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Abstract. There has been a surge of work on models for coupling surface-water with groundwater flows which
is at its core the Stokes-Darcy problem. The resulting (Stokes-Darcy) fluid velocity is important because the flow
transports contaminants. The analysis of models including the transport of contaminants has, however, focused on a
quasi-static Stokes-Darcy model. Herein we consider the fully evolutionary system including contaminant transport
and analyze its quasi-static limits.
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1. Introduction. The Stokes-Darcy problem describes the (slow) flow of a fluid across
an interface I separating a saturated porous medium Ωp ⊂ Rd (d = 2 or 3) and a free flowing
fluid region Ω f ⊂ Rd . Such flow is important because it transports contaminants between
surface and groundwater [2, 3], nutrients and oxygen between capillaries and tissue [6, 21],
and material in industrial filtration systems [11, 12]. It also arises (at higher transport veloci-
ties) in modern fuel cells, porous combustors, advanced heat exchangers, the flow of air in the
lungs and in the atmospheric boundary layer over vegetation. Adding transport involves solv-
ing one additional convection-diffusion problem with the Stokes-Darcy velocity passed from
a Stokes-Darcy model and thus it seems to be a simple elaboration of the model. However,
adding transport introduces new difficulties and apparently is little studied, Section 1.1.

We therefore consider the equation for the concentration c(x, t) of a contaminant being
transported, having a source s(x, t). While each application has its own specific features, a
reasonable first description of this process is the forced convection equation

βct +∇ · (−D∇c+uc) = s(x, t) in Ω := Ω f ∪Ωp∪ I. (1.1)

The free flowing fluid region’s velocity, u f , and pressure, p, and the porous media’s pressure
head, φ , and velocity, up, satisfy

u f ,t −ν∆u f +∇p = f f (x, t) and ∇ ·u f = 0 in Ω f , (1.2)

S0φt −∇ · (K∇φ) = fp(x, t) and up =−β
−1K∇φ in Ωp. (1.3)

The quasi-static limit (as S0→ 0) of the predicted concentration of the full model is studied
herein. The transport velocity u in the concentration equation (1.1) is

u =

{
u f in Ω f
up in Ωp

. (1.4)

For the fluid flow problem various combinations of boundary conditions on the exterior
boundary ∂Ω are possible and generally complicate the notation without complicating the
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analysis. We impose homogeneous Dirichlet boundary conditions (for clarity of exposition)
and the usual initial condition

u f = 0 on ∂Ω f \I and φ = 0 on Ωp\I
u f (x,0) = u0

f (x) in Ω f and φ(x,0) = φ
0(x) in Ωp.

For the concentration we assume that

c = 0 on Γin ⊂ ∂Ω and −D∇c · n̂ = 0 on ∂Ω\Γin

and c(x,0) = c0(x) in Ω.

There are a variety of possible interface conditions studied for I that describe different
types of interfaces, e.g., [22, 5, 10]. Let n̂ be the outward pointing unit normal vector on Ω f

and {τ̂i}d−1
i=1 denote an orthonormal basis of tangent vectors on I. For slow flows across I,

conservation of mass, balance of normal forces and the Beavers-Joseph-Saffman condition,
[4, 13, 24], are increasingly accepted:

u f · n̂−up · n̂ = 0

gφ = p−ν n̂ ·
(

∇u f +∇u>f
)
· n̂

−n̂ ·
(

∇u f +∇u>f
)
· τ̂i =

α√
τ̂i·K·τ̂i

u f · τ̂i, i = 1, . . . ,d−1

 on I. (1.5)

Interface conditions on the concentration are not needed as a single domain formulation of
(1.1) imposes continuity of concentration and fluxes as natural interface conditions

[c] = 0 and [(−D∇c+uc) · n̂] = 0, on I. (Jump Conditions)

