Abstract: We introduce some basic examples which lead to the study of stochastic homogenization. Then we introduce the minimal energy ν of the dirichlet problem

$$\begin{cases} -\operatorname{div}(\mathbf{a}\nabla u) &= 0 & \text{in } U, \\ u &= \ell_p & \text{on } \partial U, \end{cases}$$

for suitable U and **a**. We show basic properties of ν and the minimizer v and show convergence in some appropriate senses. As we will see, both quantities give us important information about our problem.

1 Notation

Throughout every talk, we fix the constants $d \ge 2$ and $\Lambda > 1$. We define the state space

$$\Omega \coloneqq \left\{ \mathbf{a} \colon \mathbb{R}^d \longrightarrow \mathbb{R}^{d \times d}_{\text{sym}} \colon \mathbf{a} \text{ is measurable, and } |\xi|^2 \le \xi \cdot \mathbf{a} \xi \le \Lambda |\xi|^2 \text{ for all } \xi \in \mathbb{R}^d \right\}.$$
(1.1)

The entries of a matrix $\mathbf{a} \in \Omega$ are denoted by $\mathbf{a} = \{a_{i,j}\}_{i,j \in \{1,\ldots,d\}}$. Let $U \subset \mathbb{R}^d$ be a Borel set, then we define \mathcal{F}_U to be the smallest σ -Algebra on Ω , such that the mappings

$$\mathbf{a} \longmapsto \int_{U} a_{i,j}(x) \,\varphi(x) \,\mathrm{d}x \qquad \text{are measurable for all } i, j \in \{1, \dots, d\} \text{ and } \varphi \in C_c^{\infty}(U). \tag{1.2}$$

For simplicity, we write $\mathcal{F} \coloneqq \mathcal{F}_{\mathbb{R}^d}$. By definition, (Ω, \mathcal{F}) is a measurable space.

Let $y \in \mathbb{R}^d$, then we define the translation operator T_y by

$$\mathbf{a} \circ T_y(x) = \mathbf{a}(x+y)$$
 for all $x \in \mathbb{R}^d$. (1.3)

We denote by \mathbb{P} a probability measure on (Ω, \mathcal{F}) , which satisfies the following two conditions:

• \mathbb{Z}^d -stationarity: For every $z \in \mathbb{Z}^d$, we have

$$\mathbb{P} \circ T_z = \mathbb{P}. \tag{1.4}$$

• Unit range of dependence: For every pair of Borel sets $U, V \subset \mathbb{R}^d$ with $dist(U, V) \geq 1$, the σ -Algebras \mathcal{F}_U and \mathcal{F}_V are \mathbb{P} -independent.

For any random variable $X: \Omega \longrightarrow \mathbb{R}$, we denote the *expectation with respect to* \mathbb{P} by \mathbb{E} , that is

$$\mathbb{E}[X] = \int_{\Omega} X(\mathbf{a}) \, \mathrm{d}\mathbb{P}(\mathbf{a}) = \int_{\Omega} X \, \mathrm{d}\mathbb{P}.$$
(1.5)

For simplicity, we do not always state the dependence on **a**. Let $Y: \Omega \longrightarrow \mathbb{R}$ be another random variable. We also define the *variance* resp. *covariance* by

$$\operatorname{var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2, \quad \operatorname{resp.} \quad \operatorname{cov}(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]. \quad (1.6)$$

For a measure space (E, Σ, μ) , we denote by $L^p(E, \mu)$ the Lebesgue spaces for $1 \le p \le \infty$ (with real valued functions), equipped with the norm

$$\|f\|_{L^p(E,\mu)} \coloneqq \left(\int_E |f|^p \,\mathrm{d}\mu\right)^{\frac{1}{p}} \qquad \qquad \text{for all } f \in L^p(E,\mu) \text{ and } 1 \le p < \infty.$$
(1.7)

For $p = \infty$, we define

$$\|f\|_{L^{\infty}(E,\mu)} \coloneqq \operatorname{ess\,sup}_{z\in E} |f(z)| \qquad \text{for all } f\in L^{\infty}(E,\mu).$$
(1.8)

