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Abstract. The existence of solutions to the Boussinesq system driven by random exterior forcing terms both in the
velocity field and the temperature is proven using a semigroup approach. We also obtain the existence and uniqueness of an
invariant measure via coupling methods.

1. Introduction. We study the existence and ergodicity of the stochastic Boussinesq equation

du = (ν∆u− (u · ∇)u+ σθ −∇p)dt+
√
Q1dW1(t),

dθ = (χ∆θ − (u · ∇)θ)dt+
√
Q2dW2(t),

∇ · u = 0 in (0,+∞)×O, (1.1)

u = 0, θ = 0 on (0,+∞)× ∂O,
u(0, x) = u0(x), θ(0, x) = θ0(x) in O,

which models the interactions between an incompressible fluid flow coupled with thermal dynamics in
two dimensions, in the presence of random perturbations. Here O ⊂ R2 is a bounded, open and simply
connected domain with smooth boundary ∂O, and u = (u1, u2) denotes the fluid velocity field, θ is the
temperature of the fluid, p stands for the pressure, ν is the kinematic viscosity and χ is the thermal
diffusivity, σ is a constant two component-vector. Also W1 and W2 represent two independent cylindrical
Wiener processes [10, 12] defined, respectively, on a filtered space (Ω,Ft,P) taking values in

H =
{
v ∈

(
L2(O)

)2
: ∇ · v = 0 in O, v · n = 0 on ∂O

}
, H1 = L2(O).

Finally, Q1 and Q2 are linear continuous, positive and symmetric operators on H and H1, respectively,
of trace class (see Definition 5.1 in the Appendix 5), i.e., TrQi < ∞, i = 1, 2, satisfying the following
condition:

Q1 = A−γ , Q2 = A−γ1 , (1.2)

where 1/2 < γ < 1, A and A1 are as defined in (2.1).
Herein we prove the existence and uniqueness of a solution (u(t, u0, θ0), θ(t, u0, θ0)) of the stochastic

Boussinesq system (1.1), and of the corresponding invariant measure in the space H×H1. The deterministic
version of the Boussinesq system (1.1) was comprehensively studied in the literature (see, e.g. [1, 9, 13]
and the references therein). In the case of two-dimensional Navier-Stokes equations, the existence and
uniqueness of a solution, the uniqueness of the invariant measure and properties of the corresponding
Kolmogorov operators were studied in [3, 5, 4, 8, 7]. For the two-dimensional magnetohydrodynamics
system, see [2].

The paper is organized as follows. In Section 2 we formulate problem (1.1) in an appropriate functional
setting (see [13, 6, 12, 10]) and in Section 3 we give the main existence and uniqueness result for (1.1) which
is proved via an approximating regularizing scheme. In Section 4 we prove the existence of an invariant
measure µ corresponding to the stochastic flow t 7→ (u(t), θ(t)), and its uniqueness via coupling methods,
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following [11, 2]. In particular, the uniqueness of the invariant measure implies that the flow is ergodic,
i.e.,

lim
T→∞

1

T

∫ T

0

φ(u(t), θ(t)) dt =

∫
H×H

φdµ ∀φ ∈ L2(H ×H;µ)

which agrees with some physical hypothesis on the Boussinesq flow.

2. Functional setting and formulation of the problem. We introduce the functional spaces to
represent the coupled Navier-Stokes and heat equations (1.1) as infinite dimensional differential equation

V =
{
v ∈

(
H1

0 (O)
)2

: ∇ · v = 0 in O
}
, V1 = H1

0 (O).

The norms of V and V1 are denoted by the same symbol ‖ · ‖:

‖v‖2 =

2∑
i=1

∫
O
|∇vi|2dx, v = (v1, v2) ∈ V,

‖η‖2 =

∫
O
|∇η|2dx, η ∈ V1.

Let denote by V ′ and V ′1 = H−1(O) the duals of V and V1 respectively, endowed with the dual norms.
Denote again (·, ·) the scalar product on H and the pairing between V and V ′, V1 and V ′1 . The norm on
H and L2(Ω) will both be denoted by | · |. Identifying H with its own dual we have V ⊂ H ⊂ V ′. Let
A ∈ L(V, V ′), A1 ∈ L(V1, V

′
1), b : V × V × V → R be defined by

(Av,w) =

∫
O
∇v · ∇w dx, v, w ∈ V,

(A1α, β) =

∫
O
∇α · ∇βdx, α, β ∈ V1, (2.1)

b(u, v, w) =

2∑
i,j=1

∫
O
uiDivjwjdx, u, v, w ∈ V,

and B : V → V ′ given by

(Bv,w) = b(v, v, w), v, w ∈ V.

