (left) and acoustic (right) branches. The focusing region is shaded
in pink (gray in the black and white version). Its boundaries for the optical case include ω′′+ = 0 (blue dashed
line) and the curve along which the second non-resonance condition (18) is violated (greed solid line). Black
solid line in the acoustic case (right plot) corresponds to the curve along which the first non-resonance
condition (17) breaks down. The remaining boundaries separating focusing (pink/gray) and defocusing

(white) regions corresponds to h̃ = 0. Inset zooms in on the region inside the rectangle. Here α = 3/2,
δ0 = 4/9, κ = 1.

the boundary curves intersect, with focusing regime below the ω′′+ = 0 curve at small ρ,
above it for a range of wave numbers at intermediate mass ratios and below the curve again
for a θ-range at larger ρ.

We now turn to sign(ω′′−h̃−) and examine the acoustic dispersion branch shown in the
right plot of Fig. 2. One can show that in this case the curvature of the dispersion curve is
always negative, ω′′−(θ) < 0, for θ ∈ (0, π], yielding 0 ≤ c− = ω′−(θ) < ω′−(0) =

√
K2/(1 + ρ).

As a result, the second non-resonance condition (18) always holds for the acoustic branch
at nonzero wave numbers. However, the first non-resonance condition breaks along the solid
curve, changing the sign of h̃− from negative to positive, and hence the sign of ω′′−h̃− from
positive to negative, at sufficiently large θ < π in the interval of mass ratios 0.074 < ρ <
2.137. For each ρ in this interval, sign(ω′′−h̃−) changes again to positive (defocusing regime)

at slightly larger θ due to h̃ = 0. This yields a very narrow shaded focusing region, with the
lower boundary for θ < π coinciding with the solid curve where (18) is violated. It should be
noted that although this singularity curve includes points where θ = π, the focusing region
approaches this value at its ends but does not include it because h(θ) in (20), and therefore
h̃(θ) in (28), does not have a singularity at θ = π. Instead, as we approach each of the two
end points of the focusing region where θ → π, the values of θ where h̃− is singular and
where it vanishes for given ρ both approach π, so that at θ = π we have the defocusing case,
h̃−(π)ω′′−(π) > 0 for ρ > 0. The focusing region is particularly narrow at smaller mass ratios,
ρ & 0.074 (see the inset in Fig. 2). Outside this region one has the defocusing regime. This
includes 0 < ρ < 0.074, in agreement with the non-resonant chain studied in [7] (ρ = 0),
where only the defocusing case is possible.

To further illustrate these results, we show some plots of group velocity c, curvature ω′′

10



and h̃ as functions of the wave number θ in Fig. 3. One can see that at ρ = 1/3 the optical
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Figure 3: Representative plots of group velocity c (green), curvature ω′′ (red) and h̃ (blue) as functions of
the scaled wave number θ/π at different mass ratios for optical (solid) and acoustic (dashed) branches. Here
α = 3/2, δ0 = 4/9, κ = 1. Left column corresponds to ρ = 1/3 and right column to ρ = 3.

branch has negative h̃+ in (0, π] with no singularities, and the single transition from focusing
to defocusing regime occurs due to the inflection point at θ = θc ≈ 1.892 in the dispersion
curve (ω′′+(θc) = 0). At ρ = 3, however, h̃+ changes sign twice via singularities (breakdown
of (18)), and together with the inflection point this yields three transition points separating
focusing and defocusing regions (see also the left plot in Fig. 2). Meanwhile, the acoustic
branch, as already noted, has no inflection points in (0, π], ω′′− < 0, and the transition from
defocusing to focusing (for θ ∈ (1.784, 1.949)) and back at ρ = 1/3 occurs through the change
of sign of h̃− due to singularity (breakdown of (18)) and going through zero. At ρ = 3 we
have h̃− < 0 in (0, π] without singularities, so the regime is defocusing.

To complete the above results, let us illustrate how the precompression δ0 in (3) influences
the number of focusing regions for a given mass ratio ρ. In what follows we fix κ = 1 in (2).
Moreover, we parameterize the optical and acoustic modes using their frequency ω instead of
wavenumber θ. This parameterization is interesting from a practical point of view, in order
to analyze the response of granular chains to a periodic driving (see Sec. 4.3 for an example).

Fig. 4 illustrates how the focusing regions depend on δ0 in the case of optical modes. For
ρ = 3, the left plot displays the optical band bounded by the graph of δ0 7→ ω = ω+(π)
and lying above the line ω = ω+(0) =

√
κ(1 + ρ−1). Within the optical band, the hatched

region corresponds to the focusing case ω′′+h̃+ < 0 and white regions to the defocusing case

ω′′+h̃+ > 0. When δ0 exceeds a threshold (around δ0 = 0.22), the band of focusing modes
splits into two parts. The right plot describes the case of a larger mass ratio ρ = 17.8. The
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above transition from one to two focusing bands still takes place, but the precompression
threshold is much lower, around δ0 = 0.002. When δ0 is further increased, the number of
focusing bands changes according to the transitions 2 → 3 → 4 → 3, within the range of
precompression previously examined for ρ = 3.

Figure 4: Optical band delimited by ω = ω+(π) (dotted curve) and ω = ω+(0) =
√
κ(1 + ρ−1) (red line),

versus precompression δ0. We have fixed κ = 1, ρ = 3 (left plot) and ρ = 17.8 (right plot). Hatched regions

correspond to the focusing case ω′′h̃ < 0.

The case of acoustic modes is illustrated by Fig. 5 for ρ = 0.32. When precompression
lies below a threshold (around δ0 = 0.06), all acoustic modes are defocusing, while a thin
band of focusing modes exists above this threshold.

Figure 5: The upper curve (black diamonds) corresponds to the graph of δ0 7→ ω−(π) delimiting the
acoustic band ω ∈ [0, ω−(π)], where we have fixed κ = 1 and ρ = 0.32. The hatched region corresponds to

the focusing case ω′′h̃ < 0.
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4 Moving bright breathers in the granular chain

From direct numerical simulations of the granular chain, we now investigate how well the
dynamics governed by the focusing NLS equation approximates the solutions of the original
lattice. Due to the existence of a kink component in the position variables un, vn for bright
breathers, it is convenient to rewrite (2) in terms of strain variables xn = δ−un = un − un−1
and yn = δ−vn = vn − vn−1, which yields

ẍn = V ′(xn+1)− 2V ′(xn) + V ′(xn−1)− κ(xn − yn),

ρÿn = κ(xn − yn).
(37)

Numerical integration is performed on the lattice of size 2N + 1 with zero-strain boundary
conditions x−N−1 = xN+1 = 0 unless explicitly stated. We use the same parameters as before
(α = 3/2, δ0 = 4/9, κ = 1) and simulate (37) for different mass ratio ρ and initial conditions
described below.

4.1 Analytical approximation of breather profiles

We recall that solutions of the NLS equation (27) define small amplitude approximate solu-
tions (12) to the original lattice (2), where A(ξ, τ) describes the amplitude of a plane-wave
mode E(t, n) := ei(nθ−ωt). Using (12), (16), (32) and (33), we find that the approximate

breather solutions given by the focusing NLS equation (ω′′h̃ < 0) take the form

xAn (t) = δ−uAn (t) = 2M2δ
−{sech[a(n− n0 − ct)] cos (nθ − ωbt+ βF (ε2t))}

+M1δ
−tanh[a(n− n0 − ct)] + ε2f(ε2t),

yAn (t) = δ−vAn (t) =
2κM2

κ− ρω2
δ−{sech[a(n− n0 − ct)] cos (nθ − ωbt+ βF (ε2t))}

+M1δ
−tanh[a(n− n0 − ct)] + ε2f(ε2t),

(38)

with arbitrary spatial translation by n0. Here instead of µε2 we introduce the breather
frequency ωb = ω − µε2, a real number such that |ω − ωb| = O(ε2), (ω − ωb)ω

′′ > 0,
(ω − ωb)h̃ < 0, and set

M1 =
λ
√

2ω′′(ω − ωb)
|h̃|

, M2 =

√
2(ωb − ω)

h̃
and a =

√
2(ω − ωb)

ω′′
.

