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Abstract. Complex turbulence not at statistical equilibrium is impossible to simulate using eddy viscosity
models due to a backscatter. This research presents the way to correct the Baldwin-Lomax model for non-
equilibrium effects and gives an analysis of the energy evolution in the corrected model. Furthermore, a finite
element approximation of the corrected eddy model with first-order and second-order time discretization are
also presented. A numerical test is given to support the theory.
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1. Introduction. The most common approach to the prediction of turbulent flow statis-
tics is to add to the Navier-Stokes equations an eddy viscosity term, calibrate the term’s co-
efficients, discretize the result and solve. A well-calibrated model and an effective numerical
method have proven to predict reliably turbulent flows at statistical equilibrium. The question
considered herein is how to extend such a model to non-equilibrium turbulence and how to
adapt algorithms to the extended model. The first work on the approach herein was for the
Smagorinsky model in [32]. Herein, we extend the Baldwin-Lomax model, shown below. In
the modeling process, several choices must be made. We take a different path through these in
developing the non-equilibrium extension than in [32]. Let us begin with the time dependent
incompressible Navier-Stokes (NS) equations:

ut + u · ∇u− ν∆u +∇p = f , and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and

∫
Ω

p dx = 0,

u(x, 0) = u0(x) in Ω.

(1.1)

Here, Ω ⊂ Rd(d=2,3) is a bounded polyhedral domain; u : Ω× [0, T ]→ Rd is the fluid velocity;
p : Ω× (0, T ]→ R is the fluid pressure. The body force f is known. Re is the Reynolds number
and ν = 1

Re .
There are many approaches to simulating turbulent flows, see [11, 12, 13, 14, 15]. One of

the most commonly used is to model the ensemble-averaged Navier-Stokes equation by eddy
viscosity, discretize then solve. In this approach, instantaneous variables are decomposed into
the mean (ensemble averaging) and fluctuating components, then reintroduced into the govern-
ing equations to obtain the ensemble averaging equations. However, the system is not closed
and contains Reynolds stress term that represents the effects of fluctuation. This Reynolds
stress must be modeled in order to close the system.

Given the ensemble averaging of fluid velocity and pressure

〈u〉(x, t) =
1

J

J∑
j=1

u(x, t;ωj), and 〈p〉(x, t) =
1

J

J∑
j=1

p(x, t;ωj). (1.2)
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Decompose the pressure and velocity into mean and fluctuations:

u = 〈u〉+ u′, and p = 〈p〉+ p′, (1.3)

where 〈u〉, 〈p〉 are the mean and u′, p′ are the fluctuating components. Substituting the ensemble
averaging variables into the NS equations (1.1) yields the ensemble averaging equations.

〈u〉t + 〈u〉 · ∇〈u〉 − ν∆〈u〉 − ∇ · R(u,u) +∇〈p〉 = f ,

∇ · 〈u〉 = 0,
(1.4)

where the Reynolds stress R(u,u) := 〈u〉 ⊗ 〈u〉 − 〈u⊗ u〉 = −〈u′ ⊗ u′〉, see, e.g., [14, 16, 23].
By the Boussinesq assumption and eddy viscosity hypothesis ([20, 21, 22, 25]), the Reynolds

stress R(u,u) is modeled by (νT (〈u〉)∇〈u〉). Note that the turbulence eddy viscosity νT (〈u〉) >
0. This is the standard eddy viscosity (EV) model:

wt + w · ∇w − ν∆w −∇ · (νT (w)∇w) +∇q = f ,

∇ ·w = 0.
(1.5)

The solution (w, q) of (1.5) is an approximation of the mean (〈u〉, 〈p〉).
There have been many techniques to predict the turbulent eddy viscosity νT (e.g., [12,

13, 14, 15, 17, 27, 28, 29]). However, EV models have difficulties in simulating backscatter
or complex turbulence not at statistical equilibrium, see, e.g., [24, 26, 30]. Since νT > 0, the
term −∇ · (νT (w)∇w) in (1.5) can only represent dissipative effects of the Reynolds stress. In
order to precisely characterize backscatter, Jiang and Layton [32] presented two approaches to
correcting EV models and obtained new models of turbulence not at statistical equilibrium,
analyzed the corrected Smagorinsky model and gave algorithms for its discretization.

Like many EV models, the Baldwin-Lomax model (see, e.g., [12, 14, 34]) begins simply
and then has evolved substantial complexity to model effects such as separation and wakes
not well described by the basic model. We consider herein only its simplest form for which
νT (〈u〉) = l(x)2|∇ × 〈u〉|. Here, l(x) is a mixing length that depends on the distance to
the wall. The model extension, analysis and algorithms herein are adapted to more intricate,
algebraic νT (〈u〉) with only notational complexity. The corrected model studied herein is as
follows.

wt + β2∇× (l2(x)∇×wt) + w · ∇w +∇× (l2(x)|∇ ×w|∇ ×w)− ν∆w +∇q = f ,

∇ ·w = 0.
(1.6)

Here, β is a positive model calibration parameter. The eddy viscosity term is expressed in
rotational (curl - curl) form. The model’s mixing length l(x) has the property that 0 ≤ l(x)→ 0
as x → ∂Ω. The effect of the true Reynolds stress on the mean flow is, on time average,
dissipative, see [22, 32, 33]. We prove in Section 3 that the time averaged effect of the terms
that modeled the Reynolds stress is also dissipative.

lim inf
T→∞

1

T

∫ T

0

∫
Ω

(β2l2(x)∇×wt · ∇ ×w + l2(x)|∇ ×w|3)dxdt

= lim inf
T→∞

1

T

∫ T

0

∫
Ω

l2(x)|∇ ×w|3dxdt ≥ 0.

Our numerical tests in Section 6 show that the term that models pointwise in time, statistical
backscatter, β2∇× (l2(x)∇×wt), does result in bursts, wherein∫

Ω

(β2l2(x)∇×wt · ∇ ×w + l2(x)|∇ ×w|3)dx < 0.
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In other words, the eddy viscosity accounts for the persistent effect of the Reynolds stress while
the new term accounts for statistical backscatter without artificial negative viscosities. We also
present and analyze a numerical method for accurate solution of the new model (1.6) in Section
4. The challenges that occur here are (i) to develop algorithms that are small extensions of
the standard methods for the usual Baldwin-Lomax model, and (ii) to perform the analysis for
coefficients l(x)→ 0 at walls.

The rest of this paper is organized as follows. Section 2 introduces some notations and
preliminaries. In Section 3, we summarized the corrected EV model (1.6) and its properties.
In Section 4, a complete analysis are given to demonstrate the stability and convergence of the
standard finite element approximation of the model (1.6). Section 5 introduces first and second
order time stepping schemes for the model (1.6). A numerical example is given to testify the
model (1.6) in Section 6. Finally, Section 7 presents the conclusion.

2. Notations and Preliminaries. This section introduces some widely used notations,
inequalities and lemmas. The standard notations Hk(Ω), Hk

0 (Ω), W k,p(Ω) denote Sobolev
spaces, and Lp(Ω) denotes Lp spaces, see [1]. The Hk(Ω) norm and Lp(Ω) (p 6= 2) norm
are denoted by ‖ · ‖k and ‖ · ‖Lp , respectively. The L2(Ω) norm is denoted by ‖ · ‖ and its
corresponding inner products by (·, ·). Denote the dual space of Hk

0 (Ω) by H−k(Ω) and its
norm by ‖ · ‖−k. Furthermore, ‖ · ‖`p is the `p− norm of vectors in Rd, see [10]. Constants C
are different in different places throughout the paper, which do not depend on mesh size and
time step but may depend on some known data such as Ω, ν, f , · · · , and so on. We introduce
the following spaces and their norms:

Lp(0, T ;Lq(Ω)) := {v(x, t) : (

∫ T

0

‖v(·, t)‖pLqdt)
1
p <∞},

L∞(0, T ;Lq(Ω)) := {v(x, t) : sup
0≤t≤T

‖v(·, t)‖Lq <∞},

‖v‖Lp(0,T ;Lq) = (

∫ T

0

‖v(·, t)‖pLqdt)
1
p , ‖v‖L∞(0,T ;Lq) = sup

0≤t≤T
‖v(·, t)‖Lq .