The parameters in the above are as follows
S0 = specific storage ν = kinematic viscosity
K = hydraulic conductivity tensor (SPD) D = dispersion tensor
β = volumetric porosity g = gravitational acceleration
α = experimentally determined coefficient f f/p,s = body forces and sources

Given that S0 is often very small, most of the algorithmic advances have been for the case
S0 = 0 and the concentration the primary variable of interest. The question of convergence of
the concentration of the full model to that predicted by the quasi-static model as S0→ 0 is of
significant interest and studied herein. In Theorem 3.2 we show that c→ cQS as S0→ 0. This
extends the analysis in [18] from the Stokes-Darcy problem to the concentration predicted by
the Stokes-Darcy-Transport coupling.

The full model presents several computational and analytical difficulties (addressed here-
in) that are explained next. The first is an active nonlinearity in the transport problem. Taking
the L2 inner product of the transport equation with c(x, t) and performing the standard esti-
mates for c(x, t) gives

1
2

d
dt

∫
Ω

βc2 dx+
∫

Ω

D|∇c|2 dx +
1
2

∫
Ω

(∇ ·u)c2 dx =
∫

Ω

s c dx.

The key term involves ∇ · u which, in the quasi-static (S0 = 0) case, is a known function
(β−1 fp) and, in the fully evolutionary case, is

∇ ·u =

{
0 in Ω f ,

β−1
(
−S0

∂φ

∂ t + fp

)
in Ωp.

(1.6)
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Thus, when S0 = 0 the (nonlinear) transport term acts in the a priori estimates, stability and
convergence analysis in a simpler manner than when S0 6= 0.

The second issue is the multitude of small parameters in the full problem. For example,
when S0 = 0 the small parameter Kmin > 0 (the minimum eigenvalue of the hydraulic conduc-
tivity tensor, K) in (1.3) can be eliminated by re-scaling fp. When S0 6= 0 the small parameters
in the porous media equation are active. The transport equation (1.1) is also complicated by
small parameters in many applications. In the simplest case where this issue occurs, it reduces
to a singularly perturbed convection diffusion equation with no control on ∇ · u, a problem
for which methods are comparatively less well developed.

1.1. Related work. Porous media transport and transport in a freely flowing fluid de-
scribe different physical processes with different variables, time scales, flow rates and uncer-
tainties. There has been an intense effort at developing algorithms that use the subdomain
/ sub-physics codes to maximum effect to solve the coupled problem, e.g., domain decom-
position methods for the equilibrium problem [7, 9, 8, 14, 17] and partitioned methods for
the evolutionary problem [19, 5, 16, 25, 6]. The analytical needs to support reliability of
the resulting predictions have also spurred analytical study of the coupled model. Presented
in [1, 25, 27, 23] are analyses for the coupled Stokes-Darcy-Transport problem where the
velocity u in (1.1) is modeled as either that from a fully steady Stokes-Darcy flow, or from
a quasi-static coupled Stokes-Darcy flow (i.e., (1.2),(1.3) with S0 = 0). In these the quasi-
static Stokes-Darcy problem is typically solved by a domain decomposition procedure and a
single domain transport problem is solved. To our knowledge, while there is for example a
journal dedicated to ”Transport in Porous Media”, there has been little progress on the numer-
ical analysis of methods for full uncoupling of ( up,u f ,c) of the fully evolutionary (S0 6= 0)
problem.

2. Preliminaries. Let the L2 norms and inner products over Ωp/ f and I be denoted
respectively by ‖ · ‖p/ f/I ,(·, ·)p/ f/I . Recall that Ω = Ωp ∪Ω f ∪ I; the L2 norm and inner
product over Ω will be denoted by ‖ · ‖,(·, ·) (without subscripts). We denote the L2(I) norm
by ‖·‖I . Let D ⊂Ω be a regular bounded open set. We recall that by the Gagliardo-Nirenberg
inequality [20] we have

‖ϕ‖L4(D) ≤C

 ‖ϕ‖
1/2
L2(D)