Recall that f(τ) is a slow-time varying function, independent of n and F (τ) is its antideriva-
tive. In what follows we simply set F (τ) ≡ 0 so that f(τ) ≡ 0.

To numerically integrate (37), we start with initial condition determined from the first
order approximation (38) at t = 0, along with initial velocities given by

ẋn(0) = c a
{
−M1δ

−sech2[a(n− n0)] + 2M2δ
−tanh[a(n− n0)]sech[a(n− n0)] cos (nθ)

}
+ 2ωbM2δ

−sech[a(n− n0)] sin (nθ),

ẏn(0) = c a

{
−M1δ

−sech2[a(n− n0)] +
2κM2

κ− ρω2
δ−tanh[a(n− n0)]sech[a(n− n0)] cos (nθ)

}
+

2ωbκM2

κ− ρω2
δ−sech[a(n− n0)] sin (nθ).

(39)
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In numerical computations, we fix ωb = ω + s · 10−4 with s = sign(h̃) = ±1. When h̃ and
ω′′ are of order unity, the breather amplitude M2 is then of order 10−2 and its width a−1

close to 100 particles. Note however that the breather amplitude becomes larger in nearly
degenerate cases where h̃ becomes small, or more strongly localized when ω′′ is small. The
weakly nonlinear approximation (38) is not expected to be accurate in these more strongly
nonlinear regimes, as will be numerically confirmed in Sec. 4.2.

4.2 Moving bright breathers for moderate mass ratio

We choose a moderate mass ratio ρ = 1/3 and start by considering the optical case. Recall
from the discussion in Sec. 3.1 (see also the left plots in Fig. 2 and Fig. 3) that for this mass
ratio the focusing regime takes place at 0 < θ < θc, where θc ≈ 1.892 satisfies ω′′+(θc) = 0.

We first consider the wave number θ = π/2 < θc. As shown in Fig. 6, the agreement
between the numerical evolution of (37) and the approximate analytical solution is excellent,
even after a long time at t = 200Tb, where Tb = 2π/ωb = 2.8885 is the period of the
modulated wave. The relative errors of the approximation (38), defined by Ex(t) = ||xAn (t)−
xn(t)||∞/||xn(0)||∞ and Ey(t) = ||yAn (t)− yn(t)||∞/||yn(0)||∞, remain less than 3.5% over the
time of computation. In the simulation, we observe that the numerically exact solutions have
a localized structure which moves to the right end at the speed approximately equal to the
group velocity c+ ≈ 0.23. Meanwhile, time variations of wave amplitude are well captured by
the NLS approximation (38). Snapshots of these moving bright breathers at different times
are also shown in Fig. 6.

To further illustrate the strong mobility of the bright breather, we consider the energy
density (energy stored at the nth site):

en =
1

2
u̇2n+

ρ

2
v̇2n+

κ

2
(un−vn)2+

1

5
[(δ0−δ−un)

5/2
+ +(δ0−δ+un)

5/2
+ ]+

1

2
δ
3/2
0 (un+1−un−1)−

2

5
δ
5/2
0 .

(40)
The left plot in Fig. 7 shows the energy density in the system (2), and the right plot displays
the time evolution of the (local) energy center of mass, which is defined by

X =

∑n′+m
i=n′−m iei∑n′+m
i=n′−m ei

, (41)

with n′ being the location of the maximum energy density of the breather and m > 0 an
integer which accounts for the width of the breather (we set m = 100).

In the second numerical run, we choose a smaller wave number θ = π/8, while the other
parameters remain the same. The linear frequency is now given by ω = 2.0098 which is fairly
close to the θ = 0 edge of the optical branch. As shown in Fig. 3, the corresponding value of
|h̃| decreases dramatically, so that the amplitude of the strain profiles increases. In fact, we
now have ||xn(0)||∞ ≈ 0.208 < δ0, which is of the same order as δ0 = 0.444. We perform the
same numerical integration over the time interval [0, 150Tb], where Tb = 2π/ωb = 3.1265 and
ωb = ω − 0.0001 = 2.0097. As shown in the bottom plot of Fig. 8, the NLS approximation
remains excellent at the early stage of the simulation, with relative errors less than 3 % when
t ≤ 150. However, later the approximation error becomes large, and the energy spreads
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Figure 6: Top plots: snapshots of a moving optical bright breather solution xn and yn of the original
system (2), with initial data determined from (38), (39). The breather moving from the middle of the chain
to the right is shown here at t = 0 (connected red squares), t = 50.125Tb ≈ 145 (connected green circles) and
t = 200Tb ≈ 578 (connected black squares). The same plots compare the time snapshots of the approximate
analytical solution (connected blue stars) and the numerical evolution result at the same times. Bottom
plot: relative errors Ex(t) (solid red curve) and Ey(t) (dashed blue curve). Here θ = π/2, κ = 1, ρ = 1/3,
δ0 = 4/9, ωb = ω − 0.0001 = 2.1752, N = 500 and n0 = 0.
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Figure 7: Left plot: energy density of a moving optical bright breather in the system (2). Right plot: time
evolution of the breather’s energy center. Here all the parameters are the same as in Fig. 6.
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and numerical solution (grey curve) at t = 150Tb ≈ 469. Bottom plot: relative errors Ex(t) (solid curve)
and Ey(t) (dashed curve). Inset: the relative error for t ∈ [0, 200]. Here θ = π/8, ωb = ω − 0.0001 = 2.0097,
and the other parameters are the same as in Fig. 6.
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Figure 9: Left plot: energy density of a moving optical bright breather in system (2). Right plot: time
evolution of the breather’s energy center. Clearly here, past a certain point in time, Eq. (41) used to identify
the center incorporates the radiation emitted by the breather and reflects the deformation of the structure
illustrated in the left panel, no longer accurately representing the breather center position. Here θ = π/8,
ωb = ω − 0.0001 = 2.0097, and the other parameters are the same as in Fig. 6.
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out towards both ends of the chain, as shown in Fig. 9. The ensuing waveform no longer
preserves the structure of a breather.

An interesting question is whether there exist static bright breathers at the θ = 0 edge of
the optical branch. Recall that the order of the approximate solution (38) roughly depends

on the magnitude of M1 and M2 and thus on h̃ that appears in their denominators. As
shown in Fig. 3, the value of h̃ becomes extremely small when θ is close to zero. Hence we
need to choose ωb very close to ω to ensure that the approximate solutions are within the
small-amplitude regime. Meanwhile, the width a−1 of the moving breather is ∼ |ω− ωb|−1/2
when ω → ωb. When |ω − ωb| is very small, we have to run simulations on an extremely
long chain in order to observe the localized structure with a decaying tail. Therefore, it is
numerically impractical to investigate static bright breathers as a limit of the moving ones
using the focusing NLS approximation (38). However, the multiscale analysis used to derive
the modulation equations still holds for θ = 0, yielding β = h = c = 0 so that (14)-(15)
become the linear equations

i∂τA1,1 +
1

2
ω′′∂2ξA1,1 = 0, ∂2ξA1,0 = 0 (42)

where ω′′ = K2γ = κK2/ω
3. Given the absence of localization at this order of the asymptotic

expansion (12), we do not have any evidence of the existence of static bright breathers in
this limit, contrary, e.g., to what is the case in the diatomic granular chain case [6].