Here, 1 ≤ p <∞, 1 ≤ q ≤ ∞. The velocity space X and pressure space Q are defined as follows.

X := H1
0 (Ω)d = {v ∈ H1(Ω)d : v|∂Ω = 0},

Q := L2
0(Ω)d = {q ∈ L2(Ω) :

∫
Ω

q = 0}.

The divergence free space V 2 of X = W 1,2
0 (Ω) is given by

V := {v ∈ X : (∇ · v, q) = 0 ∀q ∈ Q)}.

and the divergence free subspace of W 1,3
0 (Ω) is similarly denoted V 3. Define

B(u,v) := u · ∇v +
1

2
(∇ · u)v, b(u,v,w) := (B(u,v),w), ∀ u,v,w ∈ X.

Then, we have

b(u,v,w) =
1

2
[b(u,v,w)− b(u,w,v)], b(u,v,v) = 0,

b(u,v,w) = (u · ∇v,w), if u ∈ V.

The weak formulation of (1.6), satisfied by sufficiently smooth solutions, is : Find (w, q) ∈
(X,Q) satisfying

(wt,v) + (l2(x)∇×wt,∇× v) + b(w,w,v) + (l2(x)|∇ ×w|∇ ×w,∇× v)

+ ν(∇w,∇v)− (q,∇ · v) = (f ,v) ∀v ∈ X,
(∇ ·w, r) = 0 ∀r ∈ Q.

(2.1)
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Let Πh be a set of triangulations of Ω with Ω =
⋃

K∈Πh

K (h = sup
K∈Πh

diam(K)). It is

uniformly regular when h → 0. Xh ⊂ X,Qh ⊂ Q are finite element spaces that satisfy the

discrete inf-sup condition: inf
q∈Qh

sup
v∈Xh

(q,∇·v)
‖∇v‖‖q‖ ≥ C > 0. The subspace Vh of Xh is defined by

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 ∀qh ∈ Qh}.

Next, we present some inequalities and lemmas which will be used in later sections.

Some Inequalities :

A1: If u,v,w ∈ X, then we have

b(u,v,w) ≤ C‖∇u‖‖∇v‖‖∇w‖, (2.2)

b(u,v,w) ≤ C‖u‖ 1
2 ‖∇u‖ 1

2 ‖∇v‖‖∇w‖. (2.3)

A2: Assume p, q > 1 and 1
p + 1

q = 1, we have

Y oung′s inequality : ab ≤ 1

qεp/q
ap +

ε

q
bq ∀a, b, ε > 0, (2.4)

Hölder′s inequality : |(v,w)| ≤ ‖v‖Lp‖w‖Lq ∀v ∈ Lp,w ∈ Lq, (2.5)

Poincaré inequality : ‖v‖ ≤ C‖∇v‖ ∀v ∈ X. (2.6)

Lemma 2.1. (The discrete Gronwall’s inequality) Suppose that n and N are nonneg-
ative integers, n ≤ N . The real numbers an, bn, cn, dn,4t are nonnegative and satisfy that

aN + ∆t

N∑
n=0

bn ≤ ∆t

N∑
n=0

(cnan + dn).

Then,

aN + ∆t

N∑
n=0

bn ≤ exp(∆t
N∑
n=0

cn
1−∆tcn

)(∆t

N∑
n=0

dn),

provided that ∆tcn < 1 for each n.

Lemma 2.2. (Strong monotonicity and local Lipschitz-continuity) There exist pos-
itive constants C and C such that for all u′,u′′,v ∈ (W 1,3(Ω))d, we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× (u′ − u′′))

≥ C‖l 23 (x)∇× (u′ − u′′)‖3L3 ,
(2.7)

and

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ Cγ‖l 23 (x)∇× (u′ − u′′)‖L3‖l 23 (x)∇× v‖L3 ,
(2.8)

where l : x ∈ Ω 7→ R is a non-negative function with l ∈ L∞(Ω), and γ = max{‖l 23 (x)∇ ×
u′‖L3 , ‖l 23 (x)∇× u′′‖L3}.

Remark 1. Inequalities (A1) and (A2) can be found in [1, 9, 23]. Lemma 2.1 can be found
in [31]. The proof of Lemma 2.2 is given in the Appendix.
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3. Analysis of the corrected EV model. This section first recalls the important prop-
erties of standard EV models (1.5). Then it presents the derivation of the corrected scheme
(1.6) based on (1.5) and shows that the new model (1.6) maintains the time-averaged dissipative
effect of the Reynolds stress.

Taking the inner product of the first and second equation in ensemble averaging NS equa-
tions (1.4) with 〈u〉 and 〈p〉 respectively, we can obtain the kinetic energy equation for the
mean

1

2

d

dt
‖〈u〉‖2 + ν‖∇〈u〉‖2 +

∫
Ω

R(u,u) : ∇〈u〉dx =

∫
Ω

f · 〈u〉dx. (3.1)

In (3.1), the right hand side term
∫

Ω
f · 〈u〉dx is the energy input. The term 1

2
d
dt‖〈u〉‖

2 is the
changing rate of the kinetic energy of the mean. The term ν‖∇〈u〉‖2 is the energy dissipation
of the mean. The term

∫
Ω

R(u,u) : ∇〈u〉dx indicates the effect of fluctuations on the mean.
Moreover, if the term

∫
Ω

R(u,u) : ∇〈u〉dx > 0, the effect is dissipative but if
∫

Ω
R(u,u) :

∇〈u〉dx < 0, fluctuations transfer energy back to the mean which is called backscatter.
There are two key properties of Reynolds stress (proven in [32]). Time averaged dissipativ-

ity:

lim inf
T→∞

1

T

∫ T

0

∫
Ω

R(u,u) : ∇〈u〉dxdt = lim inf
T→∞

1

T

∫ T

0

∫
Ω

ν〈|∇u′|2〉dxdt ≥ 0 (3.2)

Second, the variance evolution equation:∫
Ω

R(u,u) : ∇〈u〉dx =
1

2

d

dt

∫
Ω

〈|u′|2〉dx+

∫
Ω

ν〈|∇u′|2〉dx. (3.3)

The inequality (3.2) is consistent with the Boussinesq assumption that the effects of turbulent
fluctuations are dissipative on the mean in the time averaged case. The interpretation of
(3.3) is as follows. For flows at statistical equilibrium d

dt

∫
Ω
〈|u′|2〉dx = 0, while the second

term
∫

Ω
ν〈|∇u′|2〉dx is clearly dissipative. This term is modeled by an eddy viscosity acting

on 〈u〉 that dissipates energy pointwise in both space and time. Thus the (space averaged)
pointwise in time deviation from dissipativity must arise from the first term on the RHS of
(3.3). Therefore, the term 1

2
d
dt

∫
Ω
〈|u′|2〉dx should be modeled in the corrected EV scheme to

represent backscatter.
Remark 2 (On the Boussinesq hypothesis). The proof of the Boussinesq hypothesis in [22]

is by extracting information on fluctuations from the energy equality for realizations. It was done
for strong solutions, the natural setting for turbulence theory since it can be phrased in terms
of the Reynolds stresses. This report also gave, Section 2.1 p. 2356, the equation for evolution
of space averaged variance and turbulence intensities as well as an extended survey of the long
history on the problem. In [5] an extension was given for ensembles of both initial conditions
and body forces. In [32] it was shown that (using a result of Duchon and Robert [3]) a similar
proof holds for weak solutions and that the spacial localization of backscatter depends only on 4
quantities: the variance of u and ∇u, the skewness of u and the velocity-pressure covariance.
The (highly nontrivial) connection between the formulation in terms of the Reynolds stresses
and the above proof for weak solutions was recently made by Berselli and Lewandowski [2], which
contains the most general formulation of the result. Dissipativity of fluctuations and convergence
to statistical equilibrium was extended to space and time discretizations in [33] and to MHD
turbulence (through the Elsässer variables) in [7]. Once it was pointed out that dissipativity,
while violated at some instants in time, emerges for time averaged quantities, various forms of
the Boussinesq hypothesis’ proof are implicit in Reynolds transport theory. For example, space
and time averaging the trace of the transport equations of the Reynolds stresses, Jovanovic [6]
Section 5.1 p. 110, yields the dissipativity of fluctuations. For time, not statistical, averages
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dissipativity of fluctuations result appears already (well hidden) in equation (3.127) p. 75, in
Chacón- Rebollo and Lewandowski [29]. This connection was developed further by Lewandowski
[8] and in several new directions in [2].