For simplicity, if $E \subset \mathbb{R}^d$ is a Borel set and μ is the Lebesgue measure with respect to E, then we write $L^p(E) := L^p(E, \mu)$. If $1 \leq p < \infty$, for a Borel set $U \subset \mathbb{R}^d$ with $0 < |U| < \infty$, we also define the normalized norms

$$\|f\|_{\underline{L}^{p}(U)} = \left(\int_{U} |f(x)|^{p} \,\mathrm{d}x\right)^{\frac{1}{p}} = |U|^{-\frac{1}{p}} \,\|f\|_{L^{p}(U)} \qquad \text{for all } f \in L^{p}(U).$$
(1.9)

For $m \in \mathbb{Z}$, we also introduce the triadic cubes $\Box_m = \frac{1}{2}(-3^m, 3^m)^d$. If n < m, we define $\mathcal{Z}_n \coloneqq 3^n \mathbb{Z}^d \cap \Box_m$.

2 Examples

The simplest way to construct an example is a random checkerboard structure. We decompose the two dimensional space into unit cubes with corners in \mathbb{Z}^2 . We color each cube either **white** or **black** independently at random, that is we have independent random variables $\{b_z\}_{z \in \mathbb{Z}^2}$ such that for every $z \in \mathbb{Z}^d$, we have

$$\mathbb{P}[b(z) = 1] = \mathbb{P}[b(z) = 0] = \frac{1}{2},$$
(2.1)

and fix two matrices $\mathbf{a}_0, \mathbf{a}_1 \in \left\{ A \in \mathbb{R}^{2 \times 2}_{\text{sym}} : |\xi|^2 \leq \xi \cdot A\xi \leq \Lambda |\xi|^2 \text{ for all } \xi \in \mathbb{R}^2 \right\}$. Then we could define a random field $x \mapsto \mathbf{a}(x)$ by

$$\mathbf{a}(x) = \mathbf{a}_{b(z)} \qquad \text{for all } x \in z = \left[-\frac{1}{2}, \frac{1}{2}\right)^2, \text{ for all } z \in \mathbb{Z}^2.$$
(2.2)

This field is in Ω and the measure \mathbb{P} would be admissable.

More generally, we could consider examples using the homogeneous Poisson point process. Recall, that a homogeneous Poisson point process on the euclidean space \mathbb{R}^d is an at most countable random subset $\Pi \subset \mathbb{R}^d$ with the following two properties:

- For all Borel sets $A \subset \mathbb{R}^d$, the number of points $N(A) := \sharp(\Pi \cap A)$ follows a Poisson law of mean |A|.
- For every finite collection of pairwise disjoint Borel sets $A_1, \ldots, A_k \subset \mathbb{R}^d$, the random variables $\{N(A_i)\}_i$ are independent.

In other words, we have a Poisson point process, if for disjoint and bounded Borel sets $A_1, \ldots, A_k \subset \mathbb{R}^d$ the following holds:

$$\mathbb{P}[\sharp(\Pi \cap A_i) = j_i] = \prod_{i=1}^k e^{-A_i |} \frac{|A_i|^{j_i}}{j_i!}.$$
(2.3)

So, if we have a Poisson point process Π on \mathbb{R}^d , we can fix two matrices \mathbf{a}_0 and \mathbf{a}_1 as before and define a random field $x \mapsto \mathbf{a}(x)$ by

$$\mathbf{a}(x) \coloneqq \begin{cases} \mathbf{a}_0 & \text{if } \operatorname{dist}(x, \Pi) \le \frac{1}{2}, \\ \mathbf{a}_1 & \text{otherwise.} \end{cases}$$
(2.4)

As above, this field is an element of Ω and with \mathbb{P} as above, this measure is clearly admissable by definition of the Poisson point process. For more information, see [King].