We now consider wave numbers above π/2 but below θc at the same mass ratio ρ = 1/3.
In the numerical simulation, we observe that the NLS approximation of the moving bright
breathers remains excellent over a finite time interval until the wave number is close to
θc ≈ 1.892, which, as we recall, marks the boundary between focusing and defocusing regions
at our parameter values. To illustrate what happens below but very close to this boundary,
we consider the wave number θ = 3π/5 ≈ 1.885 and perform the numerical integration over
the time interval [0, 200Tb], where Tb = 2π/ωb = 2.791 and ωb = ω − 0.0001 = 2.2512.
As illustrated by the snapshots of the strain profiles of xn and yn at time t = 200Tb ≈
558.2, as well as by the space-time evolution of the energy density in Fig. 10, the resulting
waveform mostly preserves its localized structure and moves to the right at the velocity
approximately equal to c+. However, we observe the growing trend of the relative error of the
NLS approximation emerging from the very beginning of the simulation. In particular, the
approximation fails to capture the increasing size of the tail in the numerical solution, which
suggests that the localized wave generated by the present initial condition (approximation
(38) at t = 0) cannot be robustly sustained for long-time dynamical evolutions. However,
one can expect a better accuracy of the NLS ansatz (38) if |ωb − ω| is further reduced.

We next investigate bright breathers associated with the acoustic branch. From the
discussion in Sec. 3.1 (see also the right plot in Fig. 2 and the left plots in Fig. 3), we recall
that in this case the focusing regime takes place only in a narrow interval of wave numbers
for a range of small enough mass ratios. In the case ρ = 1/3, with other parameters kept
the same as before, this θ-interval is (1.7841, 1.949).

For initial conditions with wave numbers θ in the lower part of the focusing θ-interval, the
resulting waveform mostly preserves its localized structure over the time interval [0, 100Tb]
but we observe a growing trend of the relative error of the NLS approximation from the very
beginning of the simulation. For example, θ = 1.7845 yields Tb = 5.187, and relative errors
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Figure 10: Left panels: comparison of the time snapshots of the approximate optical bright breather
(connected blue stars) and the numerical evolution result (red squares) at t = 200Tb ≈ 558.2 for θ = 3π/5,
ωb = ω − 0.0001 = 2.2512, N = 1000; the other parameters are the same as in Fig. 6. Right panels: energy
density of the moving bright breather in the system (2). The dark blue color marks a range of small energy
densities in order to better show the growing size of the tail behind the breather. The inset depicts the
relative errors Ex(t) (red) and Ey(t) (blue).

Ex(t), Ey(t) increase up to 0.1 for t ≈ 100Tb (data not shown). Such values of θ are close to

the singularity where the cubic coefficient h̃− is very large (see left bottom plot of Fig. 3),
which corresponds to a near-resonant situation with optical modes where ω+(2θ) ≈ 2ω−(θ).
In a neighborhood of this resonance, the NLS approximation is expected to be less precise
since it does not account for the excitation of optical modes.

At wave numbers near the upper bound of the focusing θ-interval, when h̃− decreases
and approaches zero, yielding a relatively large amplitude of ||xn(0)||∞, we observed another
small-amplitude bright breather eventually detaching from the original waveform and moving
to the left with constant velocity near −c+, suggesting that this second breather is an optical
one. See, for example, the results of the numerical simulation for θ = 1.948 shown in Fig. 11.
Clearly, the NLS approximation does not capture this feature.

Finally, we consider θ = 1.87, which is in the middle of the focusing interval for the
acoustic branch at ρ = 1/3. Similar to the result shown in Fig. 11, a small-amplitude
optical breather eventually detaches from the parent breather and propagates to the left, al-
though in this case the amplitudes of both parent and secondary breathers are much smaller,
and the parent breather deviates significantly less from the initial NLS ansatz and robustly
propagates through the lattice; see Fig. 12. Interestingly, we also observe small-amplitude
oscillations emitted by both primary and secondary breathers, suggesting the existence of
nanoptera (bright breathers with small-amplitude oscillatory tails) in the lattice under con-
sideration. To further investigate this phenomenon, we performed another simulation at
θ = 1.87, where we solved (2) with emitting time-dependent boundary conditions obtained
by evaluating the initial NLS ansatz at the ends of the computational domain. In this case
no secondary breather was nucleated but robust propagation of an acoustic nanopteron was
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Figure 11: Left panels: comparison of the time snapshots of the approximate analytical solution (acoustic
bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t =
200Tb ≈ 994 for θ = 1.948, ωb = ω + 0.0001 = 1.264, N = 1000; the other parameters are the same
as in Fig. 6. Insets zoom in on the small-amplitude optical breather that eventually separates from the
initial acoustic breather. Right panel: energy density of the numerical solution of the system (2) showing
the energy density of the parent breather (darker color) and the small-amplitude breather detaching from
it (faint lighter color bounded by the dash-dotted lines for better visibility), also shown in the inset that
enlarges the region inside the rectangle.
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Figure 12: Comparison of the time snapshots of the approximate analytical solution (acoustic bright
breather, connected blue stars) and the numerical evolution result (connected red squares) at t = 700Tb ≈
3546.44 for θ = 1.87, ωb = ω + 0.0001 = 1.2402, N = 2000; the other parameters are the same as in Fig. 6.
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again observed.

4.3 Moving bright breathers for large mass ratio

In the acoustic case, the NLS equation is defocusing at large enough ρ and thus it does not
admit breather solutions. In what follows, we investigate the effect of larger mass ratios on
the optical bright breathers and their NLS approximation.

We first use the same approach as in Sec. 4.2, integrating (37) from the initial conditions
given in Sec. 4.1. We start with the mass ratio ρ = 10, at which the focusing regime
corresponds to two disjoint θ-intervals (0, 0.3681) and (1.2263, 2.4389).

At wave numbers in the upper part of each interval, we found that NLS provides an
excellent approximation of the corresponding small-amplitude moving bright breather over
a finite time. Note that the divergence of h̃ for θ ≈ 0.3681 and θ ≈ 2.4389 corresponds to
the case c2(1 + ρ) −K2 ≈ 0, where the group velocity of the carrier wave becomes close to
the maximal group velocity of acoustic modes. This phenomenon does not seem to affect
the quality of the NLS approximation.

We observe that the accuracy of the NLS approximation deteriorates near the lower
bounds of the two θ-intervals. Similarly to the results shown in Fig. 8 and Fig. 9 for the
case ρ = 1/3, h̃ becomes small for θ ≈ 0 and the localized structure eventually breaks
down. At wave numbers near the lower bound of the θ-interval (1.2263, 2.4389), one has
ω′′+ ≈ 0 and we observe not only the increasing size of the tail in the numerical solution,
similar to the example shown in Fig. 10 for the case ρ = 1/3, but also the emergence of a
train of bright-breather-like structures clearly visible in the yn variable that separate from
the initial breather and slowly move in both directions with speed approximately equal to
c−, suggesting their acoustic nature. Meanwhile, the optical breather initiated by the NLS
approximation propagates to the right with velocity close to c+. See, for example, Fig. 13,
where the wave number is θ = 1.23, and we have c− ≈ 0.0754 and c+ ≈ 0.6.