The key point to describe the Reynolds stress term is how to model u′ via 〈u〉. By the
Kolmogorov-Prandtl relation for the turbulent viscosity,

νT (〈u〉) = cll
√
k′, (3.4)

where k′ = 1
2 〈|u

′|2〉, cl is a proportionality constant and l is the mixing length. Consider the
simplest case (the inner layer viscosity) of the Baldwin-Lomax model

νT (〈u〉) = l2|∇ × 〈u〉|, (3.5)

where l is the mixing length, such as l(x) = 0.41 × distance{x, ∂Ω}. Combine (3.4) with (3.5)
to obtain the fluctuation model

action(u′) ' βl∇× 〈u〉, (3.6)

where β > 0 is a model calibration parameter. Then the Reynolds stresses term
∫

Ω
R(u,u) :

∇〈u〉dx becomes∫
Ω

R(u,u) : ∇〈u〉dx ' 1

2

d

dt

∫
Ω

β2l2|∇ × 〈u〉|2dx+

∫
Ω

l2|∇ × 〈u〉||∇ × 〈u〉|2dx, (3.7)

Notice the time derivative term comes from the fluctuation model (3.6) and the eddy viscosity
term is based on (3.5). Then, (3.7) leads to the closure model

−∇ · R(u,u) ' β2∇× (l2∇× 〈u〉t) +∇× (l2|∇ × 〈u〉|∇ × 〈u〉). (3.8)

Combining (3.8) with (1.4) and calling the model’s approximation to 〈u〉 and 〈p〉, w and q
yields model (1.6).

wt + β2∇× (l2(x)∇×wt) + w · ∇w +∇× (l2(x)|∇ ×w|∇ ×w)− ν∆w +∇q = f ,

∇ ·w = 0.

Remark 3. Although existence theory for (1.6) is not the issue considered in this report,
it is useful to note the model’s mathematical structure. Compared with the NSE, this model
contains two additional terms. The first is β2∇×

(
l2∇×wt

)
which is similar to the commonly

used dispersive regularization −∆wt. The second is ∇×
(
l2|∇ ×w|∇ ×w

)
. This second term

is strongly monotone and locally Lipschitz being similar to a p-Laplacian term. For l > 0
it is readily seen that Galerkin approximations in spaces of Stokes eigenfunctions belong to
L∞(0, T ;V 2)∩L3(0, T ;V 3) (and by a limit argument under mild conditions on l(x)) the solution
w satisfies the regularity

w ∈ L∞(0, T ;V 2) ∩ L3(0, T ;V 3) (3.9)

We therefore conjecture that (again under mild conditions on l(x)) existence and uniqueness of
strong solutions hold for the model.

For our purposes herein, we shall assume the model has a solution in the following sense.
Definition 3.1. A distributional solution w of model (1.6) is a strong solution if w has

regularity (3.9), w(x, t)→ w0(x) in L2(Ω) as t→ 0 and if w satisfies the model’s weak form (
(2.1) above) for all v ∈ L∞(0, T ;V 2) ∩ L3(0, T ;V 3).

Operationally, the above definition means one may set v = w in (2.1). Our numerical
tests in Section 6 include ones with different boundary conditions. For these the variational
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formulation and solution notion must be appropriately adapted. Next, we give a theoretical
analysis of model (1.6) and show in Theorem 3.2 that this new model still maintains the
property that the effects of turbulent fluctuations on the mean are dissipative in long time
averaging sense.

Theorem 3.2. Assume f ∈ L∞(0,∞;H−1(Ω)). For the strong solution w of model (1.6),
we have

w, l∇×w ∈ L∞(0,∞;L2(Ω)), (3.10)

lim inf
T→∞

[
1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt] = lim inf
T→∞

1

T

∫ T

0

∫
Ω

f ·wdxdt,

(3.11)

lim inf
T→∞

1

T

∫ T

0

∫
Ω

[β2∇× (l2∇×wt) ·w + l2|∇ ×w|3]dxdt ≥ 0. (3.12)

Proof. Taking the inner product of model (1.6) with w, we obtain

1

2

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) + ν‖∇w‖2 +

∫
Ω

l2(x)|∇ ×w|3dx =

∫
Ω

f ·wdx

≤ 1

2ν
‖f‖2−1 +

ν

2
‖∇w‖2.

(3.13)

Rearrange the terms in inequality (3.13) to get

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) + ν‖∇w‖2 + 2

∫
Ω

l2(x)|∇ ×w|3dx ≤ 1

ν
‖f‖2−1. (3.14)

For the term ν‖∇w‖2, we have

ν‖∇w‖2 ≥ ν

2CPF
‖w‖2 +

ν

2
‖∇w‖2 =

ν

2CPF
‖w‖2 +

ν

2
‖∇ ×w‖2

≥ ν

2CPF
‖w‖2 +

ν

2Lmax
‖l(x)∇×w‖2,

(3.15)

where we use the Poincaré inequality, and Lmax = supx∈Ω |l(x)|2.
Since 2

∫
Ω
l2(x)|∇ ×w|3dx ≥ 0, combining (3.15) and (3.14), we can obtain

d

dt
(‖w‖2 + β2‖l(x)∇×w‖2) +

ν

2CPF
‖w‖2 +

ν

2Lmax
‖l(x)∇×w‖2 ≤ 1

ν
‖f‖2−1. (3.16)

Let g(t) := ‖w‖2 + β2‖l(x)∇×w‖2, we have

g′(t) + αg(t) ≤ 1

ν
‖f‖2−1 ≤

1

ν
‖f‖2L∞(0,∞;H−1(Ω)) <∞, (3.17)

where α = max{ ν
2CPF

, ν
2β2Lmax

} > 0. By inequality (3.17), we can deduce (3.10). Then

integrate (3.13) on [0, T ] and divide it by T to get

1

2T
(‖w(T )‖2 + β2‖l∇×w(T )‖2) +

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

=
1

2T
(‖w(0)‖2 + β2‖l∇×w(0)‖2) +

1

T

∫ T

0

∫
Ω

f ·wdxdt.
(3.18)
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Using (3.10), we have

O(
1

T
) +

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

= O(
1

T
) +

1

T

∫ T

0

∫
Ω

f ·wdxdt,
(3.19)

which implies (3.11).
Next, consider the Reynolds stress term. Note that (3.18) can be rewritten as

1

2T
‖w(T )‖2 +

β2

2T

∫ T

0

d

dt
‖l∇×w‖2dt+

1

T

∫ T

0

ν‖∇w‖2dt+
1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

=
1

2T
‖w(0)‖2 +

1

T

∫ T

0

∫
Ω

f ·wdxdt.
(3.20)

Then by (3.19) and (3.20), we have

β2

2T

∫ T

0

d

dt
‖l∇×w‖2dt+

1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt

= O(
1

T
)−O(

1

T
) +

1

T

∫ T

0

∫
Ω

f ·wdxdt− 1

T

∫ T

0

ν‖∇w‖2dt

= O(
1

T
)−O(

1

T
) +

1

T

∫ T

0

∫
Ω

l2|∇ ×w|3dxdt,

(3.21)

which completes the proof of (3.12).