Then system (1.1) can be written as

du+ (νAu+B(u)− σθ)dt =
√
Q1dW1(t),

dθ + (χA1θ + (u · ∇)θ)dt =
√
Q2dW2(t), (2.2)

u(0) = u0, θ(0) = θ0.

The cylindrical Wiener process W = (W1,W2) on H ×H is defined [10] by

Wi(t) =

∞∑
j=1

βij(t)e
i
j , i = 1, 2,

where {e1j}, {eij} are two complete orthonormal bases of eigenfunctions of A, respectively A1, and {βij}, i =
1, 2 are two independent sequences of mutually independent Brownian motions on the filtered space
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(Ω,F ,Ft,P). We denote by CW (0, T ;H×H1) the space of all continuous functions Z:[0, T ]∈L2(Ω,Ft,P;H×
H1) which are adapted to the filtration Ft. The spaces L2

W (0, T ;V ×V ) and L2
W (0, T ;V ′×V ′1) are similarly

defined.
Consider the stochastic convolution that is the mild solution of the problem

dWA(t) +AWA(t)dt =
√
QdW (t), (2.3)

WA(0) = 0,

given by

WA(t) =

∫ t

0

e−A(t−s)
√
QdW (s) := (W 1

A(t),W 2
A(t)),

where

A =

(
νA 0
0 χA1

)
, Q =

(
Q1 0
0 Q2

)
.

Under our assumptions it follows that [4]

WA ∈ CW (0, T ;H ×H) ∩ (L4
W ([0, T ]×O))2,

and by Theorem 2.13 of [4] we have that

E

(
sup

(t,x)∈[0,T ]×O
|W i

A|4
)
< +∞.

3. Existence and uniqueness result. Our main theorem is as follows.
Theorem 3.1. For all (u0, θ0) ∈ H × H1 and T > 0 problem (2.2) has a unique solution (u, θ) ∈

L2
W (0, T ;V × V1).

To prove Theorem 3.1 we reduce (2.2) to a deterministic equation with random coefficients, via the
substitution

u(t) = v(t) +W 1
A(t), θ(t) = η(t) +W 2

A(t).

Then (2.2) reduces to

v′ + νAv +B(v) + v · ∇W 1
A +W 1

A · ∇v − σθ − σW 2
A = −B(W 1

A),

η′ + χA1η + v · ∇η + v · ∇W 2
A +W 1

A · ∇η = −W 1
A · ∇W 2

A, (3.1)

v(0) = u0, η(0) = θ0.

We recall the following standard estimates, which will be used in the sequel:

|(B(v), w)| ≤ C|v|‖v‖‖w‖ ⇒ ‖B(v)‖V ′ ≤ C|v|‖v‖,
|(v · ∇η, α)| ≤ C|v|1/2‖v‖1/2|η|1/2‖η‖1/2‖α‖ ⇒ ‖v · ∇η‖V ′

1
≤ C|v|1/2‖v‖1/2|η|1/2‖η‖1/2,

‖W 1
A · ∇v‖V ′ + ‖v · ∇W 1

A‖V ′ ≤ C|W 1
A|4|v|1/2‖v‖1/2,

‖v · ∇W 2
A‖V ′

1
≤ C|W 2

A|4|v|1/2‖v‖1/2,

‖W 2
A · ∇η‖V ′

1
≤ C|W 1

A|4|η|1/2‖η‖1/2.

Proposition 3.2. Let (u0, θ0) ∈ H ×H1. Then there is a unique solution (v, η) ∈ L2
W (0, T ;V × V1)

to (3.1) such that P-a.s. (v, η) : [0, T ]→ V ′ × V ′1 is absolutely continuous on [0, T ] and
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(i) v′ ∈ L2(0, T ;V ′), η′ ∈ L2(0, T ;V ′1), P-a.s.
(ii) v ∈ C([0, T ], H) and η ∈ C([0, T ], H1), P-a.s.

