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This talk concerns joint works with A. Dall’Acqua, K. Deckelnick, M. Doeme-
land, S. Eichmann, and S. Okabe.

A special form of the Helfrich energy for a sufficiently smooth (two dimensional)
surface S ⊂ R3 (with or without boundary) is defined by

Hε(S) :=

∫
S

H2 dS + ε

∫
S

dS,

where H denotes the mean curvature of S. The first integral may be considered as
a bending energy and the second as surface (stretching) energy. W (S) := H0(S) is
called the Willmore functional. We consider surfaces of revolution S

(x, ϕ) 7→
(
x, u(x) cosϕ, u(x) sinϕ

)
, x ∈ [−1, 1], ϕ ∈ [0, 2π],

with smooth strictly positive profile curve u subject to Dirichlet boundary conditions
u(−1) = α, u(1) = β, u′(±1) = 0

and aim at minimising Hε. Thanks to these boundary conditions the Gauss curva-
ture integral

∫
S
K dS becomes a constant and needs not to be considered.

In the first part of the lecture I shall consider the Willmore case, i.e. ε = 0.
After briefly recalling minimisation in the symmetric case α = β (see [1,4]) I shall
show how much more complicated the problem becomes for α 6= β. Only when α
and β do not differ too much, the profile curve will remain a graph while in general
it will become a nonprojectable curve, see [3].

In the second part, Hε is considered for ε ∈ [0,∞), but again in the symmetric
setting α = β. For α ≥ αm = cm cosh( 1

cm
) ≈ 1.895 with cm ≈ 1.564 the unique

solution of the equation 2
c

= 1 + e−2/c, when one has a catenoid vα which globally
minimises the surface energy, we find minimisers uε for any ε ≥ 0 and show uniform
and locally smooth convergence uε → vα under the singular limit ε → ∞. These
results are collected in [2].

At the end I shall briefly mention recent work on obstacle problems [5].
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