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A quick overview of the Riemann zeta function.

The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1
ns
,Re s > 1.

Originally, Riemann zeta function was defined for real arguments.
Also, Euler found another formula which relates the Riemann zeta
function with prime numbrs, namely

ζ(s) =
∏
p

1(
1− 1

ps

) ,
where p runs through all primes p = 2, 3, 5, . . ..



A quick overview of the Riemann zeta function.

Moreover, Riemann proved that the following ζ(s) satisfies the
following integral representation formula:

ζ(s) =
1

Γ(s)

∫ ∞
0

us−1

eu − 1
du,Re s > 1,

where Γ(s) =

∫ ∞
0

ts−1e−tdt, Re s > 0 is the Euler gamma

function.
Also, another important fact is that one can extend ζ(s) from
Re s > 1 to Re s > 0. By an easy computation one has

(1− 21−s)ζ(s) =
∞∑
n=1

(−1)n−1 1
ns
,

and therefore we have



A quick overview of the Riemann function.

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n−1 1
ns
,Re s > 0, s 6= 1.

It is well-known that ζ is analytic and it has an analytic
continuation at s = 1. At s = 1 it has a simple pole with residue 1.
We have

lim
s→1

(s − 1) ζ(s) = 1.

Let us remark that the alternating zeta function is called the
Dirichlet eta function and it is defined as

η(s) =
∞∑
n=1

(−1)n−1 1
ns
,Re s > 0, s 6= 1.



A quick overview of the Hurwitz zeta function.

Another important function is the Hurwitz (generalized) zeta
function defined by

ζ(s, a) =
∞∑
n=0

1
(n + a)s

,Re s > 1, a 6= 0,−1,−2, . . . .

As the Riemann zeta function, Hurwitz zeta function is analytic
over the whole complex plane except s = 1 where it has a simple
pole. Also, from the two definitions, one has

ζ(s) = ζ(s, 1) =
1

2s − 1
ζ

(
s,

1
2

)
= 1 + ζ(s, 2).



A quick overview of the Hurwitz zeta function.

It can also be extended by analytic continuation to a meromorphic
function defined for all complex numbers s 6= 1. At s = 1 it has a
simple pole with residue 1. The constant term is given by

lim
s→1

(
ζ(s, a)− 1

s − 1

)
= −Γ′(a)

Γ(a)
= −Ψ(a),

where Ψ is the digamma function. Also, the Hurwitz zeta function
is related to the polygamma function,

Ψm(z) = (−1)m+1m!ζ(m + 1, z).



A quick overview of the Dirichlet beta function.

Last but not least, we define the Dirichlet beta function as

β(s) =
∞∑
n=0

(−1)n

(2n + 1)s
,Re s > 0.

Alternatively, one can express the beta function by the following
formula:

β(s) =
1
4s

(ζ(s, 1/4)− ζ(s, 3/4)) .

Equivalently, β(s) has the following integral representation:

ζ(s) =
1

Γ(s)

∫ ∞
0

ts−1e−t

1 + e−2t dt.



A quick overview of the Dirichlet beta function.

Note that β(2) = G (Catalan’s constant), β(3) = π3

32 , and

β(2n + 1) =
(−1)nE2nπ

2n+1

4n+1(2n)!

where En are the Euler numbers in the Taylor series

2
et + e−t

=
∞∑
n=0

En

n!
tn.

Other special values include

β(0) =
1
2
, β(1) =

π

4
, β(−k) =

Ek

2
.



What is known about the values of ζ(s) at integers?

ζ(−2n) = 0 for n = 1, 2, . . . (trivial zeros)
ζ(−n) = (−1)n Bn+1

n+1 ; with ζ(−1) = − 1
12

The values ζ(2n), for n = 1, 2, . . . have been found by Euler in
1740
The values ζ(−2n + 1), for n = 1, 2, . . . can be evaluated in
terms of ζ(2n). In fact, we have

ζ(−2n + 1) = 2(2π)2n(−1)n(2n − 1)!ζ(2n).

There is a mystery about ζ(2n + 1) values
ζ(0) = −1

2
ζ(1) does not exist, but one has the following

lim
s→1

(
ζ(s)− 1

s − 1

)
= γ.



Another quick look at ζ(2n) and ζ(2n + 1)

In 1734, Euler produced a sensation when he discovered that

∞∑
n=1

1
n2 =

π2

6
.