Proof. We consider the approximating equation

v′ε + νAvε + Φε1(vε) + vε · ∇W 1
A +W 1

A · ∇vε − σθε − σW 2
A = −B(W 1

A),

η′ε + χA1ηε + Φε2(vε, ηε) + vε · ∇W 2
A +W 1

A · ∇ηε = −W 1
A · ∇W 2

A, (3.2)

v(0) = u0, η(0) = θ0,

where

Φε1(vε) =

{
B(v) if ‖v‖ ≤ 1

ε ,
B(v)
ε2‖v‖2 if ‖v‖ > 1

ε .

and

Φε2(vε, θε) =

{
v · ∇η if ‖v‖+ ‖η‖ ≤ 1

ε ,
v·∇η

ε2(‖v‖+‖η‖)2 if ‖v‖+ ‖η‖ > 1
ε .

It is easy to see that uε = vε +W 1
A and θε = ηε +W 2

A satisfy

duε + (νAuε + Φε1 − σθε)dt =
√
Q1dW1(t),

dθε + (χA1θε + Φε2)dt =
√
Q2dW2(t), (3.3)

u(0) = u0, θ(0) = θ0.

Multiplying the first and second equations of (3.2) by vε and θε respectively, we have

1

2

d

dt

(
|vε|2 + |ηε|2

)
+ ν‖vε‖2 + χ‖ηε‖2 + b(vε,W

1
A, vε) + b(vε,W

2
A, ηε)

= (σηε, vε) + (σW 2
A, vε)− b(W 1

A,W
1
A, vε)− b(W 1

A,W
2
A, ηε).

Recall Young’s inequality: ab ≤ ap

p + bq

q for p and q conjugate. Then we have

b(vε,W
1
A, vε) ≤ C|vε|1/2‖vε‖3/2|W 1

A|4 ≤
ν

3
‖vε‖2 + C|vε|2|W 1

A|44,

b(vε,W
2
A, ηε) ≤ C|vε|1/2‖vε‖1/2|‖ηε‖|W 2

A|4

≤ C|vε|‖vε‖|W 2
A|24 +

χ

2
‖ηε‖2

≤ ν

3
‖vε‖2 + C|vε|2|W 2

A|44 +
χ

2
‖ηε‖2,

b(W 1
A,W

1
A, vε) ≤ C|W 1

A|24‖vε‖ ≤
ν

3
‖vε‖2 + C|W 1

A|44,

b(W 1
A,W

2
A, ηε) ≤ C|W 1

A|4|W 2
A|4‖ηε‖ ≤

χ

2
‖ηε‖2 + C|W 1

A|24|W 2
A|24

(σηε, vε) ≤ C(|ηε|2 + |vε|2).

So we have

d

dt

(
|vε|2 + |ηε|2

)
+ ν‖vε‖2 + χ‖ηε‖2 ≤ C(|W 1

A|44 + |W 2
A|44 + C)(|ηε|2 + |vε|2 + 1). (3.4)
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Integrating (3.4) with respect to t ∈ [0, T ] and using Gronwall’s inequality, we have

|vε(t)|2 + |ηε(t)|2 +

∫ T

0

(‖vε(s)‖2 + ‖ηε(s)‖2)ds

≤ C(|u0|2 + |θ0|2) exp

(
C

∫ T

0

(|W 1
A|44 + |W 2

A|44 + C)ds

)
+ C, t ∈ [0, T ], (3.5)

where C is independent of ε and ω.
Now we fix ω ∈ Ω and select a sub-sequence ε = ε(ω) such that

vε(t)→ v(t) weakly in L2(0, T ;V ), weak star in L∞(0, T ;H),

ηε(t)→ η(t) weakly in L2(0, T ;V1), weak star in L∞(0, T ;L2(Ω)),

Avε(t)→ Av(t) weakly in L2(0, T ;V ′),

Aηε(t)→ Aη(t) weakly in L2(0, T ;V ′1),

and similarly

Φε1(vε(t))→ ϕ1(t) weakly in L2(0, T ;V ′)

Φε2(vε(t), ηε(t))→ ϕ2(t) weakly in L2(0, T ;V ′1)

vε(t) · ∇W 1
A → v(t) ·W 1

A weakly in L2(0, T ;V ′)

W 1
A · ∇vε(t)→W 1

A · ∇v(t) weakly in L2(0, T ;V ′)

σηε(t)→ ση(t) weakly in L2(0, T ;V ′1)

vε(t) · ∇W 2
A → v(t) ·W 2

A weakly in L2(0, T ;V ′1)

W 1
A · ∇ηε(t)→W 1

A · ∇η(t) weakly in L2(0, T ;V ′1).