3 The energy and sub-additive quantity ν

For the rest of this talk, we fix an open and bounded subset $U \subset \mathbb{R}^d$ with Lipschitz boundary and an element $p \in \mathbb{R}^d$. We focus on the equation

$$\begin{cases} -\operatorname{div}(\mathbf{a}\nabla u) = 0 & \text{in } U, \\ u = \ell_p & \text{on } \partial U, \end{cases}$$
(3.1)

where $\mathbf{a} \in \Omega$. We define the minimal normalized energy of this equation by $\nu = \nu(U, p)$, i.e.

$$\nu(U,p) \coloneqq \inf_{v \in \ell_p + H_0^1(U)} \frac{1}{2} \oint_U \nabla v \cdot \mathbf{a} \nabla v.$$
(3.2)

Since the integrand is a convex function, from the direct method of the calculus of variations, we get the existence of a minimizer $v = v(\cdot, U, p) \in \ell_p + H_0^1(U)$ of this integral, that is

$$\nu(U,p) = \frac{1}{2} \oint_U \nabla v \cdot \mathbf{a} \nabla v.$$
(3.3)

We encouter some basic properties of this minimizer and the quantity ν .

Lemma 3.1 (Basic properties)

Let ν and v be defined as above. Then we have

a) **Uniform convexity**: For every $p_1, p_2 \in \mathbb{R}^d$, we have

$$\frac{1}{8}|p_1 - p_2| \le \frac{1}{2}\nu(U, p_1) + \frac{1}{2}\nu(U, p_2) - \nu\left(U, \frac{1}{2}p_1 + \frac{1}{2}p_2\right) \le \frac{\Lambda}{8}|p_1 - p_2|.$$
(3.4)

b) Nomalized sub-additivity: Let U_1, \ldots, U_N be a finite covering of U, such that every U_i is a bounded Lipschitz domain, $U_i \subset U$ and

$$\left| U \setminus \bigcup_{i=1}^{N} U_i \right| = 0, \tag{3.5}$$

then we have

$$\nu(U,p) \le \sum_{i=1}^{N} \frac{|U_i|}{|U|} \nu(U_i,p).$$
(3.6)

c) First variation: v is the unique solution of the equation

$$\begin{cases} -\operatorname{div}(\mathbf{a}\nabla u) = 0 & \text{in } U, \\ u = \ell_p & \text{on } \partial U. \end{cases}$$
(3.7)

In other words, v is the unique minimizer of the energy ν if and only if

$$v \in \ell_p + H_0^1(U)$$
 and $\int \nabla w \cdot \mathbf{a} \nabla v = 0$ for all $w \in H_0^1(U)$. (3.8)

d) Quadratic response: For every $w \in H_0^1(U)$, we have

$$\frac{1}{2} \oint_{U} |\nabla w - \nabla v|^2 \le \frac{1}{2} \oint_{U} \nabla w \cdot \mathbf{a} \nabla w - \nu(U.p) \le \frac{\Lambda}{2} \oint_{U} |\nabla w - \nabla v|^2.$$
(3.9)

The proof can be found in [ArKuMo, Lemma 1.1; p.6]. From the proof of this Lemma and from quadratic response, we get (with $v(U_i) = v(\cdot, U_i, p)$ for simplicity)

$$\frac{1}{2}\sum_{i=1}^{N}\frac{|U_i|}{|U|}\int_{U}|\nabla v(U_i) - \nabla v(U)|^2 \le \frac{1}{2}\sum_{i=1}^{N}\frac{|U_i|}{|U|}\nu(U_i, p) - \nu(U, p) \le \frac{\Lambda}{2}\sum_{i=1}^{N}\frac{|U_i|}{|U|}\int_{U}|\nabla v(U_i) - \nabla v(U)|^2.$$
(3.10)

In other words, the strictness of the subadditivity inequality is proportional to the weighted average of the L^2 -differences of v(U) and $v(U_i)$.