Later, the same Euler generalized the above formula,

ζ(2n) = (−1)n+1 · B2n22n−1π2n

(2n)!
,

where the coefficients Bn are the so-called Bernoulli numbers and
they satisfy

z

ez − 1
=
∞∑
n=0

Bn

n!
zn, |z | < 2π.



Another quick look at ζ(2n) and ζ(2n + 1)

An elementary but sleek proof of Euler’s result was recently given in

E. De Amo, M. Diaz Carrillo, J. Hernandez-Sanchez, Another proof of
Euler’s formula for ζ(2k), Proc. Amer. Math. Soc. 139 (2011), 1441–1444.

The authors proved Euler’s formula using the Taylor series for the
tangent function and Fubini’s theorem.
Unlike ζ(2n), the values ζ(2n + 1) are still mysterious! One of the
most important results was produced by Roger Apery in 1979,
when he proved that ζ(3) is irrational by using the "fast
converging" series representation

ζ(3) =
5
2

∞∑
n=1

(−1)n

n3
(2n
n

) .



Another quick look at ζ(2n) and ζ(2n + 1)

Amazingly, there exist similar formulas for ζ(2) and ζ(4), namely

ζ(2) = 3
∞∑
n=1

1
n2
(2n
n

) , ζ(4) =
36
17

∞∑
n=1

1
n4
(2n
n

) .
Recently, other substantial results were obtained. In 2002, K. Ball
and T. Rivoal proved the following

K. Ball, T. Rivoal, Irrationalite d’une infinite de la fonction zetaaux entiers
impairs, Invent. Math. 146 (2001), 193–207.

Theorem
There are infinitely many irrational values of the Riemann zeta
function at odd positive integers. Moreover, if
N(n) = #{irrational numbers among ζ(3), ζ(5), . . . , ζ(2n + 1)},
then N(n) ≥ 1

2(1 + log 2)
log n for large n.



Another quick look at ζ(2n) and ζ(2n + 1)

Other remarkable results in this direction are given by Rivoal (2001)
and Zudilin (2001),

Theorem
At least four numbers ζ(5), ζ(7), . . . , ζ(21) are irrational.

and
W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ.
Math. Surv. 56 (2001), 193–206.

Theorem
At least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.



Some Taylor series representations

For the sake of completeness we display the Taylor series for the
tangent, cotangent, secant and cosecant functions:

tan x =
∞∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1, |x | < π

2
(1)

cot x =
∞∑
n=0

(−1)n22nB2n

(2n)!
x2n−1, |x | < π (2)

sec x =
∞∑
n=0

(−1)nE2n

(2n)!
x2n, |x | < π

2
(3)

csc x =
∞∑
n=0

(−1)n+12(22n−1 − 1)B2n

(2n)!
x2n−1, |x | < π (4)



Clausen integral

The Clausen function (Clausen integral), introduced by Thomas
Clausen in 1832, is a transcendental special function of single
variable and it is defined by

Cl2(θ) :=
∞∑
k=1

sin kθ
k2 = −

∫ θ

0
log
(
2 sin

(x
2

))
dx .

It is intimately connected with the polylogarithm, inverse tangent
integral, polygamma function, Riemann zeta function, Dirichlet eta
function, and Dirichlet beta function.
Some well-known properties of the Clausen function include
periodicity in the following sense:

Cl2(2kπ ± θ) = Cl2(±θ) = ±Cl2(θ).



Clausen integral

Moreover, it is quite clear from the definition that Cl2(kπ) = 0 for
k integer. For example, for k = 1 we deduce

∫ π

0
log
(
2 sin

(x
2

))
dx = 0,

∫ π
2

0
log(sin x) dx = −π

2
log 2.

By periodicity we have Cl2
(π
2

)
= −Cl2

(
3π
2

)
= G , where G is

the Catalan constant defined by

G :=
∞∑
n=0

(−1)n

(2n + 1)2 ≈ 0.9159...



Clausen integral. Evaluation of some elementary integrals

More generally, one can express the above integral as the following:∫ θ

0
log(sin x) dx = −1

2
Cl2(2θ)− θ log 2,

∫ θ

0
log(cos x) dx = −1

2
Cl2(π − 2θ)− θ log 2,

∫ θ

0
log(1 + cos x) dx = 2Cl2(π − θ)− θ log 2,

and ∫ θ

0
log(1 + sin x) dx = 2G − 2Cl2

(π
2

+ θ
)
− θ log 2.