Thus, we have

v′ + νAv + ϕ1 + v · ∇W 1
A +W 1

A · ∇v = −B(W 1
A) + σθ + σW 2

A, a.e. t ∈ [0, T ],

η′ + χA1η + ϕ2 + v · ∇W 2
A +W 1

A · ∇η = −W 1
A · ∇W 2

A, a.e. t ∈ [0, T ], (3.6)

v(0) = u0, η(0) = θ0.

On the other hand, since v′ε and η′ε are bounded in L2(0, T ;V ′) and L2(0, T ;V ′1) respectively, we also have
that for ε→ 0

vε → v strongly in L2(0, T ;H),

ηε → η strongly in L2(0, T ;L2(O)).

Moreover, ∫ T

0

(ϕ1(t), ψ(t))dt→
∫ T

0

b(v, v, ψ)dt, ∀ψ ∈ C([0, T ], D(A)), (3.7)

and the reason is as follows.∫ T

0

(ϕ1(t), ψ(t))dt

=

∫
t∈[0,T ]:‖vε‖≤1/ε

b(vε, vε, ψ)dt+

∫
t∈[0,T ]:‖vε‖>1/ε

b(vε, vε, ψ)

ε2‖v2ε‖
dt

= I1ε + I2ε .
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We have shown that

b(vε, vε, ψ)→ b(v, v, ψ), a.e. t ∈ [0, T ].

Since

|b(vε, vε, ψ)| ≤ C|vε|‖vε‖,

we infer by the dominated convergence theorem that

I1ε →
∫ T

0

b(v, v, ψ)dt as ε→ 0.

On the other hand, we have shown that

sup
t∈[0,T ]

{‖vε(t)‖ > 1/ε} ≤ Cε2.

Therefore,

|I2ε | ≤ Cε2
|vε|‖vε‖‖ψ‖
ε2‖vε‖2

≤ C 1

‖vε‖
≤ Cε→ 0 as ε→ 0.

Thus, it follows that ϕ1(t) = B(v(t)), a.e. t ∈ [0, T ]. Similarly, we have ϕ2(t) = v · ∇η.
This means that the pair (v, η) is a solution to (3.1) for every fixed ω ∈ Ω. On the other hand, it is

readily seen that for each ω ∈ Ω, (3.6) with ϕ1 = B(v) and ϕ2 = v · ∇η has at most one solution (v, η)
with the above properties. This implies that, for ε→ 0,

vε(t)→ v(t), ηε(t)→ η(t),

weakly in L2(0, T ;V ) and L2(0, T ;V1), respectively, P-a.s. This indicates that v and η (and v′ and η′) are
adapted to the filtration Ft and therefore (v, η) ∈ L2

W (0, T ;V × V1) and (v′, η′) ∈ L2
W (0, T ;V ′ × V ′1).

Now we are ready to prove Theorem 3.1.
Proof. [Proof of Theorem 3.1] For the first equation of (3.3), we have by Ito’s formula

1

2
E|uε(t)|+ νE

∫ t

0

‖uε(s)‖2ds =
1

2
|u0|2 +

1

2
t T r Q1 + E

∫ t

0

(σθε, uε)ds. (3.8)

Proceeding similarly as in the second equation in (3.3), we obtain

1

2
E|θε(t)|+ χE

∫ t

0

‖θε(s)‖2ds =
1

2
|θ0|2 +

1

2
t T r Q2. (3.9)

Combining (3.8) and (3.9) we get, for t ∈ [0, T ]

E(|uε|2 + |θε|2) + 2E
∫ t

0

(ν‖uε(s)‖2 + χ‖θε(s)‖2)ds (3.10)

= |u0|2 + |θ0|2 + t T r (Q1 +Q2) + 2E
∫ t

0

(σθε, uε)ds.