‖ϕ‖1/2
H1(D)

in 2d,

‖ϕ‖1/4
L2(D)

‖ϕ‖3/4
H1(D)

in 3d,
∀ϕ ∈ H1(D). (2.1)

We also recall that by Remark 1.1 in [26] we have

‖ϕ‖L2(D) ≤C(D)
(
γ(u)+‖∇ϕ‖L2(D)

)
, ∀ϕ ∈ H1(D), (2.2)

where γ(u) is a seminorm, continuous on L2(D), which is a norm on constants. Let Γ be
a portion of ∂D with meas(Γ) > 0, and assume that ϕ has zero trace on Γ ⊂ ∂D . Then
choosing γ(u) = ‖u‖L2(Γ) we obtain from (2.2) that the following Poincaré-Friedrichs type
inequality holds on ker(Γ) = {ψ ∈ H1(D);ψ|Γ = 0}:

‖ϕ‖L2(D) ≤C(D)‖∇ϕ‖L2(D), ∀ϕ ∈ H1(D),ϕ
∣∣
γ
= 0. (2.3)

From (2.1) and (2.3) we derive

‖ϕ‖L4(D) ≤C

 ‖ϕ‖
1/2
L2(D)

‖∇ϕ‖1/2
L2(D)

in 2d,

‖ϕ‖1/4
L2(D)

‖∇ϕ‖3/4
L2(D)

in 3d,
∀ϕ ∈ H1(D),ϕ

∣∣
γ
= 0. (2.4)
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If ϕ = 0 on ∂D , then (2.4) are just the inequalities proved by Ladyzhenskaya [15, Chapter
1]. Denote the (assumed positive) minimum of D by

Dmin = inf
x∈Ω

D(x)> 0.

Regularity of the concentration depends on regularity of the Stokes-Darcy variables. In [18]
Moraiti proved that for 0 < T < ∞ and data satisfying

f f ,t ∈ L2(0,T ;H−1(Ω f )), fp,t ∈ L2(0,T ;H−1(Ωp))

u f ,t(0) ∈ L2(Ω f ),φt(0) ∈ L2(Ωp),

where

u f ,t(0) := u f ,t(x,0) = lim
t→0+

u f ,t(x, t) = lim
t→0+

(
f f (x, t)+ν∆u f (x, t)−∇p(x, t)

)
φt(0) := φt(x,0) = lim

t→0+
φt(x, t) = S−1

0 lim
t→0+

( fp(x, t)+∇ · (K∇φ(x, t))) ,

the following hold uniformly in S0 and will be assumed herein:

u f ,t ∈ L∞(0,T ;L2(Ω)),
√

S0φt ∈ L∞(0,T ;L2(Ωp)) and ∇φt ∈ L2(0,T ;L2(Ωp)). (2.5)

Additionally we assume

c0 ∈ L2(Ω), ∇c0 ∈ L2(Ω), s ∈ L2(0,T ;L2(Ω)),∇φt(0) ∈ L2(Ωp), and (2.6)

f f ∈ L∞(0,T ;L2(Ω f )), fp ∈ L∞(0,T ;H1(Ωp)), fp,t ∈ L2(0,T ;L2(Ωp)). (2.7)

Using energy estimate arguments similar to [18] for the Darcy equation, we have

S0‖K1/2
∇φt(t)‖2

p +
∫ t

0
‖∇ · (K∇φt)‖2

pdr ≤ ‖ ft,p‖2
L2(0,T ;L2(Ωp))

+S0‖K1/2
∇φt(0)‖2

p,

which under assumptions (2.6), (2.7) gives
√

S0∇φt ∈ L∞(0,T ;L2(Ωp)).
Note also that from the Stokes equation (1.2) we have

‖∆u f ‖L∞(0,T ;L2(Ω f ))
≤C

(
‖u f ,t‖2

L∞(0,T ;L2(Ω f ))
+‖ f f ‖2

L∞(0,T ;L2(Ω f ))