Clausen acceleration formula

Theorem
We have the following representation for the Clausen function
Cl2(θ),

Cl2(θ)

θ
= 1− log |θ|+

∞∑
n=1

ζ(2n)

(2π)2nn(2n + 1)
θ2n, |θ| < 2π. (5)

Sketch of the proof. Integrating by parts the function xy cot(xy)
and using the product formulas for the sine function, we have

∫ π
2

0
xy cot(xy)dx =

π

2
log
(πy

2

)
− π

2

∞∑
k=1

∞∑
n=1

(
y2

4k2

)n
n

+
π

2
log 2+



Clausen acceleration formula

+
1
2y

Cl2(πy).

On the other hand, by the Taylor series for the cotangent function,
we obtain∫ π

2

0
xy cot(xy) dx =

π

2
− 2

∞∑
n=1

ζ(2n)
(
π
2

)2n+1

π2n(2n + 1)
y2n.

Therefore, we obtain

π

2
−2

∞∑
n=1

ζ(2n)
(
π
2

)2n+1

π2n(2n + 1)
y2n =

π

2
log(πy)−π

2

∞∑
n=1

ζ(2n)

n4n
y2n+

1
2y

Cl2(πy).

Equate the coefficients of y2n and we obtain our formula.�



Clausen acceleration formula. Some remarks.

In particular case of θ = π
2 , using the fact that Cl2(π2 ) = G , we

obtain

∞∑
n=1

ζ(2n)

n(2n + 1)16n
=

2G
π
− 1 + log

(π
2

)
. (6)

Recently, Wu, Zhang and Liu developed the following
representation for the Clausen function,

J. Wu, X. Zhang, D. Liu, An efficient calculation of the Clausen functions,
BIT Numer. Math. 50 (2010), 193–206.

Cl2(θ) = θ − θ log
(
2 sin

θ

2

)
−
∞∑
n=1

2ζ(2n)

(2n + 1)(2π)2n θ
2n+1, |θ| < 2π.

(7)



Clausen acceleration formula. Some well-known
representation for ζ(3).

It is interesting to see that integrating the above formula from 0 to
π/2 we have the following representation for ζ(3) due to Choi,
Srivastava and Adamchik,

H. M. Srivastava, M. L. Glasser, V. S. Adamchik, Some definite integrals
associated with the Riemann zeta function, J. Z. Anal. Anwendungen. 19
(2000), 831–846.

ζ(3) =
4π2

35

(
1
2

+
2G
π
−
∞∑
n=1

ζ(2n)

(n + 1)(2n + 1)16n

)
. (8)



Other representations for ζ(3)

Also, Strivastava, Glasser and Adamchik derive series
representations for ζ(2n + 1) by evaluating the integral∫ π/ω
0 ts−1 cot tdt, s, ω ≥ 2 integers in two different ways. One of
the ways involves the generalized Clausen functions. When they are
evaulated in terms of ζ(2n + 1) one obtains the following formula
for ζ(3),

ζ(3) =
2π2

9

(
log 2 + 2

∞∑
n=0

ζ(2n)

(2n + 3)4n

)
. (9)



Other representations for ζ(3)

Other representations for Apery’s constant are given by Cvijovic
and Klinowski,

D. Cvijovic, J. Klinowski, New rapidly convergent series representations for
ζ(2n + 1), Proc. Amer. Math. Soc. 125 (1997), 1263–1271.

ζ(3) = −π
2

3

∞∑
n=0

(2n + 5)ζ(2n)

(2n + 1)(2n + 2)(2n + 3)22n . (10)

and

ζ(3) = −4π2

7

∞∑
n=0

ζ(2n)

(2n + 1)(2n + 2)22n . (11)



New series representations for Apery’s constant ζ(3)

Theorem

ζ(3) =
4π2

35

(
3
2
− log

(π
2

)
+
∞∑
n=1

ζ(2n)

n(n + 1)(2n + 1)16n

)
, (12)

ζ(3) = − 64
3π
β(4)+

8π2

9

(
4
3
− log

(π
2

)
+ 3

∞∑
n=1

ζ(2n)

n(2n + 1)(2n + 3)16n

)
,

(13)
and

ζ(3) = − 64
3π
β(4)+

16π2

27

(
1
2

+
3G
π
− 3

∞∑
n=1

ζ(2n)

(2n + 1)(2n + 3)16n

)
,

(14)



Ideas of the proof

The main ingredients in the proof of the above theorem are the
following:

Fubini’s theorem, Clausen acceleration formulas and∫ π/4

0
u log(sin u)du =

35
128

ζ(3)− πG

8
− π2

32
log 2 to find∫ π/2

0
Cl2(y) =

35
32
ζ(3).