4. The finite element approximation. In this section, we present the finite element
approximation for the corrected EV model (1.6) and analyze its stability and convergence. One
deviation from the (now standard) numerical analysis of the NS equations is that the balance
between the two model terms is not be accounted for. Alternatively speaking, our model has
two new terms not in the NS equations. Their relative size, β, is important in the analysis .

The finite element approximation of (2.1) is : Find (wh, qh) ∈ (Xh, Qh) satisfying

(wh,t,vh) + β2(l2(x)∇×wh,t,∇× vh) + b(wh,wh,vh) + ν(∇wh,∇vh)− (qh,∇ · vh)

+ (l2(x)|∇ ×wh|∇ ×wh,∇× vh) = (f ,vh) ∀vh ∈ Xh,

(∇ ·wh, rh) = 0 ∀rh ∈ Qh.
(4.1)

Theorem 4.1. Method (4.1) is unconditionally energy stable. For all 0 < t ≤ T ,

‖wh‖2(t) + β2‖l(x)∇×wh‖2(t) + 2

∫ t

0

∫
Ω

|l 23 (x)∇×wh|3dxds+ ν

∫ t

0

‖∇wh‖2ds

≤ 1

ν

∫ t

0

‖f‖2−1ds+ ‖wh‖2(0) + ‖l(x)∇×wh‖2(0).

(4.2)

Proof. Set vh = wh, rh = qh in (4.1) to obtain

1

2

d

dt
‖wh‖2 +

β2

2

d

dt
‖l(x)∇×wh‖2 +

∫
Ω

l2(x)|∇ ×wh|3dx + ν‖∇wh‖2

= (f ,wh) ≤ 1

2ν
‖f‖2−1 +

ν

2
‖∇wh‖2.

(4.3)
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Multiplying (4.3) by 2 and integrating it from 0 to t complete the proof.

The next theorem shows the convergence result of method (4.1).
Theorem 4.2. Assume w is a strong solution of model (1.6). Suppose that ∇w ∈

L4(0, T ;L2(Ω)). Then

sup
0≤t≤T

‖w −wh‖2(t) + sup
0≤t≤T

β2‖l(x)∇× (w −wh)‖2(t) + ν‖∇(w −wh)‖2L2(0,T ;L2)

+ C‖l 23 (x)∇× (w −wh)‖3L3(0,T ;L3)

≤ C[ inf
vh∈Xh,rh∈Qh

{ sup
0≤t≤T

‖w − vh‖2(t) + sup
0≤t≤T

‖l(x)∇× (w − vh)‖2(t)

+ ‖l(x)∇× (w − vh)t‖2L2(0,T ;L2) + ‖∇(w − vh)‖2L4(0,T ;L2) + ‖(w − vh)t‖2L2(0,T ;L2)

+ ‖∇(w − vh)‖2L2(0,T ;L2) + ‖q − rh‖2L2(0,T ;L2)

+ ‖l 23 (x)∇× (w − vh)‖
3
2

L3(0,T ;L3) + ‖l 23 (x)∇× (w − vh)‖3L3(0,T ;L3)}

+ ‖w −wh‖2(0) + β2‖l(x)∇× (w −wh)‖2(0)].

(4.4)

Remark 4. The convergence proof as a necessarily technical synthesis of two proof ideas.
The first is the normal error analysis of Galerkin FEMs for the NSE. The second is the error
analysis of Galerkin FEMs for operations that are strongly monotone and locally Lipschitz (such
as the p-Laplacian).

Proof. Let w̃ : [0, T ] → Vh be arbitrary. Splitting the error e = w − wh via e = η − φh,
where η = w − w̃, φh = wh − w̃. Subtracting (4.1) from (2.1), we obtain

(et,vh) + β2(l2(x)∇× et,∇× vh) + b(e,w,vh) + b(wh, e,vh)

+ ν(∇e,∇vh)− (q − qh,∇ · vh)

+ (l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× vh)

+ (l2(x)|∇ × w̃|∇ × w̃ − l2(x)|∇ ×wh|∇ ×wh,∇× vh)

= 0 ∀vh ∈ Xh,

(∇ · e, rh) = 0 ∀rh ∈ Qh.

(4.5)

Setting vh = φh in (4.5), we have

1

2

d

dt
‖φh‖2 +

β2

2

d

dt
‖l(x)∇× φh‖2 + ν‖∇φh‖2

+ (l2(x)|∇ ×wh|∇ ×wh − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

= (ηt, φh) + (l2(x)∇× ηt,∇× φh) + ν(∇η,∇φh)− (q − rh,∇ · φh)

+ b(η,w, φh)− b(φh,w, φh) + b(wh, η, φh)

+ (l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh),

(4.6)

where rh ∈ Qh is arbitrary. Next, we need to bound the terms in (4.6). Using (2.7) in Lemma
2.2, we can obtain

(l2(x)|∇ ×wh|∇ ×wh − l2(x)|∇ × w̃|∇ × w̃,∇× φh) ≥ C‖l 23 (x)∇× φh‖3L3 . (4.7)

All the terms on the right hand side of (4.6) are bounded as follows. For the term (ηt, φh),

(ηt, φh) ≤ C‖ηt‖‖∇φh‖ ≤ C‖ηt‖2 +
ν

12
‖∇φh‖2. (4.8)
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For the term (l2(x)∇× ηt,∇× φh),

(l2(x)∇× ηt,∇× φh) ≤ ‖l(x)∇× ηt‖‖l(x)∇× φh‖

≤ 1

2
‖l(x)∇× ηt‖2 +

1

2
‖l(x)∇× φh‖2.

(4.9)

The term ν(∇η,∇φh) is bounded by

ν(∇η,∇φh) ≤ C‖∇η‖2 +
ν

12
‖∇φh‖2. (4.10)

The term −(q − rh,∇ · φh) is bounded by

−(q − rh,∇ · φh) ≤ C‖q − rh‖2 +
ν

12
‖∇φh‖2. (4.11)

Using (2.2) and (2.3), we have the following estimate.

b(η,w, φh) ≤ C‖∇η‖‖∇w‖‖∇φh‖ ≤ C‖∇w‖2‖∇η‖2 +
ν

12
‖∇φh‖2. (4.12)

b(φh,w, φh) ≤ C‖φh‖
1
2 ‖∇w‖‖∇φh‖

3
2 ≤ C‖∇w‖4‖φh‖2 +

ν

12
‖∇φh‖2. (4.13)

b(wh, η, φh) ≤ C‖wh‖
1
2 ‖∇wh‖

1
2 ‖∇η‖‖∇φh‖

≤ C‖wh‖‖∇wh‖‖∇η‖2 +
ν

12
‖∇φh‖2

≤ C‖∇wh‖‖∇η‖2 +
ν

12
‖∇φh‖2,

(4.14)

where we use the stability bound sup0≤t≤T ‖wh‖ ≤ C in Theorem 4.1. Lastly, by (2.8) in
Lemma 2.2, we have

(l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

≤ Cγ‖l 23 (x)∇× η‖L3‖l 23 (x)∇× φh‖L3 ,
(4.15)

where γ = max{‖l 23 (x)∇×w‖L3 , ‖l 23 (x)∇× w̃‖L3}. Since

‖l 23 (x)∇× w̃‖L3 ≤ ‖l 23 (x)∇×w‖L3 + ‖l 23 (x)∇× η‖L3 , (4.16)

there exists

γ = max{‖l 23 (x)∇×w‖L3 , ‖l 23 (x)∇× w̃‖L3} ≤ ‖l 23 (x)∇×w‖L3 + ‖l 23 (x)∇× η‖L3 . (4.17)

Combining (4.17) with (4.15), we obtain

(l2(x)|∇ ×w|∇ ×w − l2(x)|∇ × w̃|∇ × w̃,∇× φh)

≤ C‖l 23 (x)∇×w‖L3‖l 23 (x)∇× η‖L3‖l 23 (x)∇× φh‖L3

+ C‖l 23 (x)∇× η‖2L3‖l
2
3 (x)∇× φh‖L3

≤ C‖l 23 (x)∇×w‖
3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + C‖l 23 (x)∇× η‖3L3 +
C

2
‖l 23 (x)∇× φh‖3L3 .