)
,

hence under the regularity assumptions in (2.5) and (2.7) we obtain that u f ∈L∞(0,T ;H2(Ω f )).
To summarize, in the remainder we assume that uniformly in S0

u f ∈W 1,∞([0,T ];L2(Ω f ))∩L∞(0,T ;H2(Ω f )),
√

S0φ ∈W 1,∞([0,T ];H1(Ωp)) (2.8)

and we shall prove in Propositions 2.1 and 3.1 that

c ∈ {g : g ∈ L∞(0,T ;H1(Ω))∩W 1,2([0,T ];L2(Ω)), g|Γin = 0},

and give estimates of ‖c−cQS‖ as S0→ 0. Throughout we use C to denote a generic positive
constant, whose actual value may vary from line to line in the analysis. We begin with the
following a priori estimate.

PROPOSITION 2.1 (The first estimate). Suppose 0 < T < ∞, the problem data for (1.2)-
(1.3) is such that (2.5) holds, and that s ∈ L2(0,T ;L2(Ω)). Then

c ∈ L∞(0,T ;L2(Ω)) and ∇c ∈ L2(0,T ;L2(Ω)). (2.9)
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Proof. For the transport equation (1.1), multiply by c(x, t) and integrate over Ω. This
gives

1
2

β
d
dt
‖c‖2 +‖

√
D∇c‖2+

1
2

∫
Ω

(∇ ·u)c2dx = (s,c).

Since ∇ · u = 0 in the fluid region and ∇ · u = −β−1 (S0φt − fp) in the porous media region
the third term is

1
2

∫
Ω

(∇ ·u)c2dx =− 1
2β

∫
Ωp

(S0φt − fp)c2dx.

Thus we have

1
2

β
d
dt
‖c‖2 +‖

√
D∇c‖2 = (s,c)− 1

2β

∫
Ωp

fpc2dx+
S0

2β

∫
Ωp

φtc2dx

≤ 1
2
‖s‖2 +

1
2
‖c‖2− 1

2β

∫
Ωp

fpc2dx+
S0

2β

∫
Ωp

φtc2dx.

The critical term is
∫

φtc2dx and estimates for this term depend on estimates for φt . Thus, by
Hölder’s inequality ∣∣∣∣ S0

2β

∫
Ωp

φtc2dx
∣∣∣∣≤ S0

2β
‖φt‖p‖c‖2

L4(Ωp)
.

Inequalities (2.4) for ‖c‖2
L4 imply∣∣∣∣ S0

2β

∫
Ωp

φtc2dx
∣∣∣∣≤ C

β
S0‖φt‖p

{ ‖c‖p‖∇c‖p in 2d,
‖c‖1/2

p ‖∇c‖3/2
p in 3d.

(2.10)

An analogous bound to (2.10) holds for
∫

Ωp
fpc2dx.

We consider the 2d and 3d cases separately.
The 2d case. Since ‖∇c‖p ≤ D−1/2

min ‖
√

D∇c‖p, in 2d we have

1
2

β
d
dt
‖c‖2 +‖

√
D∇c‖2

≤ 1
2
‖s‖2 +

1
2
‖c‖2 +

C
β
(‖ fp‖p +S0‖φt‖p)‖c‖p‖∇c‖p

≤ 1
2
‖s‖2 +

1
2
‖c‖2 +

1
2
‖
√

D∇c‖2
p +D−1

min
C
β 2

(
‖ fp‖2

p +S2
0‖φt‖2

p
)
‖c‖2

p.