To complete the above results, we now illustrate the spontaneous formation of moving
bright breathers without resorting to well-prepared localized initial conditions. A key mecha-
nism for the formation of moving or static breathers in nonlinear lattices is the modulational
instability of periodic waves; see [16] for a review and [6, 9, 10, 17, 24] for specific studies
concerning granular chains. In the weakly nonlinear regime, this phenomenon can be un-
derstood from the focusing NLS equation (ω′′ h̃ < 0). In the focusing case, the spatially

homogeneous solutions Aθ,r(τ) = r e−i h̃ r
2τ of (27) correspond formally to unstable periodic

traveling waves of (2), which self-localize under long-wave perturbations. An interesting
approach to explore modulational instabilities consists of driving a bead with a particular
modulationally unstable frequency (see e.g. the experiments in [6]). This approach is of prac-
tical relevance because it is not straightforward to initialize desired periodic wave profiles
throughout a granular chain in experiments.

In what follows, we illustrate the excitation of optical bright breathers for ρ = 10 using
the above approach. We consider a chain of 2002 elements, sufficiently long to ensure that
waves reflected from the ends remain negligible in the regions of interest within the time
frame of simulation. The chain is at rest at t = 0. We clamp the last bead and impose a
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Figure 13: Left panels: comparison of the time snapshots of the approximate analytical solution (optical
bright breather, connected blue stars) and the numerical evolution result (connected red squares) at t =
200Tb ≈ 815.28 for ρ = 10, θ = 1.23, ωb = ω + 0.0001 = 1.5414, N = 1000; the other parameters are the
same as in Fig. 6. Relative errors Ex(t) (red) and Ey(t) (blue) are shown in the top left inset. Bottom left
inset zooms in on the train of acoustic waveforms that eventually separate from the initial optical breather.
Right panel: energy density of the numerical solution of the system (2). The inset zooms in on the train
of acoustic breather-like structures (not visible in the main energy plot), with dash-dotted lines added for
better visibility.

sinusoidal motion of the first bead at a frequency within the focusing region of the optical
band (see Fig. 2). More precisely, we simulate equation (2) with n ∈ {1, . . . , 2000} and
boundary conditions u2001(t) = 0, u0(t) = A0 sin (ω0 t)χ(t) for t ≥ 0, where ω0 = 2.1 = ω+(θ)
(θ ≈ 2.34) and χ denotes a smooth plateau function, which is slowly varying compared to the
driving period T0 = 2π/ω0 ≈ 2.99. The envelope χ(t) increases smoothly from 0 to (near)-
unity for t ∈ [0, 30T0], is almost equal to unity for t ∈ [30T0, 200T0], decreases smoothly
to 0 for t ∈ [200T0, 260T0] and almost vanishes for larger times. This is achieved by fixing
χ(t) = tanh[r t] (1− tanh[r (t− tm)])/2 with r = 0.046 and tm = 700. We impose a moderate
driving amplitude A0 = 0.06 = 0.135 × δ0. Figures 14 and 15 describe the system response
to the above boundary excitation.

At the early stage of the simulation, a periodic traveling wave close to the optical mode
with frequency ω0 is established. This wave corresponds to the grey region in the left panel
of Fig. 14 which displays the energy density en in the chain. This wave pattern is initially
mainly confined between n = 0 and n = c+ t, where c+ = ω′+(θ) is the group velocity of the
carrier wave. For t ≥ tm, the support of the traveling wave pattern stabilizes to roughly 200
lattice sites and is mainly transported with the group velocity c+. The right panel of Fig. 14
shows the detail of the traveling wave pattern, and a snapshot of bead velocities at a fixed
time is shown in the left panel of Fig. 15.

In the second stage, the periodic traveling wave destabilizes leading to a traveling multi-
breather state (i.e. a train of closely spaced traveling breathers). The formation and propa-
gation of these localized structures is visible in the energy density plot of Fig. 14 (left panel).
Breather profiles are shown in the right panel of Fig. 15 which provides a snapshot of bead
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velocities at a fixed time.

Figure 14: Space time diagrams illustrating the system response to a periodic sinusoidal excitation applied
at n = 0 during some finite time interval (see text). Left panel: energy density en(t) defined by (40). Right
panel: bead velocities u̇n(t) for a space-time zoom-in of the left panel.

Figure 15: Snapshots of bead velocities u̇n(t) at t = 779.9 (left panel) and t = 2400 (right panel) in
different parts of the chain, from the same simulation as Fig. 14.

5 Dark breather solutions in the granular chain

5.1 Dynamical excitation of dark breathers

In this section, we show that unstable periodic traveling waves do not necessarily lead to
breather solutions (in contrast with the example of Figures 14-15) and can generate in some
cases long-lived dark breather solutions. For this purpose, we simulate equation (2) with
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periodic boundary conditions un+N = un, vn+N = vn and N = 401. As previously we choose
α = 3/2, κ = 1, and we now fix ρ = 0.32, δ0 = 0.27.

We integrate equation (2) numerically for the initial condition

un(0) = ε sin (θ0n) (1 + b cos (2nπ/N)),

u̇n(0) = −ε ω cos (θ0n) (1 + b cos (2nπ/N)),

vn(0) =
κ

κ− ρω2
un(0), (43)

v̇n(0) =
κ

κ− ρω2
u̇n(0)

corresponding to a slowly modulated acoustic mode, with amplitude ε = 0.03, a wavenumber
θ0 = 252π/N ≈ 1.97 in the band of unstable acoustic modes, ω = ω−(θ0) ≈ 1.17 and b = 0.01.
The initial velocity profile is shown in the top left panel of Fig. 16.

Figure 16: Evolution of the initial condition (43) in system (2) with periodic boundary conditions (N = 401
particles). Particle velocities u̇n(t) are displayed at t = 0 (top left panel), t = 17100 (top right panel) and
t = 32400 (bottom left panel). The top right panel illustrates a short-wavelength oscillatory instability. As
shown in the bottom left panel, a traveling dark breather is generated at a later stage (the profile of v̇n(t)
is qualitatively similar to u̇n(t) shown in the figure). The bottom right panel shows the energy density en(t)
in grey levels (see definition (40)).

The time-evolution of the above initial condition is described in Fig. 16. System (2)
generates a weakly modulated periodic traveling wave over a long transient t ∈ [0, 16300]
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(roughly 3000 periods of the acoustic mode). An oscillatory instability starts to develop
around t = 16300, with a characteristic wavelength much shorter than the initial modulation
(the resulting perturbation of the traveling wave is illustrated in the top right panel for
t = 17100). For larger times around t = 30000, one observes the formation of a traveling
dark breather (the corresponding velocity profile at t = 32400 is shown in the bottom
left panel). In Fig. 16, the space-time diagram (bottom right panel) displays the energy
density en(t) in the chain. The white line corresponds to the center of the traveling dark
breather, where the energy density decreases significantly. The dark breather propagates at
a velocity cdb ≈ 0.3 close to ω′−(θ0). One can notice that a second dark breather appears
to progressively detach from the first one for t > 33000. For t ≥ 43000, dark breathers
disappear and a turbulent regime ensues.

Clearly, the focusing NLS equation does not capture the above dynamical features since
it does not admit dark breather solutions. As discussed in Sec. 3.3, the band of focusing
wavenumbers is narrow for acoustic modes (it corresponds to θ ∈ (1.888, 2.003) for the above
parameter values) and the range of validity of the focusing NLS equation is questionable (see
Sec. 4.2). In contrast, as we shall see in Sections 5.2 and 5.3, dark breather solutions of the
defocusing NLS equation can be used to approximate (moving or stationary) dark breather
solutions of the original lattice. Near the limit of vanishing amplitude, dark breathers prop-
agate at a velocity close to the group velocity of the carrier wave. Near the lower edge of the
defocusing band at θ ≈ 2.003, the group velocity is close to 0.29, and thus small-amplitude
dark breathers propagate at velocities compatible with the results of Fig. 16 (bottom right
panel). Along this line, the excitation of a dark breather from the initial condition (43) may
be linked with the fact that the second harmonic with wavenumber θ = −2θ0 + 2π ≈ 2.3
falls within the defocusing band.