4 Convergence of ν

We want to study the convergence of the energy $\nu(U, p)$ when U gets bigger. For this purpose, it is convenient to work with triadic cubes. Since triadic cubes can be partitioned in smaller triadic cubes, and because of the stationarity of \mathbb{P} , we can see, that

$$\mathbb{E}[\nu(\Box_{m+1}, p)] \le \mathbb{E}[\nu(\Box_m, p)] \qquad \text{for all } m \in \mathbb{N}.$$
(4.1)

In the proof of Lemma 3.1, we have seen, that

$$\frac{1}{2}|p|^2 \le \nu(U,p) \le \frac{\Lambda}{2}|p|^2.$$
(4.2)

Thus, the sequence $m \mapsto \mathbb{E}[\nu(\Box_m, p)]$ is bounded from below and we can find a limit

$$\bar{\nu}(p) \coloneqq \inf_{m \in \mathbb{N}} \mathbb{E}[\nu(\Box_m, p)].$$
(4.3)

It is clear, that $p \mapsto \bar{\nu}(p)$ is a quadratic form and that (4.2) also holds for $\bar{\nu}$. This allows us to determine homogenized coefficients.

Definition 4.1 (Homogenized coefficients)

Let $\bar{\nu}$ be defined as above. Then we defined the *homogenized coefficients* $\bar{\mathbf{a}} \in \mathbb{R}^{d \times d}_{sym}$ by the unique matrix, that satisfies

$$\bar{\nu}(p) = \frac{1}{2} p \cdot \bar{\mathbf{a}}p \qquad \text{for all } p \in \mathbb{R}^d.$$
(4.4)

It is clear, that $\mathbb{1}_{d \times d} \leq \bar{\mathbf{a}} \leq \Lambda \mathbb{1}_{d \times d}$. Thus, $\bar{\mathbf{a}}$ is a positive definite matrix.

Next, we want to show that we have $L^1(\Omega, \mathbb{P})$ -convergence for the quantity ν , that is

$$\mathbb{E}[|\nu(\Box_m, p) - \bar{\nu}(p)|] \longrightarrow 0 \qquad \text{as } m \to \infty.$$
(4.5)

We want to extract as much quantitative information as we can, so we introduce another quantity which the convergence rate will depend on. We define

$$\omega(m) \coloneqq \sup_{p \in B_1} \mathbb{E}[\nu(\Box_m, p)] - \bar{\nu}(p) \qquad \text{for all } m \in \mathbb{N}.$$
(4.6)

This quantity converges to zero as $m \to \infty$. This can be seen from the fact, that $p \mapsto \mathbb{E}[\nu(\Box_m, p)] - \bar{\nu}(p)$ is a quadratic form with a positive definite matrix, so

$$\omega(m) \le \sum_{i=1}^{d} \mathbb{E}[\nu(\Box_m, \mathbf{e}_i)] - \bar{\nu}(\mathbf{e}_i) \to 0, \qquad (4.7)$$

with the standard basis $\{\mathbf{e}_i\}_i$ of \mathbb{R}^d .

Proposition 4.2 (Convergence in expectation)

With the above definitions, there exists a constant $C = C(d, \Lambda) > 0$, such that for every $p \in B_1$ and every $min\mathbb{N}$

$$\mathbb{E}[|\nu(\Box_m, p) - \bar{\nu}(p)|] \le C \, 3^{-\frac{d}{4}m} + C \, \omega\left(\left\lceil \frac{m}{2} \right\rceil\right). \tag{4.8}$$

The proof can be found in [ArKuMo, Proposition 1.4; p.12]. At least, we show that the minimizers $v = v(\cdot, \Box_m, p)$ converge in an appropriate sense to ℓ_p .

Theorem 4.3 (Normalized L^2 convergence)

With the above definitions, there exists a constant $C = C(\Lambda, d)$, such that for every $p \in B_1$ and every $m \in \mathbb{N}$

$$\mathbb{E}\left[3^{-2m} \left\|v(\cdot, \Box_m, p) - \ell_p\right\|_{\underline{L}^2(\Box_m)}^2\right] \le C \, 3^{-\frac{m}{4}} + C \, \omega\left(\left\lceil\frac{m}{4}\right\rceil\right). \tag{4.9}$$

The proof can be found in [ArKuMo, Theorem 1.5; p.14].

References

- [ArKuMo] S. Armstrong, T. Kuusi, J.-C. Mourrat; Quantitative stochastic homogenization and large-scale regularity (2017).
- [King] J. F. Kingman; Poisson processes (2002).