By Gronwall’s inequality, we deduce from (3.10) that

E(|uε|2 + |θε|2) + E
∫ t

0

(‖uε(s)‖2 + ‖θε(s)‖2)ds ≤ C. (3.11)
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This implies that, for ε→ 0,

uε → u = v +W 1
A weakly in L2

W (0, T ;V ),

θε → θ = η +W 2
A weakly in L2

W (0, T ;V1),

where (u, θ) is a solution to (1.1).
As for uniqueness, if (ũ(t), θ̃(t)) is a solution with initial data (u1, θ1) we have by (2.2) that

1

2
d(|u(t)− ũ(t)|2 + |θ(t)− θ̃(t)|2) + ν‖u(t)− ũ(t)‖2 + χ‖θ(t)− θ̃(t)‖2

≤ |b(u− ũ, ũ, u− ũ)|+ |((u− ũ) · ∇θ̃, θ − θ̃)|+ |(σ(θ − θ̃), u− ũ)|
≤ C|u− ũ|‖u− ũ‖‖ũ‖+ C|u− ũ|1/2‖u− ũ‖1/2|θ̃|1/2‖θ̃‖1/2‖θ − θ̃‖+ C|θ − θ̃||u− ũ|

≤ C|u− ũ|2‖ũ‖2 +
ν

4
‖u− ũ‖2 + C|u− ũ|2|θ̃|2‖θ̃‖2 +

ν

4
‖u− ũ‖2 +

χ

2
‖θ − θ̃‖2 + C(|θ − θ̃|2 + |u− ũ|2)

≤ C(|θ − θ̃|2 + |u− ũ|2)(1 + ‖ũ‖2 + |θ̃|2‖θ̃‖2) +
ν

2
‖u− ũ‖2 +

χ

2
‖θ − θ̃‖2.

Using Gronwall’s inequality there holds

|u(t)− ũ(t)|2 + |θ(t)− θ̃(t)|2

≤ C(|u0 − u1|2 + |θ0 − θ1|2)× exp

(
C

∫ t

0

(1 + ‖ũ‖2 + |θ̃|2‖θ̃‖2)ds

)
.

This completes the uniqueness of (u, θ) as well as the continuity of (u0, θ0)→ (u(t), θ(t)).

4. Ergodicity.

4.1. Existence of invariant measure. Let (u(t, u0, θ0), θ(t, u0, θ0)) ∈ L2
W (0, T ;V × V1) be the

solution of (1.1) with initial data (u0, θ0). Set

Ptφ(u0, θ0) = E[φ(u(t, u0, θ0), θ(t, u0, θ0))], ∀(u0, θ0) ∈ H ×H1, φ ∈ Cb(H ×H1).

Recall that a Borel probability measure µ in H×H1 is invariant (Definition 5.3) for the transition semigroup
Pt if ∫

H×H1

Ptφdµ =

∫
H×H1

φdµ, ∀φ ∈ Cb(H ×H1).

Theorem 4.1. There exists at least one invariant measure µ for Pt.
Proof. From (3.10) we have that

E(|u(t)|2 + |θ(t)|2) + E
∫ t

0

(‖u(s)‖2 + ‖θ(s)‖2)ds

≤ C
(
|u0|2 + |θ0|2 + tT r(Q1 +Q2)

)
, t ≥ 0. (4.1)

Let πt(u0, θ0, ·) be the law of process (u(t), θ(t)). Then

Ptφ(u0, θ0) =

∫ t

0

φ(u1, θ1)πt(u0, θ0, du1, dθ1).

In order to prove the existence of an invariant measure, it is enough to show that the set

µT :=
1

T

∫ T

0

πt(u0, θ0, ·)dt, T > 1,
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is tight in P(H ×H1) (see the definition 5.4 in the Appendix 5). With fixed (u0, θ0) ∈ H ×H1, we have
that

1

t
E
∫ t

0

(‖u‖2 + ‖θ‖2)ds ≤ C(|u0|2 + |θ0|2 + Tr(Q)).

Let BR denote the ball of radius R in V × V1. Then ∀R > 0, we have

µT (BcR) =
1

T

∫ T

0

πt(u0, θ0, B
c
R)dt

≤ 1

TR2

∫ T

0

E(‖u‖2 + ‖θ‖2)ds

≤ 1

R2
C(|u0|2 + |θ0|2 + Tr(Q)),

which yields that {µT }T≥1 is tight.

4.2. Uniqueness of invariant measure. In this section we prove the uniqueness of the invariant
measure µ using coupling method (see, e.g., [2, 11, 7, 8]). We follow the approach presented in [2, 11], and
Lemmas 4.2-4.4 are the main steps in the proof. With these a priori estimates, the main result, Theorem
4.5, follows exactly the same framework as in [2]. Therefore, we only prove Lemmas 4.2-4.4 in this section.
For a detailed proof of Theorem 4.5, please refer to [2].