5.2 Approximate dark breather solutions

We now turn our attention to the defocusing case of the NLS equation (ω′′h̃ > 0) and
compute small-amplitude approximate dark breather solutions of the original lattice (37).
Using (12), (35) and (36), we obtain approximate solutions in terms of strain variables given
by

xAn (t) = δ−uAn (t) = εδ−{M3 + 2M4 cos [nθ − ω̃bt+ βF (ε2t)]}tanh[ηε(n− n0 − ct)]

+ ε2
{
f(ε2t)− λµ

h̃

}
,

yAn (t) = δ−vAn (t) = εδ−{M3 +
2κM4

κ− ρω2
cos [nθ − ω̃bt+ βF (ε2t)]}tanh[ηε(n− n0 − ct)]

+ ε2
{
f(ε2t)− λµ

h̃

}
,

(44)

where we define

M3 = −λ
√
−ω′′µ
|h̃|

, M4 =

√
−µ
h̃
, and η =

√
− µ

ω′′
.
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Here n0 corresponds to the spatial translation and ω̃b = ω−µε2, where µ is any real number
such that µω′′ < 0, µh̃ < 0. We recall that c = ω′±(θ) is the group velocity of the carrier
wave and f(τ) in the O(ε2) term is undetermined.

The special case c = 0 of (44) corresponds to stationary dark breathers consisting of
time-periodic and spatially modulated standing waves. This case occurs when the wave
number is on the θ = π edges of the optical or acoustic branches, so that the group velocity
c vanishes (the θ = 0 edge of the optical branch where h̃ = 0 cannot be included). This
yields in (19), (23) and (28)

β = −4K3γ, h̃ = (24K4 − 32K2
3/K2)γ, ω′′ = −K2γ, λ = −8K3

K2

. (45)

Then ω′′h̃ = −(24K2K4 − 32K2
3)γ2 > 0, which corresponds to the defocusing case. The

same condition was obtained, e.g., in [7,32]; see also the discussion therein. Since f(τ) is an
arbitrary function independent of ξ, we set

f(ε2t) ≡ λµ

h̃
(46)

to eliminate the ε2-term in (44). The antiderivative of f(τ) is now given by F (τ) = λµτ/h̃,
which leads to

βF (τ) = −2µτ

3
(47)

after evaluating K2, K3, K4 for α = 3/2 (see (4)). Substituting (47) into the cosine terms of
(44) yields

cos [nθ − ω̃bt+ βF (ε2t)] = cos (ω − 1

3
µε2)t

and the leading order NLS approximation (44) is now given by

xAn (t) ≈ δ−
{
− 2√

3
+ 2(−1)n cos (ωbt)

}√
3(ωb − ω)

h̃
tanh

[√
3(ωb − ω)

ω′′
(n− n0)

]

yAn (t) ≈ δ−
{
− 2√

3
+

2(−1)nκ

κ− ρω2
cos (ωbt)

}√
3(ωb − ω)

h̃
tanh

[√
3(ωb − ω)

ω′′
(n− n0)

]
,

(48)

where we have converted µ and ε into a new single parameter ωb = ω − 1
3
µε2 measuring

the breather frequency. Choosing n0 = 0 in (48) results in a site-centered solution, whereas
the bond-centered solution corresponds to n0 = 1/2. Notice that although the continuum
envelope approximation developed here permits an arbitrary selection of n0, discrete models
typically only support such site- and bond-centered solutions with the corresponding selection
of n0 discussed above; see e.g. [16]. The energetic differences between these two solutions
and the non-existence of solutions centered at other values of n0 (due to the absence of
translational invariance in the discrete problem) can only be detected beyond all algebraic
orders [39].

When ωb is close enough to ω, the ansatz (48) with t = 0 can be used as an initial
seed for a Newton-type iteration to compute the numerically exact stationary dark breather
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solutions of the discrete system (37) of both site-centered and bond-centered type. This
computation will be performed in Sec. 5.3. In Sec. 5.4, the stability properties of stationary
dark breathers will be analyzed, and traveling dark breathers with c 6= 0 will be generated
from unstable stationary dark breathers.

5.3 Numerical continuation of stationary dark breathers

We now use a Newton-type algorithm (Algorithm 2 in [40]) with the initial seed (48) to
compute numerically exact stationary dark breather solutions of system (37). Computations
are performed with periodic boundary conditions. In what follows we set α = 3/2, κ = 1
and δ0 = 4/9.

Let x(t), y(t), ẋ(t) and ẏ(t) denote the row vectors with component xn(t), yn(t), ẋn(t)
and ẏn(t), respectively. Let Z(t) := (x(t), y(t)). We seek time-periodic solutions (Z(t), Ż(t))
of the Hamiltonian system (37) for a prescribed period Tb = 2π/ωb. The problem is equiv-
alent to finding the fixed points of the corresponding Poincaré map PTb [(Z(0), Ż(0))] =
(Z(Tb), Ż(Tb)). We fix Ż(0) = 0 and use the Newton-type algorithm to compute compo-
nents Z(0) of the fixed points. The reader is referred to [24] for more details on the numerical
method.

To characterize the solution, we define the vertical centers of the solution for the x and
y components [7],

Cx =
supt∈[0,Tb] x1(t) + inft∈[0,Tb] x1(t)

2
, Cy =

supt∈[0,Tb] y1(t) + inft∈[0,Tb] y1(t)

2
. (49)

The vertical center Cx is set to be approximately zero in our numerical computations (see [24]
for more details). We evaluate the dark breather amplitude through

Kx =
supt∈[0,Tb] x1(t)− inft∈[0,Tb] x1(t)

2
, Ky =

supt∈[0,Tb] y1(t)− inft∈[0,Tb] y1(t)

2
(50)

and the (squared) renormalized `2 norm of Z(0) can be defined as

||Z(0)||2˜̀2 =
∑
n

K2
x − |xn(0)− Cx|2 +

∑
n

K2
y − |yn(0)− Cy|2. (51)

To evaluate the accuracy of the numerical solution, we also introduce the relative error

Eb(t) = ||Z(mTb)− Z(0)||∞/||Z(0)||∞, (52)

where m = bt/Tbc and Z(mTb) = (x(mTb), y(mTb)) represents the strain profile after inte-
grating (37) over m multiple of time periods, starting with the initial condition Z(0). Once
the Newton-type solver converges to an exact dark breather solution, we use the method of
continuation to obtain an entire family of dark breathers that corresponds to different values
of ωb.

To apply the above algorithm we first consider the mass ratio ρ = 1/3. In that case the
linear frequencies of plane waves at the θ = π edge of optical and acoustic branches are ωopt =
2.4495 and ωacs = 1.4142, respectively. We choose a value of ωb that is slightly smaller than
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but close enough to ωopt or ωacs to obtain a good initial seed with a small amplitude. Sample
profiles of both bond-centered and site-centered dark breather solutions with frequency ωb =
2.42, along with their corresponding initial seeds from the NLS approximation (48) are shown
in Fig. 17. The relative errors Eb(Tb) of both solutions are less than 3× 10−9.
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Figure 17: Left plot: a bond-centered dark breather solution (connected stars) with frequency ωb = 2.42.
Squares represent the strain profile after integration over Tb. Circles represent the initial profiles computed
from the approximation (48). Right plot: a site-centered solution. Here α = 3/2, κ = 1, δ0 = 4/9 and
ρ = 1/3.