(4.18)
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Combining (4.7)-(4.14), (4.18) with (4.6) gives to

d

dt
(‖φh‖2 + β2‖l(x)∇× φh‖2) + ν‖∇φh‖2 + C‖l 23 (x)∇× φh‖3L3

≤ C‖∇w‖4‖φh‖2 + ‖l(x)∇× φh‖2

+ ‖l(x)∇× ηt‖2 + C‖∇w‖2‖∇η‖2 + C‖ηt‖2 + C‖∇η‖2 + C‖q − rh‖2

+ C‖∇wh‖‖∇η‖2 + C‖l 23 (x)∇×w‖
3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + C‖l 23 (x)∇× η‖3L3 .

(4.19)

Integrate (4.19) from 0 to t to obtain

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) +

∫ t

0

[ν‖∇φh‖2 + C‖l 23 (x)∇× φh‖3L3 ]ds

≤ ‖φh‖2(0) + β2‖l(x)∇× φh‖2(0)

+

∫ t

0

max{C‖∇w‖4, 1

β2
}(‖φh‖2 + β2‖l(x)∇× φh‖2)ds

+ C

∫ t

0

[‖l(x)∇× ηt‖2 + ‖∇w‖2‖∇η‖2 + ‖ηt‖2 + ‖∇η‖2 + ‖q − rh‖2

+ ‖∇wh‖‖∇η‖2 + ‖l 23 (x)∇×w‖
3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + ‖l 23 (x)∇× η‖3L3 ]ds.

(4.20)

Since
∫ T

0
‖∇w‖4dt ≤ C, using Gronwall’s inequality, we have

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) +

∫ t

0

[ν‖∇φh‖2 + C‖l 23 (x)∇× φh‖3L3 ]ds

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0)

+

∫ t

0

[‖l(x)∇× ηt‖2 + ‖∇w‖2‖∇η‖2 + ‖ηt‖2 + ‖∇η‖2 + ‖q − rh‖2

+ ‖∇wh‖‖∇η‖2 + ‖l 23 (x)∇×w‖
3
2

L3‖l
2
3 (x)∇× η‖

3
2

L3 + ‖l 23 (x)∇× η‖3L3 ]ds}

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) +

∫ t

0

‖l(x)∇× ηt‖2(s)ds

+ (

∫ t

0

‖∇w‖4(s)ds)
1
2 (

∫ t

0

‖∇η‖4(s)ds)
1
2 +

∫ t

0

‖ηt‖2(s)ds+

∫ t

0

‖∇η‖2(s)ds

+

∫ t

0

‖q − rh‖2(s)ds+ (

∫ t

0

‖∇wh‖2(s)ds)
1
2 (

∫ t

0

‖∇η‖4(s)ds)
1
2

+ (

∫ t

0

‖l 23 (x)∇×w‖3L3(s)ds)
1
2 (

∫ t

0

‖l 23 (x)∇× η‖3L3(s)ds)
1
2 +

∫ t

0

‖l 23 (x)∇× η‖3L3(s)ds}.

(4.21)

With the stability bound (
∫ T

0
‖∇wh‖2(s)ds)

1
2 ≤ C, we can deduce

‖φh‖2(t) + β2‖l(x)∇× φh‖2(t) + ν

∫ t

0

‖∇φh‖2(s)ds+ C

∫ t

0

‖l 23 (x)∇× φh‖3L3(s)ds

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) +

∫ t

0

‖l(x)∇× ηt‖2(s)ds

+ (

∫ t

0

‖∇η‖4(s)ds)
1
2 +

∫ t

0

‖ηt‖2(s)ds+

∫ t

0

‖∇η‖2(s)ds+

∫ t

0

‖q − rh‖2(s)ds

+ (

∫ t

0

‖l 23 (x)∇× η‖3L3(s)ds)
1
2 +

∫ t

0

‖l 23 (x)∇× η‖3L3(s)ds}.

(4.22)
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Then we have

sup
0≤t≤T

‖φh‖2(t) + sup
0≤t≤T

β2‖l(x)∇× φh‖2(t) + ν‖∇φh‖2L2(0,T ;L2) + C‖l 23 (x)∇× φh‖3L3(0,T ;L3)

≤ C{‖φh‖2(0) + β2‖l(x)∇× φh‖2(0) + ‖l(x)∇× ηt‖2L2(0,T ;L2)

+ ‖∇η‖2L4(0,T ;L2) + ‖ηt‖2L2(0,T ;L2) + ‖∇η‖2L2(0,T ;L2)

+ ‖q − rh‖2L2(0,T ;L2) + ‖l 23 (x)∇× η‖
3
2

L3(0,T ;L3) + ‖l 23 (x)∇× η‖3L3(0,T ;L3)}.
(4.23)

Adding (4.23) to

sup
0≤t≤T

‖η‖2(t) + sup
0≤t≤T

β2‖l(x)∇× η‖2(t) + ν‖∇η‖2L2(0,T ;L2) + C‖l 23 (x)∇× η‖3L3(0,T ;L3)

(4.24)
and then using the triangle inequality complete the proof.

5. Time discretization. In this section, we discuss the time discretization scheme for
the corrected EV model (1.6). Divide the time interval [0, T ] to m elements (tn, tn+1). Here,
∆t = T

m , tn = n∆t for n = 0, 1, 2, · · · ,m. We denote wn = w(tn) and similarly for other
variables.

Algorithm 1 :(First order Backward-Euler scheme)

Given (wn, qn), find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn+1,wn+1,v) + ν(∇wn+1,∇v)

+ (l2(x)|∇ ×wn+1|∇ ×wn+1,∇× v)− (qn+1,∇ · v) = (fn+1,v) ∀v ∈ X,
(∇ ·wn+1, r) = 0 ∀r ∈ Q.

(5.1)

An á priori bound on wn+1 is proven in the next theorem. The system (5.1) reduces to
a finite dimensional nonlinear system with an á priori bound on any possible solution. Thus,
existence of wn+1 then follows by a standard fixed point argument similar to the nonlinear
system arising in the space and time discretized NSE case. When discretized in time but not
in space, existence of wn+1 can also be proven by monotonicity techniques.

Theorem 5.1. Method (5.1) is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 +

m−1∑
n=0

‖wn+1 −wn‖2 +

m−1∑
n=0

β2‖l(x)∇× (wn+1 −wn)‖2

+ 2∆t

m−1∑
n=0

∫
Ω

|l 23 (x)∇×wn+1|3dx + ν∆t

m−1∑
n=0

‖∇wn+1‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+1‖2−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(5.2)
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Proof. Set v = wn+1, r = qn+1 in (5.1) to obtain

1

2∆t
(‖wn+1‖2 − ‖wn‖2 + ‖wn+1 −wn‖2)

+
β2

2∆t
(‖l(x)∇×wn+1‖2 − ‖l(x)∇×wn‖2 + ‖l(x)∇×wn+1 − l(x)∇×wn‖2)

+

∫
Ω

l2(x)|∇ ×wn+1|3dx + ν‖∇wn+1‖2

= (fn+1,wn+1)

≤ 1

2ν
‖fn+1‖2−1 +

ν

2
‖∇wn+1‖2.

(5.3)

Multiplying (5.3) by 2∆t and summing it from n = 0 to n = m− 1 complete the proof.

Theorem 5.2. Assume w is a strong solution of the model. Assume that the true solution
w satisfies the following regularity.