Thus we have

d
dt
‖c‖2 +

1
β
‖
√

D∇c‖2 ≤ 1
β
‖s‖2 +

1
β

(
1+D−1

min
C
β 2

(
‖ fp‖2

p +S2
0‖φt‖2

p
))
‖c‖2. (2.11)

Proceeding as in the proof of Grönwall’s inequality, with µ(t)=
∫ t

0
1
β

[
1+D−1

min
C
β 2 (‖ fp(ξ )‖2

p+

S2
0‖φt(ξ )‖2

p)
]
dξ , multiplying (2.11) by exp(−µ(t)) and rearranging we have

d
dt

(
exp(−µ(t))‖c(t)‖2) +

1
β

exp(−µ(t))‖
√

D∇c‖2 ≤ 1
β

exp(−µ(t))‖s‖2. (2.12)

5



Integrating (2.12) from 0 to t, and then multiplying through by exp(µ(t)) yields

‖c(t)‖2 +
1
β

∫ t

0
exp(µ(t)−µ(ξ ))‖

√
D∇c(ξ )‖2dξ (2.13)

≤ exp(µ(t))‖c0‖2 +
1
β

∫ t

0
exp(µ(t)−µ(ξ ))‖s(ξ )‖2dξ .

With the assumed regularity (2.5) and (2.6), and the boundedness of exp(µ(T )), (2.9) now
follows.

The 3d case. In 3d we have

1
2

β
d
dt
‖c‖2 +‖

√
D∇c‖2

≤ 1
2
‖s‖2 +

1
2
‖c‖2 +

C
β
(‖ fp‖p +S0‖φt‖p)‖c‖1/2

p ‖∇c‖3/2
p

≤ 1
2
‖s‖2 +

1
2
‖c‖2 +‖

√
D∇c‖3/2

p

(
D−3/4

min
C
β
(‖ fp‖p +S0‖φt‖p)‖c‖1/2

p

)
.

For the last term we use ab≤ 3
4 a4/3 + 1

4 b4. This gives, after rearranging,

d
dt
‖c‖2 +

1
2β
‖
√

D∇c‖2 ≤ 1
β
‖s‖2 +

1
β

(
1+D−3

min
C
β 4

(
‖ fp‖4

p +S4
0‖φt‖4

p
))
‖c‖2 .

Now, proceeding as in the 2d case we obtain (2.9).

3. Validity of the quasi-static model. Let cQS(x, t) be the solution of (1.1) with S0 = 0,
i.e., u = uQS, the solution of the quasi-static Stokes-Darcy problem, where

∇ ·uQS =

{
0, in Ω f ,
1
β

fp, in Ωp.
(3.1)

Define

ec(x, t) := c(x, t)− cQS(x, t) and eu(x, t) := u(x, t)−uQS(x, t)

and note that ec(x,0) = 0, and eu(x,0) = 0. In Theorem 3.2 we show that c→ cQS as S0→ 0.
To prove convergence in 3d, we first obtain a second a priori bound for the concentration c,
given next.

PROPOSITION 3.1 (The second estimate). Assuming (2.5) and (2.6), we have that uni-
formly in S0

∇c ∈ L∞(0,T ;L2(Ω)) and ct ∈ L2(0,T ;L2(Ω)). (3.2)

Proof. Take the inner product of (1.1) with ct , integrate over Ω, and apply the divergence
theorem. This yields:

β (ct ,ct)− (∇ · (D∇c) ,ct)+(∇ · (uc) ,ct) = (s,ct) and thus

β‖ct‖2 + 1
2

d
dt ‖
√

D∇c‖2 = (s,ct)− (∇ · (uc) ,ct) .

Using Cauchy-Schwarz and Young inequalities and absorbing terms on the left-hand side, we
have

β

2 ‖ct‖2 + 1
2

d
dt ‖
√

D∇c‖2 = β
−1 (‖s‖2 +‖∇ · (uc)‖2)
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= β
−1 (‖s‖2 +‖c∇ ·u+u ·∇c‖2)

≤ β
−1 (‖s‖2 +2‖c∇ ·u‖2 +2‖u ·∇c‖2) .