In the left plots in Fig. 18, we show the renormalized `2 norm of the numerically exact
bond-centered dark breathers that bifurcate from θ = π edge of the optical branch. The
solutions do not exist for arbitrary values of ωb; rather, there is a turning point at ωb ≈ 2.37.
We are able to continue the relevant solution branch past this turning point, obtaining
dark breather solutions making up the top part of the branch, with increasing amplitude
as ωb increases. Therefore, dark breathers above the turning point can be regarded as
strongly nonlinear solutions, while solutions along the bottom part are weakly nonlinear. As
explained in the next subsection, solutions along the segments marked by red dots possess
real instability, and the ones along the blue segments do not.

Using the same method for ρ = 1/3, we obtain qualitatively similar solution branches
for acoustic dark breathers bifurcating from ωb = ωacs. The bifurcation diagram for bond-
centered solutions is shown in the left panel of Fig. 23.

We found the above bifurcations to be robust provided the mass ratio ρ is not too small
or too large. For example, increasing mass ratio to ρ = 1, the continuation yields a family
of dark breathers bifurcating from the optical branch edge ωopt = 2.2882. The bifurcation
diagrams of the renormalized `2 norm of these solutions are shown in Fig. 19 and are similar
to the ρ = 1/3 case.

The situation is different for large or small mass ratio. For ρ = 10, the continuation
procedure worked quite well for dark breathers bifurcating from the optical branch but we
encountered difficulty doing computations for the acoustic band due to the rapidly growing
amplitude of those solutions as ωb decreases. As a result, only dark breathers with frequencies
very close to ωacs were obtained. For the case of a very small mass ratio, ρ = 0.1, we found
that in contrast to the large mass ratio like ρ = 10, we can only obtain dark breathers
bifurcating from the acoustic branch and corresponding to a wide range of frequencies.
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Figure 18: Bifurcation diagram for stationary optical dark breathers in the case ρ = 1/3 (κ = 1, δ0 = 4/9).
Left plot: renormalized `2 norm of the bond-centered dark breather solution versus frequency ωb with the
vertical center Cx = 0. The black vertical line shows the edge of the optical branch ωopt = 2.4495. Right
plot: same as the left, but for site-centered solution. Regions where a real instability is present are indicated
by red dots.

5.4 Stability analysis for stationary dark breathers

We now examine the linear stability of the obtained dark breather solutions using the stan-
dard Floquet analysis, starting with the optical case and fixing ρ = 1/3. The eigenvalues
(Floquet multipliers) of the associated monodromy matrix of the variational equation of (37)
determine the linear stability of the breather solution; see also the relevant discussion e.g.
of [7]. The moduli of Floquet multipliers of the site-centered and bond-centered solutions, for
both strongly and weakly nonlinear types, are shown in Fig. 20, along with the numerically
computed Floquet spectrum corresponding to the sample breather profile at ωb = 2.42. If
any of these Floquet multipliers λi satisfies |λi| > 1, the corresponding breather is linearly
unstable. We observed two types of instabilities in this Hamiltonian system. The real insta-
bility takes place when there is a pair of real Floquet multipliers, one of which has magnitude
greater than one. The second type is the oscillatory instability corresponding to a quartet
of Floquet multipliers which do not lie on the unit circle and have nonzero imaginary parts.

Numerical results suggest that both bond-centered and site-centered weakly nonlinear
solutions are stable at the beginning of the continuation procedure, as shown in the top panels
of Fig. 20, similarly to what was found in the homogeneous granular chain [7]. However,
as the corresponding frequency decreases, the amplitude of the breathers increases and they
start to exhibit oscillatory instabilities. These marginally unstable modes remain weak until
ωb reaches ωb ≈ 2.4255 in the left plot of Fig. 21.

To further investigate the long-term behavior of dark breather solutions, we examine the
relative error Eb(t) defined in (52), with initial condition Z(0) given by the dark breather
solution. The relative error Eb(1200) defined in (52) stays below 2×10−4 when 2.4255 ≤ ωb ≤
ωopt and increases dramatically at smaller frequencies. A representative space-time evolution
diagram of bond-centered dark breather solution at ωb = 2.4255 is shown in the right plots
of Fig. 21, and the time evolution of site-centered solution is similar. This suggests that the
dark breathers solutions of both types with frequency close to the linear frequency ωopt are
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Figure 19: Bifurcation diagram for stationary optical dark breathers in the case ρ = 1 (κ = 1, δ0 = 4/9).
Left plot: renormalized `2 norm of the bond-centered dark breather solution bifurcating from the optical
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curve where a real instability is present are indicated by red dots.
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Figure 20: Moduli of the Floquet multipliers versus frequency ωb for weakly nonlinear (top) and strongly
nonlinear (bottom) types of optical dark breathers. Recall that these refer to solutions below and above
the turning point in Fig. 18, respectively. Left and right plots correspond to bond- and site-centered dark
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long-lived and have marginal oscillatory instability.
As ωb further decreases, we observe the emergence of many new and stronger modes of

oscillatory instability, with Floquet multipliers distributed symmetrically outside the unit
circle around −1. In addition, for bond-centered dark breathers, pairs of real Floquet mul-
tipliers collide at −1 and move in the opposite directions as ωb decreases. This is associated
with a period-doubling instability. Moduli of these multipliers are indicated by the green
squares in Fig. 20 and in the left plot of Fig. 21.
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Figure 21: Left plot: moduli of Floquet multipliers of bond-centered dark breathers for frequencies 2.4235 ≤
ωb ≤ ωopt. Right plots: contour plot of the time evolution of the bond-centered solution for ωb = 2.4255.
The color bar corresponds to the magnitude of the strain xn (top) and yn (bottom). The dark breather
appears to be very long-lived despite the instability suggested by the left panel of the figure. Here κ = 1,
δ = 4/9 and ρ = 1/3.

The emergence of many unstable quartets suggests that both bond-centered and site-
centered solutions have strong modulational instability of the background, which leads to
the breakdown of the dark breather structure, accompanied, as shown in Fig. 22, by a chaotic
evolution of both solutions after a short time. The same phenomenology (dismantling of the
breather and chaotic evolution) also takes place for all strongly nonlinear dark breather
solutions. For this reason, in the bifurcation diagram of Fig. 18 only real instabilities are
indicated. It is interesting that the strongly nonlinear bond-centered solutions typically
exhibit real instability at frequencies greater than ωopt, while the real instability emerges
only when ωb is less than ωopt for the site-centered ones.

We now examine the stability properties of dark breathers that bifurcate from the θ = π
edge of the acoustic branch, where the linear frequency is ωacs = 1.414. The bifurcation
diagram for solutions of the bond-centered type and the corresponding diagrams of the
moduli of the Floquet multipliers versus frequency are shown in Fig. 23. We observe that
the distribution of positive real Floquet multipliers in the top right plot (weakly nonlinear
dark breathers) follows a pattern similar to the one for such breathers bifurcating from the
optical branch (top left plot of Fig. 20). Note also that the large arc for strongly nonlinear
solutions in the bottom right plot of Fig. 23 suggests that these dark breathers exhibit not
only an oscillatory instability but also a real instability, which possesses a considerably larger
growth rate than the oscillatory one.