∇w ∈ L∞(0, T ;L2), wtt ∈ L2(0, T ;L2), l(x)∇×wtt ∈ L2(0, T ;L2). (5.4)

Then,

‖em‖2 + β2‖l(x)∇× em‖2 + ∆t

m−1∑
n=0

ν‖∇en+1‖2 + 2∆t

m−1∑
n=0

C‖l 23 (x)∇× en+1‖3L3 ≤ C∆t2.

(5.5)

Proof. At time tn+1, the true solution (w, q) satisfies

(
w(tn+1)−w(tn)

∆t
,v) + β2(l2(x)∇× w(tn+1)−w(tn)

∆t
,∇× v) + b(w(tn+1),w(tn+1),v)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1),∇× v) + ν(∇w(tn+1),∇v)− (p(tn+1),∇ · v)

= (fn+1,v) + (Rn+1,v) + (l2(x)∇×Rn+1,∇× v) ∀v ∈ X,
(∇ ·w(tn+1), r) = 0 ∀r ∈ Q,

(5.6)

where Rn+1 = w(tn+1)−w(tn)
∆t − wt(t

n+1). Denote en+1 = w(tn+1) − wn+1. Subtracting (5.6)
from (5.1), we have

(
en+1 − en

∆t
,v) + β2(l2(x)∇× en+1 − en

∆t
,∇× v) + b(en+1,w(tn+1),v) + b(wn+1, en+1,v)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× v)

+ ν(∇en+1,∇v)− (p(tn+1)− qn+1,∇ · v)

= (Rn+1,v) + β2(l2(x)∇×Rn+1,∇× v) ∀v ∈ X,
(∇ · en+1, r) = 0 ∀r ∈ Q.

(5.7)
Setting v = en+1 in (5.7), we can obtain

1

2∆t
(‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2) + ν‖∇en+1‖2

+
β2

2∆t
(‖l(x)∇× en+1‖2 − ‖l(x)∇× en‖2 + ‖l(x)∇× en+1 − l(x)∇× en‖2)

+ (l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× en+1)

= (Rn+1, en+1) + β2(l2(x)∇×Rn+1,∇× en+1)− b(en+1,w(tn+1), en+1).

(5.8)
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Next, we will bound the terms in (5.8). Using (2.7) in Lemma 2.2, we can obtain

(l2(x)|∇ ×w(tn+1)|∇ ×w(tn+1)− l2(x)|∇ ×wn+1|∇ ×wn+1,∇× en+1)

≥ C‖l 23 (x)∇× en+1‖3L3 .
(5.9)

For the term (Rn+1, en+1),

(Rn+1, en+1) ≤ C‖Rn+1‖‖∇en+1‖ ≤ C‖Rn+1‖2 +
ν

4
‖∇en+1‖2. (5.10)

For the term (l2(x)∇×Rn+1,∇× en+1),

β2(l2(x)∇×Rn+1,∇× en+1) ≤ β2‖l(x)∇×Rn+1‖‖l(x)∇× en+1‖

≤ β2

2
‖l(x)∇×Rn+1‖2 +

β2

2
‖l(x)∇× en+1‖2.

(5.11)

Lastly, the term −b(en+1,w(tn+1), en+1) is bounded by

−b(en+1,w(tn+1), en+1) ≤ C‖en+1‖ 1
2 ‖∇w(tn+1)‖‖∇en+1‖ 3

2

≤ C‖en+1‖2‖∇w(tn+1)‖4 +
ν

4
‖∇en+1‖2.

(5.12)

Combining (5.9)-(5.12) with (5.8), we have

1

2∆t
(‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2) +

ν

2
‖∇en+1‖2 + C‖l 23 (x)∇× en+1‖3L3

+
β2

2∆t
(‖l(x)∇× en+1‖2 − ‖l(x)∇× en‖2 + ‖l(x)∇× en+1 − l(x)∇× en‖2)

≤ C‖∇w(tn+1)‖4‖en+1‖2 +
β2

2
‖l(x)∇× en+1‖2 + C‖Rn+1‖2 +

β2

2
‖l(x)∇×Rn+1‖2.

(5.13)

Multiplying (5.13) by 2∆t and summing it from n = 0 to n = m− 1, we obtain

‖em‖2 +

m−1∑
n=0

‖en+1 − en‖2 + ∆t

m−1∑
n=0

ν‖∇en+1‖2 + 2∆t

m−1∑
n=0

C‖l 23 (x)∇× en+1‖3L3

+ β2‖l(x)∇× em‖2 + ∆t
m−1∑
n=0

β2‖l(x)∇× en+1 − l(x)∇× en‖2

≤ ‖e0‖2 + β2‖l(x)∇× e0‖2 + C∆t

m−1∑
n=0

‖∇w(tn+1)‖4‖en+1‖2

+ ∆t

m−1∑
n=0

β2‖l(x)∇× en+1‖2 + C∆t

m−1∑
n=0

‖Rn+1‖2 + ∆t

m−1∑
n=0

β2‖l(x)∇×Rn+1‖2.

(5.14)

Since ‖∇w‖L∞(0,T ;L2) ≤ C, using Lemma 2.1, when ∆t < 1
max{C‖∇w‖L∞(0,T ;L2),1}

, we can

obtain

‖em‖2 + β2‖l(x)∇× em‖2 + ∆t

m−1∑
n=0

ν‖∇en+1‖2 + 2∆t

m−1∑
n=0

C‖l 23 (x)∇× en+1‖3L3

≤ C[‖e0‖2 + β2‖l(x)∇× e0‖2 + ∆t

m−1∑
n=0

‖Rn+1‖2 + ∆t

m−1∑
n=0

β2‖l(x)∇×Rn+1‖2].

(5.15)

14



We also have

∆t

m−1∑
n=0

‖Rn+1‖2 = ∆t

m−1∑
n=0

‖w(tn+1)−w(tn)

∆t
−wt(t

n+1)‖2

≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
‖wtt‖2ds = C∆t2‖wtt‖L2(0,T ;L2),

(5.16)

and

∆t

m−1∑
n=0

β2‖l(x)∇×Rn+1‖2 = ∆t

m−1∑
n=0

β2‖l(x)∇× (
w(tn+1)−w(tn)

∆t
−wt(t

n+1))‖2

≤ C∆t2
m−1∑
n=0

∫ tn+1

tn
β2‖l(x)∇×wtt‖2ds

= C∆t2β2‖l(x)∇×wtt‖L2(0,T ;L2).

(5.17)

Finally, combining (5.16), (5.17), and (5.15) completes the proof.

Algorithm 2 :(First order linearly implicit, Backward-Euler scheme)
Given (wn, qn), find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn,wn+1,v) + ν(∇wn+1,∇v)

+ (l2(x)|∇ ×wn|∇ ×wn+1,∇× v)− (qn+1,∇ · v) = (fn+1,v) ∀v ∈ X,
(∇ ·wn+1, r) = 0 ∀r ∈ Q.

(5.18)
Algorithm 2 leads to a linear problem for a continuous and coercive operator for wn+1.

Existence of wn+1 follows from the Lax-Milgram lemma.
Theorem 5.3. Method (5.18) is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 +

m−1∑
n=0

‖wn+1 −wn‖2 +

m−1∑
n=0

β2‖l(x)∇× (wn+1 −wn)‖2

+ 2∆t

m−1∑
n=0

∫
Ω

l2(x)|∇ ×wn| · |∇ ×wn+1|2dx + ν∆t

m−1∑
n=0

‖∇wn+1‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+1‖2−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(5.19)

Remark 5. The proof of Theorem 5.3 is similar to that of Theorem 5.1. We omit it here.
Algorithm 3 :(Second order Crank-Nicolson scheme)
Given (wn, qn), find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(wn+ 1

2 ,wn+ 1
2 ,v) + ν(∇wn+ 1

2 ,∇v)

+ (l2(x)|∇ ×wn+ 1
2 |∇ ×wn+ 1

2 ,∇× v)− (qn+ 1
2 ,∇ · v) = (fn+ 1

2 ,v) ∀v ∈ X,
(∇ ·wn+1, r) = 0 ∀r ∈ Q,

(5.20)

where we denote wn+ 1
2 = wn+wn+1

2 , and similarly for other variables.
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Equations (5.20) in Algorithm 3 leads to a nonlinear system of equations for wn+1. These
equations can be rearranged into a nonlinear system for wn+1/2 with the same structure as
the nonlinear system occurring in Algorithm 1. By the same argument existence for wn+1/2

follows. From this, by subtracting wn/2, existence follows for wn+1.