Lemma 4.2. The following estimate holds:

ν∗E
∫ t

0

(‖u‖2 + ‖θ‖2)ds ≤ |u0|2 + |θ0|2 +
t

2
Tr(Q), (4.2)

where ν∗ = min{ν, χ}.
Proof. This is a direct consequence of (4.1).
Lemma 4.3. Let ρ0, ρ1 > 0. Then there exist α = α(ρ0, ρ1) and T = T (ρ0, ρ1) > 0 such that for any

t ∈ [T, 2T ], |u0| ≤ ρ0, |θ0| ≤ ρ0, we have

P(|u| ≤ ρ1, |θ| ≤ ρ1) ≥ α. (4.3)

Proof. Let v = u−W 1
A, η = θ −W 2

A, where W 1
A and W 2

A are mild solutions to (2.3). Multiplying the
second equation (3.1) with η yields

1

2

d

dt
|η|2 + χ‖η‖2 ≤ |b(v,W 2

A, η)|+ |b(W 1
A,W

2
A, η)

≤ C(‖v‖|W 2
A|4 + |W 1

A|4|W 2
A|4) +

χ

2
‖η‖2.

Thus,

d

dt
|η|2 + χ‖η‖2 ≤ C|W 2

A|4(‖v‖+ |W 1
A|4),

equivalently,

d

dt

(
eδt|η|2

)
≤ C|W 2

A|4(‖v‖+ |W 1
A|4)eδt. (4.4)

Note that W 1
A and W 2

A are independent Gaussian processes in L4(O), and following the argument in [4]
we have

P
(
|W 1

A|24 + |W 2
A|24
)
≤ ε, ∀t ∈ [0, 2T ] > 0.

8



Integrating and rearranging (4.4) yields

|η(t)|2 ≤ e−δt|η(0)|2 + Ce−δtε

∫ t

0

eδs(‖v‖+ ε)ds

≤ e−δt|η(0)|2 + Ce−δtε

((∫ t

0

e2δsds

)1/2(∫ t

0

‖v‖2ds
)1/2

+ ε

∫ t

0

eδsds

)
≤ e−δt|η(0)|2 + Cε, (4.5)

where we used the a priori result from (3.5). Now multiply equation (3.1) with v and η respectively, then
we have

1

2

d

dt
(|v2|+ |η|2) + ν‖v‖2 + χ‖η‖2

≤C
(
(|W 1

A|44 + |W 2
A|44)|v|2 + |W 1

A|44 + |W 2
A|44
)

+ |(ση, v)|+ ν

4
‖v‖2 +

χ

2
‖η‖2

≤C(|W 1
A|44 + |W 2

A|44)(|v|2 + 1) +
ν

4
‖v‖2 + Cν‖η‖2 +

ν

4
‖v‖2 +

χ

2
‖η‖2.

Applying the estimate of (4.5) to the above equation yields

d

dt
(|v2|+ |η|2) + α(‖v‖2 + ‖η‖2) ≤ C(|η(0)|2e−δt + ε). (4.6)

Multiply eαt to both sides of (4.6) and integrate from 0 to t, then we have

|v(t)|2 + |η(t)|2 ≤ e−αt(|v(0)|2 + |η(0)|2) + C|η(0)|2e−min(α,δ)t + Cεt. (4.7)

The right-hand side will be small by choosing T large enough first, and then letting ε small enough.
Lemma 4.4. Let g ∈ Cb(H × H1) be such that ‖g‖0 ≤ 1. For notational simplicity, denote (x, y) ∈

H ×H1 by the initial values of u and θ. Then for any t > 0 and δ > 0 such that

|Ptg(x, y)− Ptg(x1, y1)| ≤ 1

2
,

for all (x, y), (x1, y1) ∈ H×H1, x, y, x1, y1 ∈ Bδ(0), where Bδ(0) denotes a disk centered at the origin with
radius δ.

Proof. Let Z = (u, θ) be the solution of (1.1) with initial value (x, y) ∈ H × H1 and by DZ the
Gateaux derivative of Z. Denote

ξ1 = Dxu, ξ2 = Dxθ, ξ3 = Dyu, ξ4 = Dyθ,

where Dx and Dy are Gateaux derivatives with respect to x and y. Then

ξ′1 + νAξ1 +B′(u)ξ1 − σξ2 = 0,

ξ′2 + χA1ξ2 + F (u, θ)uξ1 + F (u, θ)θξ2 = 0, (4.8)