We now investigate the effect of the mass ratio on the linear stability of solutions. We
first consider the mass ratio ρ = 1 and keep all other parameters the same as in the previous
simulations. We have obtained in Sec. 5.3 a family of dark breathers bifurcating from the
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Figure 22: Left plot: snapshots of the strain profile of site-centered optical dark breather solution at time
t = 0 (connected red stars) and t = 500 (connected blue squares). Right plots: contour plot of the time
evolution of the site-centered solution for ωb = 2.40. The color bar corresponds to the magnitude of the
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gets destroyed as a result of its spectral instability.
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Figure 23: Left panel: renormalized `2 norm of the bond-centered dark breather bifurcating from the
acoustic branch versus ωb with the vertical center Cx = 0. The black vertical line shows the θ = π edge
of the acoustic branch ωacs = 1.414. Right panel: moduli of the Floquet multipliers versus frequency ωb

for weakly nonlinear (top) and strongly nonlinear (bottom) types. Insets: the Floquet multipliers in the
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optical branch edge ωopt = 2.2882, with bifurcation diagrams similar to the ρ = 1/3 case
(see Fig. 19). The moduli of Floquet multipliers of the weakly and strongly nonlinear dark
breathers solutions for both bond-centered and site-centered types are shown in Fig. 24.
We observe that the magnitude of the Floquet multipliers corresponding to the oscillatory
instability is much weaker than in the ρ = 1/3 case. In addition, the real instability becomes
more significant than the oscillatory one at some frequencies, resulting in not only shorter
lifetime of the solutions, but also setting the dark breathers in motion. A representative
space-time evolution diagram for weakly nonlinear bond-centered dark breather solution of
frequency ωb = 2.207 is shown in Fig. 25. Note that the positive Floquet multipliers again
exhibit the same bifurcation structure as in the previous results.
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Figure 24: Results of the simulation with the same parameters as in Fig. 20 except for ρ = 1. Here the
corresponding dark breathers bifurcate from the optical branch.
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Figure 25: Left panel: sample profiles (connected stars) of bond-centered optical dark breathers at the
frequency ωb = 2.207. Connected squares represent strain profiles after integration over 526Tb ≈ 1500.
Right panel: contour plots of the time evolution of the bond-centered solution for ωb = 2.207. The color
bar corresponds to the magnitude of the strain xn (top) and yn (bottom). Clearly, the instability of the
stationary dark breather solutions sets it into motion. Here κ = 1, δ = 4/9 and ρ = 1.
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Considering optical dark breathers for a large mass ratio ρ = 10, we have observed
that the magnitude of Floquet multipliers corresponding to oscillatory instability is much
larger than in the ρ = 1 case but smaller than in the ρ = 1/3 case, which suggests that
the significance of oscillatory instability does not depend monotonically on the mass ratio.
Furthermore, in this case, the oscillatory instability appears to set in already in the immediate
vicinity of the linear limit at the edge of the optical band.

As indicated in Sec. 5.3, for a very small mass ratio ρ = 0.1 we have only obtained
acoustic dark breathers for a wide range of frequencies. In that case, it is surprising that
the real instability of some of the weakly nonlinear solutions is again more significant than
the oscillatory instability, which is also a feature for the optical weakly nonlinear solutions
at ρ = 1. Again, similar patterns of the distribution of the positive real Floquet multipliers
suggest that their bifurcation structure remains unaffected by different mass ratios.

6 Concluding remarks

In this work, we investigated discrete breathers in a precompressed locally resonant granular
chain. The precompression effectively suppresses the fully nonlinear character of the Hertzian
interactions and leads to a weakly nonlinear system in the small-amplitude limit. Following
the approach developed in [7,10] for two limiting cases of the present model and adopting a
multiscale asymptotic technique [31,36,37], we derived modulation equations that reduce to
the NLS equation at finite mass ratio.

The focusing NLS equation was then used to investigate the moving bright breather
solutions of the system at finite mass ratios. We showed numerically that breather solutions
of the NLS equation can successfully approximate small-amplitude moving optical bright
breathers on a long but finite time scale at some wave numbers and various mass ratios.
In addition, we have shown the possibility to excite optical bright breathers by imposing a
sinusoidal motion of the first element of the chain.

Contrary to the more standard dimer case [6, 14], the locally resonant granular chain
appears to possess bright breathers in the neighborhood of θ = 0 wavenumbers of the optical
band. However, that very point is found to be singular, and breathers in its immediate
vicinity do not appear to be robust, while bright breathers at larger wave numbers that are
below a certain threshold are found to propagate nearly undistorted in the resonator chain at
any mass ratio. At some other wave numbers for the optical branch and in the acoustic case,
perhaps especially so near the edges of the windows where the focusing model is predicted via
the multiscale method, the NLS equation does not capture numerically observed phenomena,
including eventual formation and steady motion of smaller breathers that detach from the
initial breather and are associated with the other dispersion branch. In particular, robust
propagation of nanoptera, bright breathers with small-amplitude tails, was observed in some
cases.

In addition, we have found that dark breather solutions can be generated from instabilities
of certain periodic traveling waves (close to acoustic modes) in the locally resonant granular
chain. In order to analyze dark breather solutions, we used the analytical solutions of
the defocusing NLS equation to construct approximate dark breather solutions. Using this
approximation as an initial condition for a continuation procedure based on a Newton-type
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algorithm, we obtained both weakly and strongly nonlinear stationary dark breathers of
both the site-centered and bond-centered families for a wide range of frequencies. We then
studied linear stability of the obtained solutions. The results revealed that only small-
amplitude weakly nonlinear solutions with frequencies very close to the linear frequencies
of the system are stable (for typical values of the resonator mass ρ). In contrast, large-
amplitude dark breather solutions exhibit either real or oscillatory instabilities (or both). In
particular, the strongly nonlinear dark breathers have a very unstable background, leading
to the dismantling of their structure, accompanied by a chaotic evolution after a short
time. We also observed long-lived traveling dark breathers, resulting from the perturbation
of stationary dark breathers subject to a real instability. Finally, we showed that the mass
ratio strongly affects the strength of the oscillatory instability of the dark breather solutions,
but its influence on the distribution patterns of positive real Floquet multipliers is less
pronounced.

Future theoretical challenges include the rigorous proof of the existence of long-lived
or exact bright and dark breathers in the case of stationary or propagating solutions, the
analysis of their stability, and the comparison with the numerical results presented here.
A numerical study of the stability of periodic traveling and standing waves going beyond
the NLS approximation will be also of interest, in order to classify the parameter regimes
leading to modulated periodic waves, localized structures or disordered regimes. Along this
line, the mechanism of the excitation of traveling dark breathers from unstable periodic
waves illustrated in Sec. 5.1 still needs to be explained.

On the experimental side, it will be interesting to investigate whether it is possible to
generate either (approximate) moving bright breathers, perhaps actuating one boundary at
a suitable, near-band-edge frequency, or stationary dark breathers in a slightly damped finite
locally resonant chain driven at the ends in a way similar to [7, 8] but using the woodpile
setup [18]. In addition, as we observed in Sec. 3.1, the number of focusing regions within
the optical and acoustic bands can change when the main parameters, the mass ratio ρ and
precompression δ0, are varied. This opens up the possibility to change the system’s response
to external perturbations by varying precompression, which constitutes a very interesting
property for the design of adaptive metamaterials.
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A Appendix: Derivation of the modulation equations

In this appendix, we show the details of the derivation of the modulation equations (14) and
(15). In what follows, we will use the abbreviation

∑
k,j for the summation over k ∈ N1 and

j ∈ Z, |j| ≤ k in (13). The ansatz defined in (13) will be denoted by UA
n = un and V B

n = vn.
After substituting (13) into (2), we find that the right hand side of the second equation in
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(2) reads

−κ
ρ

∑
k,j

εk[Bk,j(τ, ξ)− Ak,j(τ, ξ)]E(t, n)j, (53)

and its left hand side is

V̈ B
n (t) :=

∑
k,j ε

k[−(jω)2Bk,j + 2εijωc∂ξBk,j + ε2(c2∂2ξBk,j − 2ijω∂τBk,j)

−2ε3c∂ξ∂τBk,j + ε4∂2τBk,j]E
j(t, n). (54)

To match the coefficients of each εkEj(τ, ξ) term on both sides, we require that

ε1E0 : 0 = −κ
ρ

(B1,0 − A1,0) ⇒ B1,0 = A1,0, (55)