We treat only the 3d case, because the 2d case follows in a similar way. Integrating over
(0, t), 0 < t ≤ T , using the Young inequality and inequality (2.4) we get

‖
√

D∇c(t)‖2 +β

∫ t

0
‖cr(r)‖2 dr

≤ ‖
√

D∇c(0)‖2 +2β
−1
∫ t

0

(
‖s(r)‖2 +2‖c(r)∇ ·u(r)‖2 +2‖u(r) ·∇c(r)‖2)dr

≤ ‖
√

D∇c(0)‖2 +2β
−1
∫ t

0

(
‖s(r)‖2 +2‖c(r)‖2

L4(Ω)‖∇ ·u(r)‖
2
L4(Ω)

+2‖u(r)‖2
L∞(Ω)‖∇c(r)‖2)dr

≤ ‖
√

D∇c(0)‖2 +2β
−1
∫ t

0
‖s(r)‖2dr+4β

−1
∫ t

0

(
‖∇c(r)‖2 +C‖c(r)‖2‖∇ ·u(r)‖8

L4(Ω)

)
dr

+4β
−1
∫ t

0
‖u(r)‖2

L∞(Ω)‖∇c(r)‖2 dr

= ‖
√

D∇c(0)‖2 +2β
−1‖s‖2

L2(0,T ;L2(Ω))+4β
−1‖∇c‖2

L2(0,T ;L2(Ω))

+Cβ
−1
∫ t

0
‖c(r)‖2‖∇ ·u(r)‖8

L4(Ω)
dr+4β

−1‖u‖2
L∞(0,T ;L∞(Ω))‖∇c‖2

L2(0,T ;L2(Ω)) . (3.3)

The second to last term in (3.3) is treated as follows. From (1.6) and again using (2.4) we
have∫ t

0
‖c(r)‖2‖∇ ·u(r)‖8

L4(Ω)
dr ≤ ‖c‖2

L∞(0,T ;L2(Ω))

∫ t

0
‖β−1(−S0φt(r)+ fp(r))‖8

L4(Ωp)
dr

≤ β
−827 ‖c‖2

L∞(0,T ;L2(Ω))

∫ t

0

(
S8

0‖φt(r)‖8
L4(Ωp)

+ ‖ fp(r)‖8
L4(Ωp)

)
dr

≤C‖c‖2
L∞(0,T ;L2(Ω))

∫ t

0

(
S8

0‖φt(r)‖2
p‖∇φt(r)‖6

p + ‖ fp‖2
p‖∇ fp‖6

p

)
dr

≤C‖c‖2
L∞(0,T ;L2(Ω))

(
S8

0‖φt‖2
L∞(0,T ;L2(Ωp))

∫ t

0
‖∇φt(r)‖6

p dr

+‖ fp‖2
L∞(0,T ;L2(Ωp))

∫ t

0
‖∇ fp(r)‖6

pdr
)
.

For estimating the norm ‖u‖2
L∞(0,T ;L2(Ω))

in the last term in (3.3) we use (1.4), (1.3), Sobolev
embeddings, (2.8) and (2.7)

‖u‖2
L∞(0,T ;L∞(Ω)) = ‖u f ‖2

L∞(0,T ;L∞(Ω f ))
+‖up‖2

L∞(0,T ;L∞(Ωp))

= ‖u f ‖2
L∞(0,T ;L∞(Ω f ))

+β
−2‖K∇φ‖2

L∞(0,T ;L∞(Ωp))

≤C
(
‖u f ‖2

L∞(0,T ;H2(Ω f ))
+β

−2‖K∇φ‖2
L∞(0,T ;H2(Ωp))

)
=C

(
‖u f ‖2

L∞(0,T ;H2(Ω f ))
+β

−2‖∇∇ · (K∇φ)‖2
L∞(0,T ;L2(Ωp))

)
≤C

(
‖u f ‖2

L∞(0,T ;H2(Ω f ))
+β

−2‖∇
(
S0φt − fp

)
‖2

L∞(0,T ;L2(Ωp))

)
≤C

(
‖u f ‖2

L∞(0,T ;H2(Ω f ))
+S2

0‖∇φt‖2
L∞(0,T ;L2(Ωp))

+‖∇ fp‖2
L∞(0,T ;L2(Ωp))

)
.