Theorem 5.4. Method (5.20) is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 + 2∆t

m−1∑
n=0

∫
Ω

|l 23 (x)∇×wn+ 1
2 |3dx + ν∆t

m−1∑
n=0

‖∇wn+ 1
2 ‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+ 1
2 ‖2−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(5.21)

Proof. Set v = wn+ 1
2 in (5.20) to obtain

1

2∆t
(‖wn+1‖2 − ‖wn‖2) +

β2

2∆t
(‖l(x)∇×wn+1‖2 − ‖l(x)∇×wn‖2)

+

∫
Ω

l2(x)|∇ ×wn+ 1
2 |3dx + ν‖∇wn+ 1

2 ‖2

= (fn+ 1
2 ,wn+ 1

2 ) ≤ 1

2ν
‖fn+ 1

2 ‖2−1 +
ν

2
‖∇wn+ 1

2 ‖2.

(5.22)

Multiplying (5.22) by 2∆t and summing it from n = 0 to n = m− 1 complete the proof.

Algorithm 4 :(Second order Crank-Nicolson linearly extrapolation scheme)

Given wn−1,wn, qn, find (wn+1, qn+1) satisfying

(
wn+1 −wn

∆t
,v) + β2(l2(x)∇× wn+1 −wn

∆t
,∇× v) + b(ϕ(wn),wn+ 1

2 ,v) + ν(∇wn+ 1
2 ,∇v)

+ (l2(x)|∇ × ϕ(wn)|∇ ×wn+ 1
2 ,∇× v)− (qn+ 1

2 ,∇ · v) = (fn+ 1
2 ,v) ∀v ∈ X,

(∇ ·wn+1, r) = 0 ∀r ∈ Q,
(5.23)

where ϕ(wn) = 3
2wn − 1

2wn−1.

Algorithm 4 is linearly implicit. It leads to a system for wn+1 that is continuous and
coercive. Existence of wn+1 then follows, as for the linearly implicit BE method, by the Lax-
Milgram lemma.

Theorem 5.5. Method (5.23) is unconditionally stable.

‖wm‖2 + β2‖l(x)∇×wm‖2 + 2∆t

m−1∑
n=0

∫
Ω

l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2dx

+ ν∆t

m−1∑
n=0

‖∇wn+ 1
2 ‖2

≤ ∆t

ν

m−1∑
n=0

‖fn+ 1
2 ‖2−1 + ‖w0‖2 + β2‖l(x)∇×w0‖2.

(5.24)

Remark 6. The proof of Theorem 5.5 is similar to that of Theorem 5.4. We just omit it
here.
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6. Numerical test. Since we study the simplest realization of an algebraic model, our
goal is simply to test if the model correction can exhibit backscatter in the form of a negative
total dissipation at some times. We select a 2d test without a global rotational flow (due
to the choice of the Baldwin-Lomax as the starting point). We use the first order scheme
Algorithm 2 and the second order scheme Algorithm 4. For both methods, we compute the
evolution of four components of dissipation in their approximation to the effect of the Reynolds
stress on the mean kinetic energy. The P2-P1 Taylor-Hood mixed finite elements are utilized
for discretization in space. FreeFem++ [35] is used for simulation.

Choose a rectangle domain Ω = [0, 4]×[0, 1] with a square obstacle Ω = [0.5, 0.6]×[0.45, 0.55]
inside it. We compute the problem on a Delaunay-Vornoi generated triangular mesh with more
mesh points near the obstacle area and less in other area, shown in Figure 6.1. The degree of
freedom is 17625, the shortest triangle edge is 0.0102605, and the longest is 0.097187. The flow
passes through this domain from left to right. For boundary conditions on the inflow boundary,
we let u|x−direction = 4y(1 − y), u|y−direction = 0. On the right, out-flow, boundary, we
impose the ”do-nothing” outflow boundary condition, [19] p. 21 eqn. (2.37) and
[4] p. 475. The no-slip condition u = 0 is imposed on other boundaries. We take f = 0,
T = 20, ∆t = 0.01, and Re = 10, 000. Let ȳ denote the distance of x to the nearest wall. The
mixing length is chosen ([12] Chapter 3 e.g. eqn. (3.99) p. 76) to be

l(x) =

{
0.41 · ȳ when 0 < ȳ < 0.2 ·Re− 1

2 ,

0.41 · 0.2 ·Re− 1
2 otherwise.

An alternatives is to pick l(x) = h, the local meshwidth, in the spirit of large eddy simulation.

Fig. 6.1. Mesh used in our computation

For Algorithm 2, [23], since Backward-Euler scheme has substantial numerical dissipation,
we select β = 10 and 100 to compute the following quantities, shown in Figure 6.2 (β = 10),
and Figure 6.3 (β = 100).

Backscatter term (BST) = β2

∫
Ω

l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+1dx

Numerical dissipation (ND) =
β2

2∆t
‖l(x)∇×wn+1 − l(x)∇×wn‖2,

Fluctuation dissipation (FD) =

∫
Ω

l2(x)|∇ ×wn||∇ ×wn+1|2dx,

Total Dissipation (TD) =

∫
Ω

(β2l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+1

+ l2(x)|∇ ×wn||∇ ×wn+1|2)dx.

For Algorithm 4,[23] [36], we compute the following quantities, shown in Figure 6.4 (β =
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Fig. 6.2. BST,ND,FD,TD vs Time, β = 10, Algorithm 2

10).

Backscatter term (BST) = β2

∫
Ω

l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+ 1

2 dx,

Fluctuation dissipation (FD) =

∫
Ω

l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2dx,

Total Dissipation (TD) =

∫
Ω

(β2l2(x)∇× wn+1 −wn

∆t
· ∇ ×wn+ 1

2

+ l2(x)|∇ × ϕ(wn)||∇ ×wn+ 1
2 |2)dx,

where ϕ(wn) = 3
2wn − 1

2wn−1 and wn+ 1
2 = 1

2 (wn+1 + wn).
In both Figure 6.3 and Figure 6.4, TD is negative at some times, indicating that backscatter

occurs and energy is transferred from fluctuation to the mean at that moment. However in
Figure 6.2, there is no appearance of negative values in TD. The results show that the numerical
dissipation in Algorithm 2 (the backward Euler time discretization) is compared to the model
dissipation and, for β = 10, dominates the term modeling the flow of energy from fluctuations
back to the mean. Algorithm 4 does not contain any numerical dissipation. For Algorithm 4,
β = 10, the effects of the added term does provide bursts of energy to the mean flow.

In order to test the convergence, we reduce both mesh size and time step, then recompute
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Fig. 6.3. BST,ND,FD,TD vs Time, β = 100, Algorithm 2

the backscatter term and dissipation terms. Since Algorithm 4 does not contain any numerical
dissipation, we use Algorithm 4 to do this test.

Firstly, we double the mesh points of all edges. The degree of freedom is 69657, the shortest
triangle edge is 0.00503187, and the longest is 0.0495673. We also halve the time step and take
∆t = 0.005. Figure 6.5 shows the result.

We furthermore double the mesh points of all edges. The degree of freedom is 276438, the
shortest triangle edge is 0.0024586, and the longest is 0.0270444. The time step ∆t = 0.0025.
Figure 6.6 shows the result.

Both Figure 6.5 and Figure 6.6 indicate the occurrence of backscatter at the same moments
on successively refined meshes.