ε1E1 : −ω2B1,1 = −κ
ρ

(B1,1 − A1,1) ⇒ (κ− ρω2)B1,1 = κA1,1, (56)

ε2E1 : −ω2B2,1 + 2iωc∂ξB1,1 = −κ
ρ

(B2,1 − A2,1), (57)

ε2E2 : −4ω2B2,2 = −κ
ρ

(B2,2 − A2,2), (58)

ε3E0 : c2∂2ξB1,0 = −κ
ρ

(B3,0 − A3,0), (59)

ε3E1 : −ω2B3,1 + 2iωc∂ξB2,1 + c2∂2ξB1,1 − 2iω∂τB1,1 = −κ
ρ

(B3,1 − A3,1). (60)

Meanwhile, the right hand side of the first equation of (2) can be treated as a sum of linear
part Ln(UA, V B) and nonlinear part Nn(UA), where we define

Ln(UA, V B) :=
∑
k,j

εk{[2K2(cos jθ − 1)− κ)]Ak,j + κBk,j + 2iK2ε∂ξAk,j sin jθ

+K2ε
2∂2ξAk,j cos jθ +O(ε3)}Ej (61)

and

Nn(UA) := −ε2(K3sD1A
2
1,1E

2 + c.c.)

+ ε3{2K3D1Ā1,1∂ξA1,1 + (2K3sD1Ā1,1A2,2 − 3K4D
2
1|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1)E

+ [2K3D1(D1 − 3)A1,1∂ξA1,1 − 2K3sD1A1,1A2,1]E
2

+ [2K3s(D1 + s2)A1,1A2,2 +K4D
2
1(3−D1)A

3
1,1]E

3 + c.c}+ h.o.t., (62)

with the abbreviation h.o.t. meaning higher order terms. Here s = 2i sin θ and D1 =
4 sin2(θ/2). The left hand side of the first equation of (2) reads

ÜA
n (t) :=

∑
k,j

εk[−(jω)2Ak,j + 2εijωc∂ξAk,j + ε2(c2∂2ξAk,j − 2ijω∂τAk,j)

− 2ε3c∂ξ∂τAk,j + ε4∂2τAk,j]E
j(t, n). (63)
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To match the coefficients of each εkEj(τ, ξ) term on both sides, one needs

ε1E0 : 0 = −κA1,0 + κB1,0 ⇒ A1,0 = B1,0, (64)

ε1E1 : −ω2A1,1 = (−D − κ)A1,1 + κB1,1, (65)

ε2E1 : −ω2A2,1 + 2iωc∂ξA1,1 = (−D − κ)A2,1 + κB2,1 + 2iK2∂ξA1,1 sin θ, (66)

ε2E2 : −4ω2A2,2 = (−4K2 sin2 θ − κ)A2,2 + κB2,2 −K3sD1A
2
1,1, (67)

ε3E0 : c2∂2ξA1,0 = −κA3,0 + κB3,0 +K2∂
2
ξA1,0 + 2K3D1Ā1,1∂ξA1,1 + c.c., (68)

ε3E1 : −ω2A3,1 + 2iωc∂ξA2,1 + c2∂2ξA1,1 − 2iω∂τA1,1 = (−D − κ)A3,1 + κB3,1 (69)

+ 2iK2∂ξA2,1 sin θ +K2∂
2
ξA1,1 cos θ + 2K3sD1Ā1,1A2,2 − 3K4D

2
1|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1.

Note that both (55) and (64) yield A1,0 = B1,0 but the two coefficients are not zero, in
contrast with the non-resonant homogeneous chain problem (ρ = 0). We now derive an
equation to determine them. Using (59) and (68), we obtain

[c2(1 + ρ)−K2]∂
2
ξA1,0 = 2K3D1Ā1,1∂ξA1,1 + c.c., (70)

where we assume the non-resonance condition (18).
Now combining (56) and (65) yields M (A1,1, B1,1)

T = 0, where the matrix M is given by
(6). This yields that (A1,1, B1,1)

T is an eigenvector of M corresponding to zero eigenvalue
and A1,1 and B1,1 are thus connected by

B1,1 =
κ

κ− ρω2
A1,1. (71)

Note that κ−ρω2 6= 0, since one can check that ω2
−(θ) ≤ ω2

−(π) < κ/ρ and ω2
+(θ) ≥ ω2

+(0) >
κ/ρ. In addition, (57), (66) and (71) yield

M

(
A2,1

B2,1

)
= 2i∂ξA1,1W,

with

W =

(
ωc−K2 sin θ
ωcκ/(κ− ρω2)

)
(72)

and the matrix M defined in (6). The range of M being orthogonal to

W ∗ =

(
1− ρω2/κ

ρ

)
,

we further obtain the compatibility condition W ∗ ·W = 0, which reads

ρκ

ρω2 − κ
=
ωc−K2 sin θ

ωc

κ− ρω2

κ
. (73)

This yields

c =
K2 sin θ (κ− ρω2)2

ω[ρκ2 + (κ− ρω2)2]
, (74)
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and one can check that c = ω′(θ) by differentiating the dispersion equation det M = 0, or

ω4 − (D + κ+ κ/ρ)ω2 +Dκ/ρ = 0 (75)

with respect to θ.
Consider now the equations (58) and (67) for ε2E2, which yield

B2,2 =
κ

κ− 4ρω2
A2,2, (76)

A2,2 =
K3sD1(κ− 4ω2ρ)

(4ω2 − 4K2 sin2 θ − κ)(κ− 4ω2ρ) + κ2
A2

1,1. (77)

This solution exists under the non-resonance condition (17), which is equivalent to ω(2θ)±
2ω(θ) 6= 0, as can be easily verified by substituting ω → ±2ω and θ → 2θ in (75).

In the same manner, (57), (60) and (69) yield the following linear system:

M

(
A3,1

B3,1

)
= 2i∂ξA2,1W +

(
(c2 −K2 cos θ)∂2ξA1,1

c2(3ρω2 + κ)/(κ− ρω2)∂2ξB1,1

)
− 2iω

(
∂τA1,1

∂τB1,1

)
+

(
−2K3sD1Ā1,1A2,2 + 3K4D

2
1|A1,1|2A1,1 + 2K3D1∂ξA1,0A1,1

0

)
.

In order for the right hand side to lie in range M = (W ∗)⊥, and in view of (73), the following
compatibility condition must be satisfied

(c2 −K2 cos θ)∂2ξA1,1 − 2iω∂τA1,1 − 2K3sD1Ā1,1A2,2 + 3K4D
2
1|A1,1|2A1,1 + 2K3D1∂ξA1,0A1,1

=
ρκ

ρω2 − κ
{c

2(3ρω2 + κ)

(κ− ρω2)
∂2ξB1,1 − 2iω∂τB1,1}.

Using (71), (77) and substituting B1,1 and A2,2 into the above identity yields the following
modulation equation in terms of A1,1 and A1,0 :

−2iω
ρκ2 + (ρω2 − κ)2

(ρω2 − κ)2
∂τA1,1 =

{
K2 cos θ − c2[1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3
]

}
∂2ξA1,1

+

{
2K2

3s
2D2

1(κ− 4ω2ρ)

(4ω2 +K2s2 − κ)(κ− 4ω2ρ) + κ2
− 3K4D

2
1

}
|A1,1|2A1,1 − 2K3D1∂ξA1,0A1,1,

(78)

which is coupled to (70). Introducing

γ =
(ρω2 − κ)2

ω[ρκ2 + (ρω2 − κ)2]
,

one can show that the curvature is given by

ω′′ = {K2 cos θ − c2[1− 3ω2ρ2κ2 + ρκ3

(ρω2 − κ)3
]}γ. (79)

This completes the derivation of the coupled modulation equations (14) and (15).
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