Finally, using (2.6), (2.7), (2.8), (2.9), and taking the supremum over [0,T ], we obtain (3.2).
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We can now prove convergence of the concentration to the quasi-static approximation.
THEOREM 3.2 (Quasi-static limit). Assume (2.5) and (2.6) hold. Then for T < ∞

‖ec‖L∞(0,T ;L2(Ω)) ≤C(T,data)S0

‖
√

D∇ec‖L2(0,T ;L2(Ω)) ≤C(T,data)S0.

Proof. Subtract the concentration equation and its quasi-static form. Next add and sub-
tract uQSc in the transport term (∇ ·

(
uc−uQScQS

)
):

βec
t −∇ · (D∇ec)+∇ ·

(
uc−uQScQS)= 0 and thus

βec
t −∇ · (D∇ec)+∇ · (euc)+∇ ·

(
uQSec)= 0.

Take the inner product with ec, integrate over Ω, and apply integration by parts to obtain

β

2
d
dt ‖e

c‖2 +‖
√

D∇ec‖2− (c,eu ·∇ec)+
(
∇ ·
(
uQSec) ,ec)= 0.

Expanding and using integration by parts, we write(
∇ ·
(
uQSec) ,ec)= 1

2

(
∇ ·
(
uQSec) ,ec)+ 1

2

(
∇ ·
(
uQSec) ,ec)

= 1
2 (∇ ·u

QS,(ec)2)+���
���

�1
2

(
uQS,ec

∇ec)+ 1
2 〈u

QS · n̂,��
�*0

(ec)2〉∂Ω−���
���

�1
2

(
uQS,ec

∇ec)
= 1

2β

(
fp,(ec)2) .

Hence,

β

2
d
dt ‖e

c‖2 +‖
√

D∇ec‖2 = (c,eu ·∇ec)− 1
2β

(
fp,(ec)2) . (3.4)

Applying (2.4), Poincaré-Friedrichs and Young’s inequalities we bound

(c,eu ·∇ec)≤C
{
‖∇ec‖‖eu‖1/2‖∇eu‖1/2‖c‖1/2‖∇c‖1/2, in 2d
‖∇ec‖‖eu‖1/4‖∇eu‖3/4‖c‖1/4‖∇c‖3/4, in 3d

≤C

{
D−1/2

min ‖
√

D∇ec‖‖∇eu‖‖∇c‖, in 2d
D−1/2

min ‖
√

D∇ec‖‖∇eu‖‖∇c‖, in 3d

≤ 1
4
‖
√

D∇ec‖2 + C‖∇eu‖2‖∇c‖2 . (3.5)

Next,

1
2β

(
fp,(ec)2)≤ C

2β
‖ fp‖p

{
‖ec‖‖∇ec‖, in 2d
‖ec‖1/2 ‖∇ec‖3/2, in 3d

≤

{
1
4‖
√

D∇ec‖2 + C
β 2 D−1

min‖ fp‖2
p‖ec‖2, in 2d

1
4‖
√

D∇ec‖2 + C
4β 4 D−3

min‖ fp‖4
p‖ec‖2, in 3d.

(3.6)

We focus on the 3d case. The 2d case follows similarly. Combining (3.4)-(3.6), and rearrang-
ing we have

d
dt
‖ec‖2 +

1
β
‖
√

D∇ec‖2 ≤ C
β 5 D−3

min‖ fp‖4
p‖ec‖2 + C‖∇eu‖2‖∇c‖2 ,
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i.e., for µ(t) =CD−3
min/(β

5)
∫ t

0 ‖ fp(ξ )‖4
p dξ , and ‖ec(0)‖2 = 0,

‖ec(t)‖2 +
1
β

∫ t

0
exp(µ(t)−µ(ξ ))‖

√
D∇ec(ξ )‖2 dξ (3.7)

≤C
∫ t

0
exp(µ(t)−µ(ξ ))‖∇eu(ξ )‖2‖∇c(ξ )‖2 dξ .