7. Conclusion. We have considered the simplest form of the Baldwin-Lomax eddy viscos-
ity model, making the simplest choices within the approach of [32] to adapt it to incorporate the
effects of energy flow from fluctuations back to means (a form of statistical backscatter). For
internal flow with no-slip boundary condition in both 2d and 3d, the effects of fluctuations on
means are dissipative on time average but can have bursts (with time average zero) for which
energy flow reverses. We have shown that the corrected Baldwin-Lomax model shares this
property. We have given a stability analysis of two numerical methods for numerical approx-
imation of the resulting model: one with substantial numerical dissipation and one without.
Using this two methods, numerical tests confirm backscatter does occur and that the results
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Fig. 6.4. BST,FD,TD vs Time, β = 10, Algorithm 4

obtained depend upon the numerical dissipation in the algorithms used and the single model
calibration parameter β.

8. Appendix. Remark 7. The proof of monotonicity and local Lipschitz continuity are
similar to the analogous ones for the Smagorinsky model. Since the present work involves the
rotational form, we include both for completeness. Our proofs are adapted from Lemma 8.5 in
[18].

Proof. (Proof of Lemma 2.2) First, we prove the strong monotonicity (2.7). Define an

operator F : (L3(Ω))d → (L
3
2 (Ω))d by

F(∇× u) = l2(x)|∇ × u|∇ × u, (8.1)

where u ∈ (W 1,3(Ω))d, l : x ∈ Ω 7→ R is a non-negative function and l ∈ L∞(Ω). We further
define u = τu′ + (1− τ)u′′, τ ∈ [0, 1]. Then, we have

F(∇× u′)− F(∇× u′′) =

∫ 1

0

d

dτ
F(∇× u)dτ. (8.2)
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Fig. 6.5. BST,FD,TD vs Time, β = 10, ∆t = 0.005,Algorithm 4

Combine (8.1) and (8.2) to get

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′) · (∇× (u′ − u′′))

= (F(∇× u′)− F(∇× u′′)) · (∇× (u′ − u′′))

=

3∑
i=1

(

∫ 1

0

d

dτ
Fi(∇× u)dτ)[(

∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)].

(8.3)

Here, consider 3D case (d = 3). The notations i, j, k = 1, 2, 3, or i, j, k = 2, 3, 1, or i, j, k = 3, 1, 2.
We have

d

dτ
Fi(∇× u) = (l2(x)

d

dτ
|∇ × u|)(∂uk

∂xj
− ∂uj
∂xk

) + l2(x)|∇ × u|[(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)],

(8.4)
and

d

dτ
|∇ × u| = d

dτ
(

3∑
l=1

[τ(
∂u′n
∂xm

− ∂u′m
∂xn

) + (1− τ)(
∂u′′n
∂xm

− ∂u′′m
∂xn

)]2)
1
2

=
1

|∇ × u|

3∑
l=1

(
∂un
∂xm

− ∂um
∂xn

)[(
∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)],

(8.5)
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Fig. 6.6. BST,FD,TD vs Time, β = 10, ∆t = 0.0025,Algorithm 4

where the notations l,m, n = 1, 2, 3, or l,m, n = 2, 3, 1, or l,m, n = 3, 1, 2.
By (8.4) and (8.5), we obtain

d

dτ
Fi(∇× u) =

l2(x)

|∇ × u|

3∑
l=1

(
∂un
∂xm

− ∂um
∂xn

)[(
∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)](
∂uk
∂xj
− ∂uj
∂xk

)

+ l2(x)|∇ × u|[(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)].

(8.6)
Combining (8.6) and (8.3), we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′) · (∇× (u′ − u′′)) = Q1 +Q2. (8.7)

Here,

Q1 =

∫ 1

0

l2(x)

|∇ × u|

3∑
i,l=1

(
∂un
∂xm

− ∂um
∂xn

)(
∂uk
∂xj
− ∂uj
∂xk

)

· [( ∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)][(
∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)]dτ

≥ 0.

(8.8)
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Furthermore, we have

Q2 =

∫ 1

0

l2(x)|∇ × u|
3∑
i=1

[(
∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)]2dτ

≥ Cd
∫ 1

0

l2(x)

3∑
i=1

(

3∑
l=1

| ∂un
∂xm

− ∂um
∂xn
|)[(∂u′k

∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)]2dτ

≥ Cd
3∑
i=1

3∑
l=1

l2(x)[

∫ 1

0

|τ(
∂u′n
∂xm

− ∂u′m
∂xn

) + (1− τ)(
∂u′′n
∂xm

− ∂u′′m
∂xn

)|dτ ]

· [(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)]2

≥ Cd
3∑
i=1

3∑
l=1

l2(x)[
1

4
|( ∂u′n
∂xm

− ∂u′m
∂xn

)− (
∂u′′n
∂xm

− ∂u′′m
∂xn

)|][(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)]2

≥ C
3∑
i=1

l2(x)|(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)|3,

(8.9)

where we use those inequalities
√
a2 + b2 + c2 ≥ Cd(|a| + |b| + |c|) and

∫ 1

0
|τa + (1 − τ)b|dτ ≥

1
4 |a− b|, ∀ a, b, c ∈ R.

By (8.7), (8.8) and (8.9), we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′),∇× (u′ − u′′)) =

∫
Ω

(Q1 +Q2)dx

≥ C
∫

Ω

3∑
i=1

l2(x)|(∂u′k
∂xj
−
∂u′j
∂xk

)− (
∂u′′k
∂xj

−
∂u′′j
∂xk

)|3dx

= C‖l 23 (x)∇× (u′ − u′′)‖3L3 ,

(8.10)

which completes the proof of strong monotonicity (2.7).

Next, we prove the local Lipschitz-continuity (2.8). Using triangle inequality, we have

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ (l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′|∇ × u′′,∇× v)

+ (l2(x)|∇ × u′|∇ × u′′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ ‖l 23 (x)|∇ × u′|‖L3‖l 23 (x)∇× (u′ − u′′)‖L3‖l 23 (x)∇× v‖L3

+ ‖l 23 (x)|∇ × u′| − l 23 (x)|∇ × u′′|‖L3‖l 23 (x)∇× u′′‖L3‖l 23 (x)∇× v‖L3 .

(8.11)

Since

‖l 23 (x)|∇ × u′|‖L3 =

∫
Ω

(

3∑
i=1

|l 23 (x)(∇× u′)i|2)
3
2 dx

≤ C̃d
∫

Ω

(

3∑
i=1

|l 23 (x)(∇× u′)i|3)dx

= C̃d‖l
2
3 (x)∇× u′‖L3 ,

(8.12)
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where we use the inequality ‖x‖
`2
≤ C̃d‖x‖`3 , ∀ x ∈ Rd. We also have

‖l 23 (x)|∇ × u′| − l 23 (x)|∇ × u′′|‖L3 ≤ ‖l 23 (x)|∇ × u′ −∇× u′′|‖L3

≤ C̃d‖l
2
3 (x)∇× (u′ − u′′)‖L3 .

(8.13)

Finally, by (8.11), (8.12), and (8.13), we can obtain the local Lipschitz-continuity (2.8).

(l2(x)|∇ × u′|∇ × u′ − l2(x)|∇ × u′′|∇ × u′′,∇× v)

≤ C̃d‖l
2
3 (x)∇× u′‖L3‖l 23 (x)∇× (u′ − u′′)‖L3‖l 23 (x)∇× v‖L3

+ C̃d‖l
2
3 (x)∇× u′′‖L3‖l 23 (x)∇× (u′ − u′′)‖L3‖l 23 (x)∇× v‖L3

= Cγ‖l 23 (x)∇× (u′ − u′′)‖L3‖l 23 (x)∇× v‖L3 ,

(8.14)

where γ = max{‖l 23 (x)∇× u′‖L3 , ‖l 23 (x)∇× u′′‖L3}.
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