ξ1(0) = 1, ξ2(0) = 0

and

ξ′3 + νAξ3 +B′(u)ξ3 − σξ4 = 0,

ξ′4 + χA1ξ4 + F (u, θ)uξ3 + F (u, θ)θξ4 = 0, (4.9)

ξ3(0) = 0, ξ4(1) = 1

9



where (F (u, θ), w) = b(u, θ, w) for any w ∈ V . By multiplying (4.8) by ξ1 and ξ2, respectively, we have

1

2

d

dt
(|ξ1|2 + |ξ2|2) + ν‖ξ1‖2 + χ‖ξ2‖2

=− b(ξ1, u, ξ1) + (σξ2, ξ1)− b(ξ1, θ, ξ2)

≤C|ξ1|‖ξ1‖‖u‖+ C(|ξ2|2 + |ξ1|2) + C‖ξ1‖
1
2 ‖ξ2‖

1
2 |ξ1|

1
2 |ξ2|

1
2 ‖θ‖

≤ε‖ξ1‖2 + C|ξ1|2‖u‖2 + C(|ξ2|2 + |ξ1|2)+
ε

2
(‖ξ1‖2 + ‖ξ2‖2) + C(|ξ1|2 + |ξ2|2)‖θ‖2.

For properly chosen ε, there exists γ > 0 such that

d

dt
(|ξ1|2 + |ξ2|2) + γ(‖ξ1‖2 + ‖ξ2‖2)

≤C(|ξ1|2 + |ξ2|2)(‖u‖2 + ‖θ‖2 + C),

and by Gronwall’s inequality, we obtain

|ξ1|2 + |ξ2|2 + γ

∫ t

0

(‖ξ1‖2 + ‖ξ2‖2)ds ≤ C exp

(
C

∫ t

0

(‖u‖2 + ‖θ‖2 + C)ds

)
. (4.10)

Similarly,

|ξ3|2 + |ξ4|2 + γ

∫ t

0

(‖ξ3‖2 + ‖ξ4‖2)ds ≤ C exp

(
C

∫ t

0

(‖u‖2 + ‖θ‖2 + C)ds

)
. (4.11)

The next step is to estimate

E [g (u(t, x, y), θ(t, x, y))− g (u(t, x1, y1), θ(t, x1, y1))]

by following the argument as in [11]. To do that, we introduce a cut-off function

ΦK(r) =


1 if r ∈ [0,K]

0 if r ∈ [2K,∞]

∈ [0, 1] if r ∈ [K, 2K].

Then

E [g (u(t, x, y), θ(t, x, y))− g (u(t, x1, y1), θ(t, x1, y1))]

=E
[
g (u(t, x, y), θ(t, x, y))× ΦK

(∫ t

0

(‖u(s, x, y)‖2 + ‖θ(s, x, y)‖2)ds

)]
− E

[
g (u(t, x1, y1), θ(t, x1, y1))× ΦK

(∫ t

0

(‖u(s, x1, y1)‖2 + ‖θ(s, x1, y1)‖2)ds

)]
+ E

[
g(u(t, x, y), θ(t, x, y))×

(
1− ΦK

(∫ t

0

(‖u(s, x, y)‖2 + ‖θ(s, x, y)‖2)ds

))]
− E

[
g(u(t, x1, y1), θ(t, x1, y1))×

(
1− ΦK

(∫ t

0

(‖u(s, x1, y1)‖2 + ‖θ(s, x1, y1)‖2)ds

))]
=H1(t) +H2(t) +H3(t).
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As a result of Lemma 4.2, we have

|H2(t)| ≤ P
(∫ t

0

(‖u(s, x, y)‖2 + ‖θ(s, x, y)‖2)ds ≥ K
)
‖g‖0 (4.12)

≤ ‖g‖0
(
|x|2 + |y|2

ν∗K
+
Tr(Q1 +Q2)t

2K

)
.

Similarly,

|H3(t)| ≤ ‖g‖0
(
|x1|2 + |y1|2

ν∗K
+
Tr(Q1 +Q2)t

2K

)
. (4.13)

In order to estimate H1(t), we write it as follows.

H1(t) =

∫ 1

0

d

dλ
E

[
g (u(t, xλ, yλ), θ(t, xλ, yλ))

× ΦK

(∫ t

0

(‖u(s, xλ, yλ)‖2 + ‖θ(s, xλ, yλ)‖2)ds

)]
dλ,

where

xλ = λx+ (1− λ)x1, yλ = λy + (1− λ)y1, λ ∈ [0, 1].

