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Abstract: We introduce some basic examples which lead to the study of stochastic homogenization. Then
we introduce the minimal energy ν of the dirichlet problem{

−div(a∇u) = 0 in U,
u = `p on ∂U,

for suitable U and a. We show basic properties of ν and the minimizer v and show convergence in some
appropriate senses. As we will see, both quantities give us important information about our problem.

1 Notation

Throughout every talk, we fix the constants d ≥ 2 and Λ > 1. We define the state space

Ω :=
{
a : Rd −→ R

d×d
sym : a is measurable, and |ξ|2 ≤ ξ · aξ ≤ Λ|ξ|2 for all ξ ∈ Rd

}
. (1.1)

The entries of a matrix a ∈ Ω are denoted by a = {ai,j}i,j∈{1,...,d}. Let U ⊂ Rd be a Borel set, then we define
FU to be the smallest σ-Algebra on Ω, such that the mappings

a 7−→
ˆ
U

ai,j(x)ϕ(x) dx are measurable for all i, j ∈ {1, . . . , d} and ϕ ∈ C∞c (U). (1.2)

For simplicity, we write F := FRd . By definition, (Ω,F) is a measurable space.

Let y ∈ Rd, then we define the translation operator Ty by

a ◦ Ty(x) = a(x+ y) for all x ∈ Rd. (1.3)

We denote by P a probability measure on (Ω,F), which satisfies the following two conditions:

• Zd-stationarity : For every z ∈ Zd, we have

P ◦ Tz = P. (1.4)

• Unit range of dependence: For every pair of Borel sets U, V ⊂ Rd with dist(U, V ) ≥ 1, the σ-Algebras FU
and FV are P-independent.

For any random variable X : Ω −→ R, we denote the expectation with respect to P by E, that is

E[X] =

ˆ
Ω

X(a) dP(a) =

ˆ
Ω

X dP. (1.5)

For simplicity, we do not always state the dependence on a. Let Y : Ω −→ R be another random variable. We
also define the variance resp. covariance by

var(X) = E
[(
X −E[X]

)2]
= E[X2]−E[X]2, resp. cov(X,Y ) = E[XY ]−E[X]E[Y ]. (1.6)

For a measure space (E,Σ, µ), we denote by Lp(E,µ) the Lebesgue spaces for 1 ≤ p ≤ ∞ (with real valued
functions), equipped with the norm

‖f‖Lp(E,µ) :=
( ˆ

E

|f |p dµ
) 1

p

for all f ∈ Lp(E,µ) and 1 ≤ p <∞. (1.7)

For p =∞, we define

‖f‖L∞(E,µ) := ess sup
z∈E

|f(z)| for all f ∈ L∞(E,µ). (1.8)

For simplicity, if E ⊂ Rd is a Borel set and µ is the Lebesgue measure with respect to E, then we write
Lp(E) := Lp(E,µ). If 1 ≤ p < ∞, for a Borel set U ⊂ Rd with 0 < |U | < ∞, we also define the normalized
norms

‖f‖Lp(U) =
( 

U

|f(x)|p dx
) 1

p

= |U |−
1
p ‖f‖Lp(U) for all f ∈ Lp(U). (1.9)

For m ∈ Z, we also introduce the triadic cubes �m = 1
2 (−3m, 3m)d. If n < m, we define Zn := 3nZd ∩�m.
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2 Examples

The simplest way to construct an example is a random checkerboard structure. We decompose the two dimensional
space into unit cubes with corners in Z2. We color each cube either white or black independently at random,
that is we have independent random variables {bz}z∈Z2 such that for every z ∈ Zd, we have

P[b(z) = 1] = P[b(z) = 0] =
1

2
, (2.1)

and fix two matrices a0,a1 ∈
{
A ∈ R2×2

sym : |ξ|2 ≤ ξ ·Aξ ≤ Λ|ξ|2 for all ξ ∈ R2
}

. Then we could define a random

field x 7−→ a(x) by

a(x) = ab(z) for all x ∈ z =
[
− 1

2
,

1

2

)2

, for all z ∈ Z2. (2.2)

This field is in Ω and the measure P would be admissable.

More generally, we could consider examples using the homogeneous Poisson point process. Recall, that a
homogeneous Poisson point process on the euclidean space Rd is an at most countable random subset Π ⊂ Rd
with the following two properties:

• For all Borel sets A ⊂ Rd, the number of points N(A) := ](Π ∩A) follows a Poisson law of mean |A|.

• For every finite collection of pairwise disjoint Borel sets A1, . . . , Ak ⊂ Rd, the random variables {N(Ai)}i
are independent.

In other words, we have a Poisson point process, if for disjoint and bounded Borel sets A1, . . . , Ak ⊂ Rd the
following holds:

P[](Π ∩Ai) = ji] =

k∏
i=1

e−Ai| |Ai|
ji

ji!
. (2.3)

So, if we have a Poisson point process Π on Rd, we can fix two matrices a0 and a1 as before and define a random
field x 7−→ a(x) by

a(x) :=

{
a0 if dist(x,Π) ≤ 1

2 ,
a1 otherwise.

(2.4)

As above, this field is an element of Ω and with P as above, this measure is clearly admissable by definition of
the Poisson point process. For more information, see [King].

3 The energy and sub-additive quantity ν

For the rest of this talk, we fix an open and bounded subset U ⊂ Rd with Lipschitz boundary and an element
p ∈ Rd. We focus on the equation {

−div(a∇u) = 0 in U,
u = `p on ∂U,

(3.1)

where a ∈ Ω. We define the minimal normalized energy of this equation by ν = ν(U, p), i.e.