In [18] it is proven that, under the stated assumptions, the following hold for eu
f := u f −uQS

f ,

eu
p := up−uQS

p :

‖eu
f ‖L∞(0,T ;L2(Ω f ))

= O(S0) , ‖eu
p‖L∞(0,T ;L2(Ωp))

= O(
√

S0)

‖∇eu
f ‖L2(0,T ;L2(Ω f ))

= O(S0) , ‖∇eu
p‖L2(0,T ;L2(Ωp))

= O(S0),

and the analysis revealed that the convergence is sensitive in Kmin, in that the constants in the
convergence analysis are proportional to 1/

√
Kmin. Thus,

‖∇eu‖L2(0,T ;L2(Ω)) = O(S0). (3.8)

With the a priori bound in (2.9), our assumptions (2.6), the boundedness of exp(µ(T )), taking
the supremum over [0,T ] in (3.8), in view of (3.9), we obtain the first-order convergence of c
to cQS as S0→ 0, completing the proof.

Conclusions. We conclude that the quasi-static transport model for the concentration of
contaminants is justified when the specific storage parameter, S0, is small when compared to
the minimum eigenvalues Kmin and Dmin of the hydraulic conductivity tensor, K, and disper-
sion tensor, D, respectively.

Acknowledgement. Michaela Kubacki was partially supported by NSF grant DMS
1216465. William Layton was partially supported by NSF grants DMS 1216465, 1522267
and AFOSR grant FA9550-12-1-0191. Marina Moraiti was partially supported by NSF grant
DMS 1216465 and AFOSR grant FA9550-12-1-0191. Zhiyong Si was partially supported
by the NSF of China grant 11301156. Catalin Trenchea was partially supported by AFOSR
grant FA9550-12-1-0191 and NSF grant DMS-1522574.

REFERENCES

[1] M. AMARA, D. CAPATINA, AND L. LIZAIK, Coupling of Darcy-Forchheimer and compressible Navier-
Stokes equations with heat transfer, SIAM J. Sci. Comput., 31 (2008/09), pp. 1470–1499.

[2] T. ARBOGAST AND D. S. BRUNSON, A computational method for approximating a Darcy-Stokes system
governing a vuggy porous medium, Comput. Geosci., 11 (2007), pp. 207–218.

[3] J. BEAR, Hydraulics of groundwater, McGraw-Hill series in water resources and environmental engineering,
McGraw-Hill International Book Co., 1979.

[4] G. S. BEAVERS AND D. D. JOSEPH, Boundary conditions at a naturally permeable wall, Journal of Fluid
Mechanics, 30 (1967), pp. 197–207.

[5] Y. CAO, M. GUNZBURGER, F. HUA, AND X. WANG, Coupled Stokes-Darcy model with Beavers-Joseph
interface boundary condition, Commun. Math. Sci., 8 (2010), pp. 1–25.

[6] C. D’ANGELO AND P. ZUNINO, Robust numerical approximation of coupled Stokes’ and Darcy’s flows
applied to vascular hemodynamics and biochemical transport, ESAIM Math. Model. Numer. Anal., 45
(2011), pp. 447–476.

[7] M. DISCACCIATI, Domain decomposition methods for the coupling of surface and groundwater flows, PhD
thesis, École Politechnique Fédérale de Lausanne, 2004.

[8] M. DISCACCIATI, E. MIGLIO, AND A. QUARTERONI, Mathematical and numerical models for coupling
surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57–74.

[9] M. DISCACCIATI AND A. QUARTERONI, Navier-Stokes/Darcy coupling: modeling, analysis, and numerical
approximation, Rev. Mat. Complut., 22 (2009), pp. 315–426.

9
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