Set h = (x− x1, y − y1), then the Bismut-Elworthy formula yields

H1(t) =

∫ 1

0

1

t
E

[
g (Z(t, xλ, yλ))× ΦK

(∫ t

0

(‖u(s, xλ, yλ)‖2 + ‖θ(s, xλ, yλ)‖2)ds

)

×
∫ t

0

(Q−1/2DZ(s, xλ, yλ)h, dW (s))

]
dλ

+ 2

∫ 1

0

E

[
g (Z(t, xλ, yλ))× Φ′K

(∫ t

0

(‖u(s, xλ, yλ)‖2 + ‖θ(s, xλ, yλ)‖2)ds

)

×
∫ t

0

(1− s

t
)(AZ(s, xλ, yλ), DZ(s, xλ, yλ)h)

]
dλ,

where A : V × V1 → V ′ × V ′1 is the canonical isomorphism of V × V1 onto V ′ × V ′1 . Let

τλ = inf

{
t > 0 :

∫ t

0

(‖u(s, xλ, yλ)‖2 + ‖θ(s, xλ, yλ)‖2)ds ≥ 2K

}
.

Then we have

|H1(t)| ≤ C‖g‖0
∫ 1

0

dλ

[
1

t
E
[∫ t∧τλ

0

|Q−1/2DZ(s, xλ, yλ)h|2ds
]1/2

+ 2‖Φ′K‖0E

[(∫ t∧τλ

0

‖ξh(s, xλ, yλ)‖2V×V1
ds

)1/2(∫ t

0

‖Z(s, xλ, yλ)‖2
)1/2

]]
,
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where ξh = DZ · h. By estimates (4.10) and (4.11), as well as the condition (1.2), we have that∫ t

0

|Q−1/2DZ(s, xλ, yλ)h|2ds ≤ C|h|2.

Finally, by estimates (4.2) and (4.10)-(4.13), we obtain

|E [g(Z(t, x, y))− g(Z(t, x1, y1))] | (4.14)

≤ C‖g‖0δ
(
δ

K
+ 2eδK(1 + t−1/2) ≤ 1

2

)
,

for all x, y, x1, y1 ∈ Bδ(0) when K is appropriately chosen and δ is small enough.
With the a priori estimates of Lemmas 4.2-4.4, the next theorem can be obtained by following exactly

the same approach (namely, coupling method) as presented in [2].
Theorem 4.5. There is a unique invariant measure µ for semigroup Pt.

5. Appendix. Definition 5.1. Suppose H is a real separable Hilbert space with inner product (·, ·)
and norm | · |. A linear continuous operator Q is of trace class if it satisfies,

• positivity: (Qx, x) ≥ 0, x ∈ H,
• symmetry: (Qx, y) = (x,Qy), x, y ∈ H,
• bounded trace: Tr Q :=

∑∞
k=1(Qek, ek) < +∞ for one (and consequently for all) complete or-

thonormal system (ek) in H.
Definition 5.2. A Markov semigroup Pt on Bb(H) is a mapping

[0,+∞)→ L(Bb(H)), t 7→ Pt,

such that
(i) P0 = 1, Pt+s = PtPs for all t, s ≥ 0.

(ii) For any t ≥ 0 and x ∈ H there exists a probability measure πt(x, ·) ∈ P(H) such that

Ptϕ(x) =

∫
H

ϕ(y)πt(x, dy) for all ϕ ∈ Bb(H).

(iii) For any ϕ ∈ Cb(H) (resp. Bb(H)) and x ∈ H, the mapping t 7→ Ptϕ(x) is continuous (resp.
Borel).

Definition 5.3. Assume Pt represents a Markov semigroup 5.2 on a Hilbert space H. A probability
measure µ ∈ P(H) is said to be invariant for Pt if∫

H

Ptϕdµ =

∫
H

ϕdµ, for all ϕ ∈ Bb(H) and t ≥ 0,

where Bb(H) is the Banach space of all real-valued Borel bounded mappings defined on H with the norm

‖ϕ‖0 = sup
x∈H
|ϕ(x)|.

Definition 5.4. A subset Λ ⊂ P(H) is said to be tight if there exists an increasing sequence (Kn) of
compact sets of H such that

lim
n→∞

µ(Kn) = 1 uniformly on Λ,

or, equivalently, if for any ε > 0 there exists a compact set Kε such that

µ(Kε) ≥ 1− ε, µ ∈ Λ.
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