ν(U, p) := inf
v∈`p+H1

0 (U)

1

2

 
U

∇v · a∇v. (3.2)

Since the integrand is a convex function, from the direct method of the calculus of variations, we get the
existence of a minimizer v = v( · , U, p) ∈ `p +H1

0 (U) of this intergral, that is

ν(U, p) =
1

2

 
U

∇v · a∇v. (3.3)

We encouter some basic properties of this minimizer and the quantity ν.
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Lemma 3.1 (Basic properties)
Let ν and v be defined as above. Then we have

a) Uniform convexity: For every p1, p2 ∈ Rd, we have

1

8
|p1 − p2| ≤

1

2
ν(U, p1) +

1

2
ν(U, p2)− ν

(
U,

1

2
p1 +

1

2
p2

)
≤ Λ

8
|p1 − p2|. (3.4)

b) Nomalized sub-additivity: Let U1, . . . UN be a finite covering of U , such that every Ui is a bounded
Lipschitz domain, Ui ⊂ U and

∣∣∣U \ N⋃
i=1

Ui

∣∣∣ = 0, (3.5)

then we have

ν(U, p) ≤
N∑
i=1

|Ui|
|U |

ν(Ui, p). (3.6)

c) First variation: v is the unique solution of the equation{
−div(a∇u) = 0 in U,

u = `p on ∂U.
(3.7)

In other words, v is the unique minimizer of the energy ν if and only if

v ∈ `p +H1
0 (U) and

ˆ
∇w · a∇v = 0 for all w ∈ H1

0 (U). (3.8)

d) Quadratic response: For every w ∈ H1
0 (U), we have

1

2

 
U

|∇w −∇v|2 ≤ 1

2

 
U

∇w · a∇w − ν(U.p) ≤ Λ

2

 
U

|∇w −∇v|2. (3.9)

The proof can be found in [ArKuMo, Lemma 1.1; p.6]. From the proof of this Lemma and from quadratic
response, we get (with v(Ui) = v( · , Ui, p) for simplicity)

1

2

N∑
i=1

|Ui|
|U |

 
U

|∇v(Ui)−∇v(U)|2 ≤ 1

2

N∑
i=1

|Ui|
|U |

ν(Ui, p)− ν(U, p) ≤ Λ

2

N∑
i=1

|Ui|
|U |

 
U

|∇v(Ui)−∇v(U)|2. (3.10)

In other words, the strictness of the subadditivity inequality is proportional to the weighted average of the
L2-differences of v(U) and v(Ui).

4 Convergence of ν

We want to study the convergence of the energy ν(U, p) when U gets bigger. For this purpose, it is convenient
to work with triadic cubes. Since triadic cubes can be partitioned in smaller triadic cubes, and because of the
stationarity of P, we can see, that

E[ν(�m+1, p)] ≤ E[ν(�m, p)] for all m ∈ N. (4.1)

In the proof of Lemma 3.1, we have seen, that

1

2
|p|2 ≤ ν(U, p) ≤ Λ

2
|p|2. (4.2)

Thus, the sequence m 7−→ E[ν(�m, p)] is bounded from below and we can find a limit

ν̄(p) := inf
m∈N

E[ν(�m, p)]. (4.3)
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It is clear, that p 7−→ ν̄(p) is a quadratic form and that (4.2) also holds for ν̄. This allows us to determine
homogenized coefficents.

Definition 4.1 (Homogenized coefficients)
Let ν̄ be defined as above. Then we defined the homogenized coefficients ā ∈ Rd×dsym by the unique matrix, that
satisfies

ν̄(p) =
1

2
p · āp for all p ∈ Rd. (4.4)

It is clear, that 1d×d ≤ ā ≤ Λ1d×d. Thus, ā is a positive definite matrix.

Next, we want to show that we have L1(Ω,P)-convergence for the quantity ν, that is

E[|ν(�m, p)− ν̄(p)|] −→ 0 as m→∞. (4.5)

We want to extract as much quantitative information as we can, so we introduce another quantity which the
convergence rate will depend on. We define

ω(m) := sup
p∈B1

E[ν(�m, p)]− ν̄(p) for all m ∈ N. (4.6)

This quantity converges to zero as m→∞. This can be seen from the fact, that p 7−→ E[ν(�m, p)]− ν̄(p) is a
quadratic form with a positive definite matrix, so

ω(m) ≤
d∑
i=1

E[ν(�m, ei)]− ν̄(ei)→ 0, (4.7)

with the standard basis {ei}i of Rd.

Proposition 4.2 (Convergence in expectation)
With the above definitions, there exists a constant C = C(d,Λ) > 0, such that for every p ∈ B1 and every minN

E[|ν(�m, p)− ν̄(p)|] ≤ C 3−
d
4m + C ω

(⌈m
2

⌉)
. (4.8)

The proof can be found in [ArKuMo, Proposition 1.4; p.12]. At least, we show that the minimizers v = v( · ,�m, p)
converge in an appropriate sense to `p.

Theorem 4.3 (Normalized L2 convergence)
With the above defintions, there exists a constant C = C(Λ, d), such that for every p ∈ B1 and every m ∈ N

E

[
3−2m

∥∥v( · ,�m, p)− `p
∥∥2

L2(�m)

]
≤ C 3−

m
4 + C ω

(⌈m
4

⌉)
. (4.9)

The proof can be found in [ArKuMo, Theorem 1.5; p.14].
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