It can be proven using Fubini’s theorem a formula for∫ π2/4

0
Cl2(
√
y)dy which combined with the polygamma

formula related to the Hurwitz zeta function give us∫ π2/4

0
Cl2(
√
y)dy =

3π
32
ζ(3) + 2β(4).



Rational series representation involving ζ(2n)

We shall call rational ζ-series of a real number x , the following
representation:

x =
∞∑
n=2

qnζ(n,m),

where qn is a rational number and ζ(n,m) is the Hurwitz zeta
function. For m > 1 integer, one has

x =
∞∑
n=2

qn

ζ(n)−
m−1∑
j=1

j−n

 .

J. M. Borwein, D. M. Bradley, R. E. Crandall, Computational strategies for
the Riemann zeta function, J. Comp. Appl. Math. 121 (2000), 247–296.



Rational series representation involving ζ(2n). Examples

In the particular case m = 2, one has the following series
representations:

1 =
∞∑
n=2

(ζ(n)− 1)

1− γ =
∞∑
n=2

1
n

(ζ(n)− 1)

log 2 =
∞∑
n=2

1
n

(ζ(2n)− 1),

where γ is the Euler-Mascheroni constant.



New rational series representation involving ζ(2n)

Theorem
The following representation is true

∞∑
n=1

ζ(2n)

n4n

(
2n
m

)
=


1
m

m odd,

1
m

(
2ζ(m)

(
1− 1

2m

)
− 1
)

m even .

(15)



Some corollaries

In particular cases we obtain the following

Corollary
We have

∞∑
n=1

ζ(2n)

n(2n + 1)4n
= log π − 1. (16)

and



Some corollaries

Corollary
We have the following series representations

∞∑
n=1

ζ(2n)

4n
=

1
2
, (17)

∞∑
n=1

ζ(2n)(2n − 1)(2n − 2)

4n
= 1, (18)

∞∑
n=1

ζ(2n)(2n − 1)

4n
=
π2

8
− 1

2
, (19)

∞∑
n=1

ζ(2n)n

4n
=
π2

16
, (20)

and

∞∑
n=1

ζ(2n)n2

4n
=

3π2

32
. (21)



New rational series representation involving ζ(2n)

Theorem
We have the following series representation

∞∑
n=1

ζ(2n)

n16n

(
2n
m

)
=


1
m

(1− β(m)) m odd,

1
m

(
ζ(m)

(
1− 1

2m

)
− 1
)

m even,

(22)



Some corollaries again

From the previous theorem we recover some well-known rational
series representations for π

Corollary
∞∑
n=1

ζ(2n)

n16n
= log

(
π

2
√
2

)
, (23)

and

∞∑
n=1

ζ(2n)

16n
=

4− π
8

. (24)



Some corollaries again and again

Corollary
We have the following series

∞∑
n=1

ζ(2n)

n4n

(
1− 1

4n

)(
2n
2k

)
=
ζ(2k)

2k

(
1− 1

4k

)
, (25)

and

∞∑
n=1

ζ(2n)

n4n

(
1− 1

4n

)(
2n

2k + 1

)
=
β(2k + 1)

2k + 1
. (26)



And one more...

Corollary
We have

∞∑
n=1

ζ(2n)(2n − 1)

16n
=
π2

16
− 1

2
, (27)

∞∑
n=1

ζ(2n)(2n − 1)(2n − 2)

16n
= 1− π3

96
, (28)

∞∑
n=1

ζ(2n)n

16n
=

π

16

(π
2
− 1
)
, (29)

∞∑
n=1

ζ(2n)n2

16n
=

π

32

(
3π
2
− π2

4
− 1
)
. (30)



Thank you for your attention!!!


